
Auto-encoders: reconstruction versus compression

Yann Ollivier

Abstract
We discuss the similarities and differences between training an auto-

encoder to minimize the reconstruction error, and training the same
auto-encoder to compress the data via a generative model. Minimizing
a codelength for the data using an auto-encoder is equivalent to mini-
mizing the reconstruction error plus some correcting terms which have
an interpretation as either a denoising or contractive property of the
decoding function. These terms are related but not identical to those
used in denoising or contractive auto-encoders [VLL+10, RVM+11]. In
particular, the codelength viewpoint fully determines an optimal noise
level for the denoising criterion.

Given a dataset, auto-encoders (for instance, [PH87, Section 8.1] or
[HS06]) aim at building a hopefully simpler representation of the data via
a hidden, usually lower-dimensional feature space. This is done by looking
for a pair of maps 𝑋 𝑓→ 𝑌

𝑔→ 𝑋 from data space 𝑋 to feature space 𝑌 and
back, such that the reconstruction error between 𝑥 and 𝑔(𝑓(𝑥)) is small.
Identifying relevant features hopefully makes the data more understandable,
more compact, or simpler to describe.

Here we take this interpretation literally, by considering auto-encoders
in the framework of minimum description length (MDL), i.e., data compres-
sion via a probabilistic generative model, using the general correspondence
between compression and “simple” probability distributions on the data
[Grü07]. The objective is then to minimize the codelength (log-likelihood) of
the data using the features found by the auto-encoder1.

We use the “variational” approach to answer the following question: Do
auto-encoders trained to minimize reconstruction error actually minimize
the length of a compressed encoding of the data, at least approximately?

We will see that by adding an information-theoretic term to the recon-
struction error, auto-encoders can be trained to minimize a tight upper
bound on the codelength (compressed size) of the data.

In Section 3 we introduce a first, simple bound on codelength based
on reconstruction error: a dataset 𝒟 ⊂ 𝑋 can be encoded by encoding a

1The goal here is not to build an actual compressed code of the data, but to find a
good pair of feature and generative functions that would yield a short codelength [Grü07].
If the codelength is known as a function of the parameters of the auto-encoder, it can be
used as the training criterion.

1

(hopefully simpler) feature value 𝑓(𝑥) for each 𝑥 ∈ 𝒟, and applying the
decoding function 𝑔. However, this result only applies to discrete features,
and the resulting bound is far from tight. Still, this already illustrates how
minimizing codelength favors using fewer features.

In Section 4 we refine the bound from Section 3 and make it valid for
general feature spaces (Proposition 2). This bound is tight in the sense
that it gets arbitrarily close to the actual codelength when the feature and
generative functions are inverse to each other in a probabilistic sense. This
is an instance of the variational bound [Bis06, Chapter 10]. Related results
appear in [HOT06] and in [KW13, Section 2.2].

The result in Section 4 also illustrates how, to optimize codelength, an
auto-encoder approach helps compared to directly looking for a generative
model. Trying to optimize the codelength directly is often difficult (Section 2).
So even though the codelength 𝐿gen depends only on the generative function 𝑔
and not on a feature function, we build an upper bound on 𝐿gen depending on
both; optimizing over 𝑔 aims at lowering 𝐿gen by lowering this upper bound,
while optimizing over 𝑓 aims at making the upper bound more precise.

In Sections 5 and 6 we provide a connection with denoising auto-encoders
[VLL+10]. When the feature space is continuous, it is impossible to encode a
feature value 𝑓(𝑥) exactly for each 𝑥 in the dataset as this yields an infinite
codelength. Thus, it is necessary to encode features with finite precision and
to use a decoding function that is not too sensitive to approximate features.
Quantifying this effect leads to an explicit upper bound on codelength
(Corollary 3). The denoising criterion is from features to output, rather than
from input to features as in [VLL+10].

Moreover the MDL approach allows us to find the optimal noise level
for the denoising criterion, i.e., the one which yields the best codelength
(Theorem 5). In particular, the noise level should be set differently for each
data sample.

In Section 7 we establish a connection with contractive auto-encoders
[RVM+11]: under various approximations, minimizing codelength penalizes
large derivatives of the output (Proposition 6). The penalty takes a form
somewhat different from [RVM+11], though: contractivity occurs from fea-
tures to output rather than from input to features, and the penalty term
is not the Frobenius norm of the Jacobian matrix but the sum of the logs
of the norms of its rows. An advantage of the MDL approach is that the
penalty constant is determined from theory.

In Section 8 we show that optimal compression requires including the
variance of each data component as additional parameters, especially when
various data components have different variances or noise levels. Compression
focuses on relative rather than absolute error, minimizing the logarithms of
the errors.

The variational bound has already been applied to neural networks in
non-auto-encoding situations, to evaluate the cost of encoding the network

2

parameters [Gra11, HvC93]. In that situation, one tries to find a map 𝑌 𝑔→ 𝑋
that minimizes the codelength of the output data 𝑥 if the features 𝑦 are
given; this decomposes as the output error plus a term describing the cost
of encoding the parameters of 𝑔. In an auto-encoding setting 𝑋 𝑓→ 𝑌

𝑔→ 𝑋,
it is meaningless to encode the dataset given the very same inputs: so the
dataset is encoded by encoding the features 𝑦 together with 𝑔. In this text
we focus on the cost of encoding 𝑦, and the consequences of minimizing the
resulting codelength. Encoding of the parameters of 𝑔 can be done following
[Gra11] and we do not reproduce it here. Still, the cost of 𝑔 must be included
for actual data compression, and also especially when comparing generative
models with different dimensions.

1 Notation: Auto-encoders, reconstruction error. Let 𝑋 be an
input space and 𝑌 be a feature space, usually of smaller dimension. 𝑌
may be discrete, such as 𝑌 = {0, 1}𝑑 (each feature present/absent) or
𝑌 = {1, . . . , 𝑑} (classification), or continuous.

An auto-encoder can be seen as a pair of functions 𝑓 and 𝑔, the feature
function and the generative function. The feature function goes from 𝑋 to 𝑌
(deterministic features) or to Prob(𝑌) (probability distribution on features),
while the generative function goes from 𝑌 to 𝑋 or Prob(𝑋).

The functions 𝑓 and 𝑔 depend on parameters 𝜃𝑓 and 𝜃𝑔 respectively. For
instance, 𝑓 and 𝑔 may each represent a multilayer neural network or any
other model. Training the parameters via the reconstruction error criterion
focuses on having 𝑔(𝑓(𝑥)) close to 𝑥, as follows.

Given a feature function 𝑓 : 𝑋 → 𝑌 and a generative function 𝑔 : 𝑌 →
Prob(𝑋), define the reconstruction error for a dataset 𝒟 ⊂ 𝑋 as

𝐿rec(𝑥) := − log 𝑔𝑓(𝑥)(𝑥), 𝐿rec(𝒟) :=
∑︁
𝑥∈𝒟

𝐿rec(𝑥) (1)

where 𝑔𝑦 is the probability distribution on 𝑋 associated with feature 𝑦.
The case of a deterministic 𝑔 : 𝑌 → 𝑋 with square error ‖𝑔(𝑓(𝑥))− 𝑥‖2

is recovered by interpreting 𝑔 as a Gaussian distribution2 centered at 𝑔(𝑓(𝑥)).
So we will always consider that 𝑔 is a probability distribution on 𝑋.

Discrete-valued features can be difficult to train using gradient-based
methods. For this reason, with discrete features it is more natural to
define 𝑓(𝑥) as a distribution over the feature space 𝑌 describing the law
of inferred features for 𝑥. Thus 𝑓(𝑥) will have continuous parameters. If
𝑓 : 𝑋 → Prob(𝑌) describes a probability distribution on features for each 𝑥,
we define the expected reconstruction error as the expectation of the above:

E𝐿rec(𝑥) := −E𝑦∼𝑓(𝑥) log 𝑔𝑦(𝑥), E𝐿rec(𝒟) :=
∑︁
𝑥∈𝒟

E𝐿rec(𝑥) (2)

2While the choice of variance does not influence minimization of the reconstruction
error, when working with codelengths it will change the scaling of the various terms in
Propositions 1–6. See Section 8 for the optimal variance

3

This covers the previous case when 𝑓(𝑥) is a Dirac mass at a single value 𝑦.
In Sections 2–4 the logarithms may be in any base; in Sections 5–8 the logarithms

are in base e.

2 Auto-encoders as generative models. Alternatively, auto-encoders
can be viewed as generative models for the data. For this we assume that
we are given (or learn) an elementary model 𝜌 on feature space, such as a
Gaussian or Bernoulli model, or even a uniform model in which each feature
is present or absent with probability 1/2. Then, to generate the data, we
draw features at random according to 𝜌 and apply the generative function
𝑔. The goal is to maximize the probability to generate the actual data. In
this viewpoint the feature function 𝑓 is used only as a prop to learn a good
feature space and a good generative function 𝑔.

Given a probability distribution 𝑝 on a set 𝑋, a dataset (𝑥1, . . . , 𝑥𝑛) of
points on 𝑋 can be encoded in −

∑︀
𝑖 log2 𝑝(𝑥𝑖) bits3. Let 𝜌 ∈ Prob(𝑌) be

the elementary model on feature space and let 𝑔 : 𝑌 → Prob(𝑋) be the
generative function. The probability to obtain 𝑥 ∈ 𝑋 by drawing 𝑦 ∼ 𝜌 and
applying 𝑔 is

𝑝𝑔(𝑥) :=
∫︁

𝑦
𝜌(𝑦)𝑔𝑦(𝑥) (3)

(where the integral is a sum if the feature space 𝑌 is discrete). Thus
minimizing the codelength of the dataset 𝒟 amounts to minimizing

𝐿gen(𝒟) :=
∑︁
𝑥∈𝒟

𝐿gen(𝑥), (4)

𝐿gen(𝑥) := − log 𝑝𝑔(𝑥) = − log
∫︁

𝑦
𝜌(𝑦)𝑔𝑦(𝑥) (5)

over 𝑔.
This is the codelength of the data knowing the distribution 𝜌 and the

function 𝑔. We do not consider here the problem of encoding the parameters
of 𝜌 and 𝑔; this can be done following [Gra11], for instance.

The codelength 𝐿gen does not depend on any feature function 𝑓 . However,
it is difficult to optimize 𝐿gen via a direct approach: this leads to working
with all possible values of 𝑦 for every sample 𝑥, as 𝐿gen(𝑥) is an integral
over 𝑦. Presumably, for each given 𝑥 only a few feature values contribute
significantly to 𝐿gen(𝑥). Using a feature function is a way to explore fewer
possible values of 𝑦 for a given 𝑥, hopefully those that contribute most to
𝐿gen(𝑥).

3Technically, for continuous-valued data 𝑥, the actual compressed length is rather
− log2 𝑝(𝑥)− log2 𝜀 where 𝜀 is the quantization threshold of the data and 𝑝 is the probability
density for 𝑥. For the purpose of comparing two different probabilistic models 𝑝 on the
same data with the same 𝜀, the term − log2 𝜀 can be dropped

4

For instance, consider the gradient of 𝐿gen(𝑥) with respect to a parameter
𝜃:

𝜕𝐿gen(𝑥)
𝜕𝜃

= −
∫︀

𝑦 𝜌(𝑦)𝜕𝑔𝑦(𝑥)/𝜕𝜃∫︀
𝑦 𝜌(𝑦)𝑔𝑦(𝑥) = −

∫︀
𝑦 𝜌(𝑦)𝑔𝑦(𝑥)𝜕 ln 𝑔𝑦(𝑥)/𝜕𝜃∫︀

𝑦 𝜌(𝑦)𝑔𝑦(𝑥) (6)

= −E𝑦∼𝑝𝑔(𝑦|𝑥)
𝜕 ln 𝑔𝑦(𝑥)

𝜕𝜃
(7)

where 𝑝𝑔(𝑦|𝑥) = 𝜌(𝑦)𝑔𝑦(𝑥) /
∫︀

𝑦′ 𝜌(𝑦′)𝑔𝑦′(𝑥) is the conditional probability of 𝑦
knowing 𝑥, in the generative model given by 𝜌 and 𝑔. In general we have no
easy access to this distribution.

Using a (probabilistic) feature function 𝑓 and minimizing the reconstruc-
tion error E𝐿rec(𝑥) amounts to replacing the expectation under 𝑦 ∼ 𝑝𝑔(𝑦|𝑥)
with an expectation under 𝑓(𝑥) in the above, presumably easier to handle.
However this gives no guarantees about minimizing 𝐿gen unless we know that
the feature function 𝑓 is close to the inverse of the generative function 𝑔, in
the sense that 𝑓(𝑥)(𝑦) is close to the conditional distribution 𝑝𝑔(𝑦|𝑥) of 𝑦
knowing 𝑥. It would be nice to obtain a guarantee on the codelength based
on the reconstruction error of a feature function 𝑓 and generative function 𝑔.

The variational bound in Proposition 2 below shows that, given a feature
function 𝑓 and a generative function 𝑔, the quantity 𝐿rec(𝑥) + KL(𝑓(𝑥) || 𝜌)
is an upper bound on the codelength 𝐿gen(𝑥). Training an autoencoder to
minimize this criterion will thus minimize an upper bound on 𝐿gen.

Moreover, Proposition 2 shows that the bound is tight when 𝑓(𝑥) is close
to 𝑝𝑔(𝑦|𝑥), and that minimizing this bound will indeed bring 𝑓(𝑥) closer to
𝑝𝑔(𝑦|𝑥). On the other hand, just minimizing the reconstruction error does
not, a priori, guarantee any of this.

3 Two-part codes: explicitly encoding feature values. We first
discuss a simple, less efficient “two-part” [Grü07] coding method. It always
yields a codelength larger than 𝐿gen but is more obviously related to the
auto-encoder reconstruction error.

Given a generative model 𝑔 : 𝑌 → Prob(𝑋) and a prior4 distribution 𝜌
on 𝑌 , one way to encode a data sample 𝑥 ∈ 𝑋 is to explicitly encode a
well-chosen feature value 𝑦 ∈ 𝑌 using the prior distribution 𝜌 on features,
then encode 𝑥 using the probability distribution 𝑔𝑦(𝑥) on 𝑥 defined by 𝑦.
The codelength resulting from this choice of 𝑦 is thus

𝐿two-part(𝑥) := − log 𝜌(𝑦)− log 𝑔𝑦(𝑥) (8)

In this section we assume that 𝑌 is a discrete set. Indeed for continuous
features, the above does not make sense as encoding a precise value for 𝑦

4We use the term “prior” in a loose way: we just encode features 𝑦 with a code of
length − log 𝜌(𝑦), without implying any a priori belief. Thus 𝜌 is just a simple model used
on feature space.

5

would require an infinite codelength. Continuous features are dealt with in
Sections 4 and 5.

We always have
𝐿two-part(𝑥) > 𝐿gen(𝑥) (9)

for discrete features, as 𝐿two-part uses a single value of 𝑦 while 𝐿gen uses a
sum over 𝑦. The difference can be substantial if, for instance, not all feature
components are relevant for all 𝑥: using the two-part code, it is always
necessary to fully encode the feature values 𝑦.

From an auto-encoder perspective, the feature function 𝑓 is used to
choose the feature value 𝑦 used to encode 𝑥. So if the feature function is
deterministic, 𝑓 : 𝑋 → 𝑌 , and if we set 𝑦 = 𝑓(𝑥) in the above, the cost of
encoding the dataset is

𝐿two-part(𝒟) = −
∑︁
𝑥∈𝒟

(︁
log 𝜌(𝑓(𝑥)) + log 𝑔𝑓(𝑥)(𝑥)

)︁
= 𝐿rec(𝒟)−

∑︁
𝑥∈𝒟

log 𝜌(𝑓(𝑥))

involving the reconstruction error and a cross-entropy term between the
empirical distribution of features 𝑓(𝑥) and the prior 𝜌 on feature space. We
can further decompose

− 1
#𝒟

∑︁
𝑥∈𝒟

log 𝜌(𝑓(𝑥)) = KL(𝑞𝑓 || 𝜌) + Ent 𝑞𝑓 (10)

where 𝑞𝑓 is the empirical distribution of the feature 𝑓(𝑥) when 𝑥 runs over
the dataset,

𝑞𝑓 (𝑦) := 1
#𝒟

∑︁
𝑥∈𝒟

1𝑓(𝑥)=𝑦 (11)

and KL(𝑞𝑓 || 𝜌) = E𝑦∼𝑞𝑓
log(𝑞𝑓 (𝑦)/𝜌(𝑦)) is the Kullback–Leibler divergence

between 𝑞𝑓 and 𝜌.
If the feature function 𝑓 is probabilistic, 𝑓 : 𝑋 → Prob(𝑌), the analysis

is identical, with the expected two-part codelength of 𝑥 being

E𝐿two-part(𝑥) = E𝑦∼𝑓(𝑥)(− log 𝜌(𝑦)− log 𝑔𝑦(𝑥)) (12)
= E𝐿rec(𝑥)− E𝑦∼𝑓(𝑥) log 𝜌(𝑦) (13)

Thus we have proved the following, which covers both the case of prob-
abilistic 𝑓 and of deterministic 𝑓 (by specializing 𝑓 to a Dirac mass) on a
discrete feature space.

Proposition 1 (Two-part codelength and reconstruction
error for discrete features). The expected two-part codelength

6

of 𝑥 ∈ 𝒟 and the reconstruction error are related by
E𝐿two-part(𝒟) = E𝐿rec(𝒟)−

∑︁
𝑥∈𝒟

E𝑦∼𝑓(𝑥) log 𝜌(𝑦) (14)

= E𝐿rec(𝒟) + (#𝒟)(KL(𝑞𝑓 || 𝜌) + Ent 𝑞𝑓) (15)
where

𝑞𝑓 (𝑦) := 1
#𝒟

∑︁
𝑥∈𝒟

Pr(𝑓(𝑥) = 𝑦) (16)

is the empirical distribution of features.
Here are a few comments on this relation. These comments also apply to

the codelength discussed in Section 4.

∙ The reconstruction error in (14) is the average reconstruction error for
features 𝑦 sampled from 𝑓(𝑥), in case 𝑓(𝑥) is probabilistic. For instance,
applying Proposition 1 to neural networks requires interpreting the
activities of the 𝑌 layer as probabilities to sample 0/1-valued features
on the 𝑌 layer. (This is not necessary for the results of Sections 4–7,
which hold for continuous features.)

∙ The cross-entropy term −E𝑦∼𝑞𝑓
log 𝜌(𝑦) = KL(𝑞𝑓 || 𝜌) + Ent 𝑞𝑓 is an

added term to the optimisation problem. The Kullback–Leibler diver-
gence favors feature functions that do actually match an elementary
model on 𝑌 , e.g., feature distributions that are “as Bernoulli-like” as
possible. The entropy term Ent 𝑞𝑓 favors parsimonious feature functions
that use fewer feature components if possible, arguably introducing
some regularization or sparsity. (Note the absence of any arbitrary
parameter in front of this regularization term: its value is fixed by the
MDL interpretation.)

∙ If the elementary model 𝜌 has tunable parameters (e.g., a Bernoulli
parameter for each feature), these come into the optimization problem
as well. If 𝜌 is elementary it will be fairly easy to tune the parameters
to find the elementary model 𝜌*(𝑓) minimizing the Kullback–Leibler
divergence to 𝑞𝑓 . Thus in this case the optimization problem over 𝑓
and 𝑔 involves a term KL(𝑞𝑓 || 𝜌*(𝑓)) between the empirical distribution
of features and the closest elementary model.

This two-part code is somewhat naive in case not all feature components
are relevant for all samples 𝑥: indeed for every 𝑥, a value of 𝑦 has to be
fully encoded. For instance, with feature space 𝑌 = {0, 1}𝑑, if two values of
𝑦 differ in one place and contribute equally to generating some sample 𝑥,
one could expect to save one bit on the codelength, by leaving a blank in
the encoding where the two values of 𝑦 differ. In general, one could expect
to save Ent 𝑓(𝑥) bits on the encoding of 𝑦 if several 𝑦 ∼ 𝑓(𝑥) have a high
probability to generate 𝑥. We now show that indeed E𝐿two-part(𝑥)−Ent 𝑓(𝑥)
is still an upper bound on 𝐿gen(𝑥).

7

4 Comparing 𝐿gen and 𝐿rec. We now turn to the actual codelength
𝐿gen(𝑥) = − log 𝑝𝑔(𝑥) associated with the probabilistic model 𝑝𝑔(𝑥) defined
by the generative function 𝑔 and the prior 𝜌 on feature space. As mentioned
above, it is always smaller that the two-part codelength.

Recall that this model first picks a feature value 𝑦 at random according to
the distribution 𝜌 and then generates an object 𝑥 according to the distribution
𝑔𝑦(𝑥), so that the associated codelength is − log 𝑝𝑔(𝑥) = − log

∫︀
𝑦 𝜌(𝑦)𝑔𝑦(𝑥).

So far this does not depend on the feature function so it is not clear how
𝑓 can help in optimizing this codelength. Actually each choice of 𝑓 leads to
upper bounds on 𝐿gen: the two-part codelength 𝐿two-part above is one such
bound in the discrete case, and we now introduce a more precise and more
general one, 𝐿𝑓 -gen.

We have argued above (Section 2) that for gradient-based training it
would be helpful to be able to sample features from the distribution 𝑝𝑔(𝑦|𝑥),
and it is natural to expect the feature function 𝑓(𝑥) to approximate 𝑝𝑔(𝑦|𝑥),
so that 𝑓 and 𝑔 are inverse to each other in a probabilistic sense. The
tightness of the bound 𝐿𝑓 -gen is related to the quality of this approximation.
Moreover, while auto-encoder training based on the reconstruction error
provides no guarantee that 𝑓 will get closer to 𝑝𝑔(𝑦|𝑥), minimizing 𝐿𝑓 -gen
does.

Proposition 2 (Codelength and reconstruction error for
probabilistic features). The codelength 𝐿gen and reconstruction er-
ror 𝐿rec for an auto-encoder with feature function 𝑓 : 𝑋 → Prob(𝑌) and
generative function 𝑔 : 𝑌 → Prob(𝑋) satisfy

𝐿gen(𝑥) = E𝐿rec(𝑥) + KL(𝑓(𝑥) || 𝜌)−KL(𝑓(𝑥) || 𝑝𝑔(𝑦|𝑥)) , (17)
𝐿gen(𝒟) = E𝐿rec(𝒟) +

∑︁
𝑥∈𝒟

KL(𝑓(𝑥) || 𝜌)−
∑︁
𝑥∈𝒟

KL(𝑓(𝑥) || 𝑝𝑔(𝑦|𝑥)) (18)

where 𝜌 is the elementary model on features, and 𝑝𝑔(𝑦|𝑥) = 𝜌(𝑦)𝑔𝑦(𝑥)∫︀
𝑦′ 𝜌(𝑦′)𝑔𝑦′ (𝑥) .

In particular, for any feature function 𝑓 , the quantity

𝐿𝑓 -gen(𝒟) :=
∑︁
𝑥∈𝒟

𝐿𝑓 -gen(𝑥) (19)

where
𝐿𝑓 -gen(𝑥) := E𝐿rec(𝑥) + KL(𝑓(𝑥) || 𝜌) (20)

is an upper bound on the codelength 𝐿gen(𝒟) of the generative function 𝑔.

The result holds whether 𝑌 is discrete or continuous.
The proof is by substitution in the right-hand-side of (17); actually this

is an instance of the variational bound [Bis06, Chapter 10]. Related results
appear in [HOT06] and [KW13, Section 2.2].

8

On a discrete feature space, 𝐿𝑓 -gen is always smaller than the codelength
𝐿two-part above; indeed

𝐿𝑓 -gen(𝑥) = E𝐿two-part(𝑥)− Ent 𝑓(𝑥) (21)

as can be checked directly.
The term KL(𝑓(𝑥) || 𝜌) represents the cost of encoding a feature value 𝑦

drawn from 𝑓(𝑥) for each 𝑥 (encoded using the distribution 𝜌). The last,
negative term in (17)–(18) represents how pessimistic the reconstruction
error is w.r.t. the true codelength when 𝑓(𝑥) is far from the feature values
that contribute most to 𝐿gen(𝑥).

The codelength 𝐿gen depends only on 𝑔 and not on the feature function
𝑓 , so that the right-hand-side in (17)–(18) is the same for all 𝑓 despite
appearances. Ideally, this relation could be used to evaluate 𝐿gen(𝒟) for
a given generative function 𝑔, and then to minimize this quantity over 𝑔.
However, as explained above, the conditional probabilities 𝑝𝑔(𝑦|𝑥) are not
easy to work with, hence the introduction of the upper bound 𝐿𝑓 -gen, which
does depend on the feature function 𝑓 .

Minimizing 𝐿𝑓 -gen over 𝑓 will bring 𝐿𝑓 -gen closer to 𝐿gen. Since 𝐿gen(𝒟) =
𝐿𝑓 -gen(𝒟)−

∑︀
𝑥∈𝒟 KL(𝑓(𝑥) || 𝑝𝑔(𝑦|𝑥)), and since 𝐿gen does not depend on 𝑓 ,

minimizing 𝐿𝑓 -gen is the same as bringing 𝑓(𝑥) closer to 𝑝𝑔(𝑦|𝑥) on average.
Thus, in the end, an auto-encoder trained by minimizing 𝐿𝑓 -gen as a function
of 𝑓 and 𝑔 will both minimize an upper bound on the codelength 𝐿gen and
bring 𝑓(𝑥) close to the “inverse” of 𝑔.

This also clarifies the role of the auto-encoder structure in minimizing the
codelength, which does not depend on a feature function: Optimizing over 𝑔
aims at actually reducing the codelength by decreasing an upper bound on
it, while optimizing over 𝑓 will make this upper bound more precise.

One can apply to 𝐿𝑓 -gen the same decomposition as for the two-part
codelength, and write

𝐿𝑓 -gen(𝒟) = E𝐿rec(𝒟) + (#𝒟)(KL(𝑞𝑓 || 𝜌) + Ent 𝑞𝑓)−
∑︁
𝑥∈𝒟

Ent 𝑓(𝑥) (22)

where as above 𝑞𝑓 = 1
#𝒟

∑︀
𝑥∈𝒟 𝑓(𝑥) is the empirical feature distribution. As

above, the term KL(𝑞𝑓 || 𝜌) favors feature distributions that match a simple
model. The terms Ent 𝑞𝑓 and

∑︀
𝑥∈𝒟 Ent 𝑓(𝑥) pull in different directions.

Minimizing Ent 𝑞𝑓 favors using fewer features overall (more compact repre-
sentation). Increasing the entropy of 𝑓(𝑥) for a given 𝑥, if it can be done
without impacting the reconstruction error, means that more features are
“indifferent” for reconstructing 𝑥 and do not have to be encoded, as discussed
at the end of Section 3.

The “auto-encoder approximation” 𝑥′ = 𝑥 from [AO12, Section 2.4] can be
used to define another bound on 𝐿gen, but is not tight when 𝑓(𝑥) ≈ 𝑝𝑔(𝑦|𝑥).

9

5 Continuous-valued features and denoising. Proposition 2 cannot
be directly applied to a deterministic feature function 𝑓 : 𝑋 → 𝑌 with values
in a continuous space 𝑌 . In the continous case, the reconstruction error
based on a single value 𝑦 ∈ 𝑌 cannot control the codelength 𝐿gen(𝑥), which
involves an integral over 𝑦. In the setting of Proposition 2, a deterministic 𝑓
seen as a probability distribution is a Dirac mass at a single value, so that
the term KL(𝑓(𝑥) || 𝜌) is infinite: it is infinitely costly to encode the feature
value 𝑓(𝑥) exactly.

This can be overcome by considering the feature values 𝑦 as probability
distributions over an underlying space 𝑍, namely, 𝑌 ⊂ Prob(𝑍). Then
Proposition 2 can be applied to 𝑓(𝑥) seen as a probability distribution over
the feature space 𝑍.

For instance, one possibility for neural networks with logistic activation
function is to see the activities 𝑦 ∈ [0; 1] of the feature layer as Bernoulli
probabilities over discrete-valued binary features, 𝑍 = {0, 1}.

One may also use Gaussian distributions over 𝑍 = 𝑌 and apply Propo-
sition 2 to a normal distribution 𝒩 (𝑓(𝑥),Σ) centered at 𝑓(𝑥) with small
covariance matrix Σ. Intuitively we overcome the problem of infinite code-
length for 𝑓(𝑥) by encoding 𝑓(𝑥) with finite accuracy given by Σ.

The reconstruction error 𝐿rec from Proposition 2 then becomes an ex-
pectation over features sampled around 𝑓(𝑥): this is similar to denoising
auto-encoders [VLL+10], except that here the noise is added to the features
rather than the inputs. This relationship is not specific to a particular choice
of feature noise (Bernoulli, Gaussian...) but leads to interesting developments
in the Gaussian case, as follows.

Corollary 3 (Codelength and denoising the features). Let
𝑓 : 𝑋 → 𝑌 be a deterministic feature function with values in 𝑌 = R𝑑. Let Σ
be any positive definite matrix. Then

𝐿gen(𝑥) 6 E𝐿rec(𝑥)−E𝑦∼𝒩 (𝑓(𝑥),Σ) log 𝜌(𝑦)− 1
2 log det Σ− 𝑑2(1+log 2𝜋) (23)

where E𝐿rec(𝑥) is the expected reconstruction error obtained from a feature
𝑦 ∼ 𝒩 (𝑓(𝑥),Σ).

If the elementary model 𝜌 on feature space is 𝒩 (0, 𝜆 Id) this reads

𝐿gen(𝑥) 6 E𝐿rec(𝑥) + ‖𝑓(𝑥)‖2

2𝜆 + 1
2𝜆 Tr(Σ)− 1

2 log det Σ + 𝑑

2 log 𝜆− 𝑑

2 (24)

Thus the codelength bound decomposes as the sum of the average (noisy)
reconstruction error, constant terms, and a term that penalizes improbable
feature values under the elementary model.

Proof.
Apply Proposition 2 with a normal distribution 𝒩 (𝑓(𝑥),Σ) as the feature
distribution.

10

We refer to [VLL+10, Section 4.2] for a discussion and further references
on training with noise in an auto-encoder setting.

In practice, the bound (23) can be optimized over 𝑓 and 𝑔 via Monte
Carlo sampling over 𝑦 ∼ 𝒩 (𝑓(𝑥),Σ). For the case of neural networks, this
can be done via ordinary backpropagation if one considers that the activation
function of the layer representing 𝑌 is 𝑦 = 𝑓(𝑥) +𝒩 (0,Σ): one can then run
several independent samples 𝑦𝑖, backpropagate the loss obtained with each
𝑦𝑖, and average over 𝑖. The backpropagation from 𝑦 to the input layer can
even be factorized over the samples, thanks to linearity of backpropagation,
namely: generate samples 𝑦𝑖 ∼ 𝒩 (𝑓(𝑥),Σ), backpropagate the error obtained
with 𝑦𝑖 from the output to the layer representing 𝑌 , average the obtained
backpropagated values over 𝑖, and backpropagate from the 𝑌 layer to the
input layer using 𝑓 . For any explicit choice of 𝜌, the contribution of the
gradient of the log 𝜌(𝑦) term can easily be incorporated into this scheme.

6 Optimal noise level. A good choice of noise level Σ leads to tighter
bounds on 𝐿gen: a small Σ results in a high cost of encoding the features up
to Σ (log det Σ term), while a large Σ will result in more noise on features
and a worse reconstruction error. An approximately optimal choice of Σ
can be obtained by a Taylor expansion of the reconstruction error around
𝑓(𝑥), as follows. (A theoretical treatment of using such Taylor expansions
for optimization with denoising can be found in [GCB97].)

Lemma 4 (Taylor expansion of 𝐿𝑓-gen for small Σ). Let 𝑓 : 𝑋 →
𝑌 be a deterministic feature function with values in 𝑌 = R𝑑. Let 𝐿𝑓,Σ-gen be
the upper bound (23) using a normal distribution 𝒩 (𝑓(𝑥),Σ) for features.
Then for small covariance matrix Σ we have

𝐿𝑓,Σ-gen(𝑥) ≈ 𝐿rec(𝑥)− log 𝜌(𝑓(𝑥))− 1
2 log det Σ + 1

2 Tr(Σ𝐻)− 𝑑

2(1 + log 2𝜋)
(25)

where 𝐿rec(𝑥) is the deterministic reconstruction error using feature 𝑦 = 𝑓(𝑥),
and 𝐻 is the Hessian

𝐻 = 𝜕2

𝜕𝑦2 (𝐿𝑦
rec(𝑥)− log 𝜌(𝑦)) (26)

at 𝑦 = 𝑓(𝑥), where 𝐿𝑦
rec(𝑥) is the reconstruction error using feature 𝑦. Thus

this is an approximate upper bound on 𝐿gen(𝑥).

Theorem 5 (Optimal choice of Σ for feature noise). Let
𝑓 : 𝑋 → 𝑌 be a deterministic feature function with values in 𝑌 = R𝑑. Let
𝐿𝑓,Σ-gen be the upper bound (23) using a normal distribution 𝒩 (𝑓(𝑥),Σ) for
features. Let as above

𝐻(𝑥) := 𝜕2

𝜕𝑦2 (𝐿𝑦
rec(𝑥)− log 𝜌(𝑦)) (27)

11

at 𝑦 = 𝑓(𝑥).
Then the choice Σ(𝑥) = 𝐻(𝑥)−1 (provided 𝐻 is positive) is optimal in

the bound (25) and yields

𝐿𝑓,Σ-gen(𝑥) ≈ 𝐿rec(𝑥)− log 𝜌(𝑓(𝑥)) + 1
2 log det𝐻(𝑥)− 𝑑

2 log 2𝜋 (28)

as an approximate upper bound on 𝐿gen(𝑥).
Among diagonal matrices Σ, the optimal choice is Σ(𝑥) = (diag𝐻(𝑥))−1

and produces a corresponding term 1
2 log det diag𝐻(𝑥) instead of 1

2 log det𝐻(𝑥).

In addition to the reconstruction error 𝐿rec(𝑥) at 𝑓(𝑥) and to the encod-
ing cost − log 𝜌(𝑓(𝑥)) under the elementary model, this codelength bound
involves the reconstruction error around 𝑓(𝑥) through the Hessian. Mini-
mizing this bound will favor points where the error is small in the widest
possible feature region around 𝑓(𝑥). This presumably leads to more robust
reconstruction.

Several remarks can be made on this result. First, the optimal choice of
noise Σ depends on the data sample 𝑥, since 𝐻 does. This should not be a
practical problem when training denoising auto-encoders.

Second, this choice only optimizes a Taylor approximation of the actual
bound in Corollary 3, so it is only approximately optimal; see [GCB97]. Still,
Corollary 3 applies to any choice of Σ so it provides a valid, exact bound for
this approximately optimal choice.

Third, computing the Hessian 𝐻(𝑥) may not be practical. Still, since
again Corollary 3 applies to an arbitrary Σ, it is not necessary to compute
𝐻(𝑥) exactly, and any reasonable approximation of 𝐻(𝑥)−1 yields a valid
near-optimal bound and should provide a suitable order of magnitude for
feature noise. [LBOM96, Section 7] provides useful Hessian approximations
for neural networks, in particular the diagonal Gauss–Newton approximation
(see the Appendix for more details).

In practice there are two different ways of using this result:

∙ One can use the denoising criterion of Corollary 3, in which at each
step the noise level is set to an approximation of 𝐻(𝑥)−1, such as
diagonal Gauss–Newton. This alternates between optimizing the model
parameters for a given noise level, and optimizing the noise level for
given model parameters.

∙ One can work directly with the objective function (28) from Theorem 5,
which has an error term 𝐿rec and a regularization term log det𝐻(𝑥).
Computing a gradient of the latter may be tricky. For multilayer neural
networks, we provide in the Appendix (Theorem 9) an algorithm to com-
pute this gradient at a cost of two forward and backpropagation passes
if the layer-wise diagonal Gauss–Newton approximation of [LBOM96]
is used for 𝐻. The algorithm is inspired from dynamic programming
and the forward-backward algorithm used in hidden Markov models.

12

Proof of Lemma 4.
Using 𝑦 ∼ 𝒩 (𝑓(𝑥),Σ) in Proposition 2, the reconstruction error E𝐿rec(𝑥)
is E𝑦𝐿

𝑦
rec(𝑥). Using a second-order Taylor expansion of 𝐿𝑦

rec(𝑥) around
𝑦 = 𝑓(𝑥), and using that E𝑧∼𝒩 (0,Σ)(𝑧⊤𝑀𝑧) = Tr(Σ𝑀) for any matrix 𝑀 ,
we find E𝐿rec(𝑥) ≈ 𝐿rec(𝑥) + 1

2 Tr(Σ𝐻𝑔) where 𝐻𝑔 is the Hessian of 𝐿𝑦
rec(𝑥)

at 𝑦 = 𝑓(𝑥). By a similar argument the term KL(𝒩 (𝑓(𝑥),Σ) || 𝜌) is approx-
imately −Ent𝒩 (𝑓(𝑥),Σ) − log 𝜌(𝑓(𝑥)) + 1

2 Tr(Σ𝐻𝜌) with 𝐻𝜌 the Hessian
of − log 𝜌(𝑦) at 𝑦 = 𝑓(𝑥). Thus the bound 𝐿𝑓,Σ-gen(𝑥) is approximately
𝐿rec(𝑥)− log 𝜌(𝑓(𝑥))−Ent𝒩 (𝑓(𝑥),Σ) + 1

2 Tr(Σ𝐻) with 𝐻 = 𝐻𝑔 +𝐻𝜌. The
result follows from Ent𝒩 (𝑓(𝑥),Σ) = 1

2 log det Σ + 𝑑
2(1 + log 2𝜋).

Proof of Theorem 5.
Substituting Σ = 𝐻(𝑥)−1 in (25) directly yields the estimate in the propo-
sition. Let us prove that this choice is optimal. We have to minimize
− log det Σ + Tr(Σ𝐻) over Σ. The case of diagonal Σ follows by direct
minimization over the diagonal entries. For the general case, we have
Tr(Σ𝐻) = Tr(𝐻1/2Σ𝐻1/2). Since 𝐻1/2Σ𝐻1/2 is symmetric we can de-
compose 𝐻1/2Σ𝐻1/2 = 𝑂⊤𝐷𝑂 with 𝑂 orthogonal and 𝐷 diagonal. Then
Tr(Σ𝐻) = Tr(𝑂⊤𝐷𝑂) = Tr(𝐷). Moreover, log det Σ = log det(𝐻−1/2𝑂⊤𝐷𝑂𝐻−1/2) =
− log det𝐻+log det𝐷 so that − log det Σ+Tr(Σ𝐻) = log det𝐻− log det𝐷+
Tr(𝐷) = log det𝐻 +

∑︀
𝑘(𝑑𝑘 − log 𝑑𝑘) with 𝑑𝑘 the entries of 𝐷. The function

𝑧 ↦→ 𝑧 − log 𝑧 is convex on R+ with a unique minimum at 𝑧 = 1, so this is
minimal if and only if 𝐷 = Id, i.e., Σ = 𝐻−1.

7 Link with contractive auto-encoders. The Hessian of the recon-
struction error may not be easy to compute in practice. However, when
reconstruction error is small this Hessian is related to the square derivatives
of the reconstructed output with respect to the features, using the well-known
Gauss–Newton approximation.

The resulting bound on codelength penalizes large square derivatives of
the reconstructed outputs, as follows.

This is reminiscent of contractive auto-encoders ([RVM+11]; see also
[Bis95] for the relationship between denoising and contractivity as regular-
ization methods), with two differences: the contractivity is from features to
output instead of from input to features, and instead of the Frobenius norm
of the Jacobian matrix [RVM+11], the penalty is the sum of the logs of the
norms of the rows of this matrix.

Proposition 6 (Codelength and contractivity). Consider a
quadratic reconstruction error of the type 𝐿 =

∑︀
𝑘

(𝑥̂𝑘−𝑥𝑘)2

2𝜎2
𝑘

where 𝑥̂𝑘 are the
components of the reconstructed data 𝑥̂ = 𝑥̂(𝑦) using features 𝑦. Let the
elementary model 𝜌 on 𝑌 be Gaussian with variance diag(𝜆𝑖).

13

Then, when the reconstruction error is small enough,

𝐿rec(𝑥)− log 𝜌(𝑓(𝑥)) +
∑︁

𝑖

log

⎯⎸⎸⎷ 1
𝜆𝑖

+
∑︁

𝑘

1
𝜎2

𝑘

(︃
𝜕𝑥̂𝑘

𝜕𝑦𝑖

)︃2

− 𝑑

2 log 2𝜋 (29)

is an approximate upper bound on 𝐿gen(𝑥).

This corresponds to the approximately optimal choice Σ = (diag𝐻)−1

together with the Gauss–Newton approximation 𝜕2𝐿
𝜕𝑦𝑖𝜕𝑦𝑗 ≈

∑︀
𝑘

1
𝜎2

𝑘

𝜕𝑥̂𝑘

𝜕𝑦𝑖
𝜕𝑥̂𝑘

𝜕𝑦𝑗 .
The terms 1/𝜆𝑖 prevent the logarithms from diverging to −∞ in case a

feature component 𝑖 has no influence on the output 𝑥̂. Typically 𝜆𝑖 will be
large so the Jacobian norm

∑︀
𝑘

1
𝜎2

𝑘

(︁
𝜕𝑥̂𝑘

𝜕𝑦𝑖

)︁2
dominates.

[RVM+11] contains an indication on how to optimize objective functions
involving such derivatives for the case of a single-layer neural network: in that
case the square derivatives are related to the squared weights of the network,
so that the gradient of this term can be computed. For more complex models,
however, 𝜕𝑥̂𝑘/𝜕𝑦𝑖 is a complex (though computable) function of the model
parameters. Computing the gradient of

(︁
𝜕𝑥̂𝑘

𝜕𝑦𝑖

)︁2
with respect to the model

parameters is thus feasible but costly. Lemma 10 in the Appendix allows
to compute a similar quantity for multilayer networks if the Gauss–Newton
approximation is used on each layer in turn, instead of once globally from the
𝑦 layer to the 𝑥̃ layer as used here. Optimizing (29) for multilayer networks
using Lemma 10 would require (dim𝑋) distinct backpropagations. More
work is needed on this, such as stacking auto-encoders [HS06] to work with
only one layer at a time.

Proof of Proposition 6.
Starting from Theorem 5, we have to approximate the Hessian 𝐻(𝑥) =
𝜕2

𝜕𝑦2 (𝐿𝑦
rec(𝑥) − log 𝜌(𝑦)). By the assumption that 𝐿𝑦

rec(𝑥) =
∑︀

𝑘
(𝑥̂𝑘−𝑥𝑘)2

2𝜎2
𝑘

,
where 𝑥̂ is a function of 𝑦, and since 𝜌 is Gaussian, we get

𝐻𝑖𝑗(𝑥) = diag(1/𝜆𝑖) +
∑︁

𝑘

1
2𝜎2

𝑘

𝜕2

𝜕𝑦𝑖𝜕𝑦𝑗
(𝑥̂𝑘(𝑦)− 𝑥𝑘)2 (30)

and we can use the well-known Gauss–Newton approximation [Bis06, 5.4.2],
namely

𝜕2

𝜕𝑦𝑖𝜕𝑦𝑗
(𝑥̂𝑘(𝑦)− 𝑥𝑘)2 = 2𝜕𝑥̂

𝑘

𝜕𝑦𝑖

𝜕𝑥̂𝑘

𝜕𝑦𝑗
+ 2

(︁
𝑥̂𝑘(𝑦)− 𝑥𝑘

)︁ 𝜕2𝑥̂𝑘

𝜕𝑦𝑖𝜕𝑦𝑗
(31)

≈ 2𝜕𝑥̂
𝑘

𝜕𝑦𝑖

𝜕𝑥̂𝑘

𝜕𝑦𝑗
(32)

valid whenever the error 𝑥̂𝑘(𝑦) − 𝑥𝑘 is small enough. (Interestingly, when
summing over the dataset, it is not necessary that every error is small enough,

14

because errors with opposite signs will compensate; a fact used implicitly
in [Bis95].)

The diagonal terms of 𝐻(𝑥) are thus

𝐻𝑖𝑖(𝑥) ≈ 1
𝜆𝑖

+
∑︁

𝑘

1
𝜎2

𝑘

(︃
𝜕𝑥̂𝑘

𝜕𝑦𝑖

)︃2

(33)

Now, from Theorem 5 the choice Σ = (diag𝐻)−1 is optimal among diag-
onal noise matrices Σ. Computing the term 1

2 log det diag𝐻 =
∑︀

𝑖 log
√
𝐻𝑖𝑖

from (28) and substituting 𝐻𝑖𝑖 ends the proof.

Remark 7. A tighter (approximately optimal) but less convenient bound
is

𝐿rec(𝑥)− log 𝜌(𝑓(𝑥))+ 1
2 log det

(︃
−𝜕

2 log 𝜌(𝑦)
𝜕𝑦𝑖𝜕𝑦𝑗

+
∑︁

𝑘

1
𝜎2

𝑘

𝜕𝑥̂𝑘

𝜕𝑦𝑖

𝜕𝑥̂𝑘

𝜕𝑦𝑗

)︃
𝑖𝑗

− 𝑑2 log 2𝜋

(34)
which forgoes the diagonal approximation. For more general loss functions,
a similar argument applies, resulting in a more complex expression which
involves the Hessian of the loss with respect to the reconstruction 𝑥̂.

Remark 8 (Adapting the elementary feature model 𝜌). Since
all our bounds on 𝐿gen involve log 𝜌(𝑓(𝑥)) terms, the best choice of elemen-
tary model 𝜌 is the one which maximizes the log-likelihood of the empirical
feature distribution in space 𝑌 . This can be done concurrently with the
optimization of the codelength, by re-adapting the prior after each step in
the optimization of the functions 𝑓 and 𝑔. For Gaussian models 𝜌 as in
Proposition 6, this leads to

𝜆𝑖 ← Var
[︁
𝑓(𝑥)𝑖

]︁
(35)

with 𝑓(𝑥)𝑖 the 𝑖-th component of feature 𝑓(𝑥), and 𝑥 ranging over the dataset.
If using the “denoising” criterion from Corollary 3, the noise on 𝑓(𝑥) must
be included when computing this variance.

8 Variance of the output, and relative versus absolute error. A
final, important choice when considering auto-encoders from a compression
perspective is whether or not to include the variance of the output as a model
parameter. While minimizing the reconstruction error usually focuses on
absolute error, dividing the error by two will reduce codelength by one bit
whether the error is large or small. This works out as follows.

Consider a situation where the outputs are real-valued (e.g., image). The
usual loss is the square loss 𝐿 =

∑︀
𝑛

∑︀
𝑖(𝑥𝑖

𝑛 − 𝑥̂𝑖
𝑛)2 where 𝑛 goes through

all samples and 𝑖 goes through the components of each sample (output

15

dimension), the 𝑥𝑛 are the actual data, and the 𝑥̂𝑛 are the reconstructed
data computed from the features 𝑦.

This square loss is recovered as the log-likelihood of the data over a
Gaussian model with fixed variance 𝜎 and mean 𝑥̂𝑛:

𝐿rec(𝒟) = −
∑︁
𝑥∈𝒟

log 𝑔𝑥̂(𝑥) =
∑︁
𝑥∈𝒟

∑︁
𝑖

(︃
(𝑥𝑖 − 𝑥̂𝑖)2

2𝜎2 + log 𝜎 + 1
2 log 2𝜋

)︃
(36)

For any fixed 𝜎, the optimum is the same as for the square loss above.
Incorporating a new parameter 𝜎𝑖 for the variance of the 𝑖-th component

into the model may make a difference if the various output components have
different scales or noise levels. The reconstruction error becomes

𝐿rec(𝒟) =
∑︁

𝑖

∑︁
𝑥∈𝒟

(︃
(𝑥𝑖 − 𝑥̂𝑖)2

2𝜎2
𝑖

+ log 𝜎𝑖 + 1
2 log 2𝜋

)︃
(37)

which is now to be optimized jointly over the functions 𝑓 and 𝑔, and the 𝜎𝑖’s.
The optimal 𝜎𝑖 for a given 𝑓 and 𝑔 is the mean square error5 of component 𝑖,

𝜎*
𝑖

2 = 𝐸𝑖 := 1
#𝒟

∑︁
𝑥∈𝒟

(𝑥𝑖 − 𝑥̂𝑖)2 (38)

so with this optimal choice the reconstruction error is

𝐿rec(𝒟) = (#𝒟)
∑︁

𝑖

(︂1
2 + 1

2 log𝐸𝑖 + 1
2 log 2𝜋

)︂
(39)

and so we have to optimize

𝐿rec(𝒟) = #𝒟
2
∑︁

𝑖

log𝐸𝑖 + Cst (40)

that is, the sum of the logarithms of the mean square error for each component.
(Note that this is not additive over the dataset: each 𝐸𝑖 is an average over the
dataset.) Usually, the sum of the 𝐸𝑖 themselves is used. Thus, including the
𝜎𝑖 as parameters changes the minimization problem by focusing on relative
error, both for codelength and reconstruction error.

This is not cancelled out by normalizing the data: indeed the above
does not depend on the variance of each component, but on the mean
square prediction error, which can vary even if all components have the same
variance, if some components are harder to predict.

This is to be used with caution when some errors become close to 0 (the
log tends to −∞). Indeed, optimizing this objective function means that

5If working with feature noise as in Corollary 3, this is the error after adding the noise.
Optimizing 𝜎𝑖 for the estimate in Proposition 6 is more complicated since 𝜎𝑖 influences
both the reconstruction error and the regularization term.

16

being able to predict an output component with an accuracy of 100 digits
(for every sample 𝑥 in the data) can balance out 100 bad predictions on other
output components. This is only relevant if the data are actually precise up
to 100 significant digits. In practice an error of 0 only means that the actual
error is below the quantization level 𝜀. Thus, numerically, we might want
to consider that the smallest possible square error is 𝜀2, and to optimize∑︀

𝑖 log(𝐸𝑖 + 𝜀2) for data quantized up to 𝜀.
When working with the results of the previous sections (Prop. 2, Corol-

lary 3, Thm. 5, and Prop. 6), changing 𝜎 has an influence: it changes the
relative scaling of the reconstruction error term 𝐿rec w.r.t. the remaining
information-theoretic terms. Choosing the optimal 𝜎𝑖 as described here fixes
this problem and makes all terms homogeneous.

Intuitively, from the minimum description length or compression view-
point, dividing an error by 2 is an equally good move whether the error
is small or large (one bit per sample gained on the codelength). Still, in
a specific application, the relevant loss function may be the actual sum of
square errors as usual, or a user-defined perceptual error. But in order to
find a good representation of the data as an intermediate step in a final,
user-defined problem, the compression point of view might be preferred.

Conclusions and perspectives
We have established that there is a strong relationship between minimizing
a codelength of the data and minimizing reconstruction error using an auto-
encoder. A variational approach provides a bound on data codelength in
terms of the reconstruction error to which certain regularization terms are
added.

The additional terms in the codelength bounds can be interpreted as a
denoising condition from features to reconstructed output. This is in contrast
with previously proposed denoising auto-encoders. For neural networks, this
criterion can be trained using standard backpropagation techniques.

The codelength approach determines an optimal noise level for this
denoising interpretation, namely, the one that will provide the tightest
codelength. This optimal noise is approximately the inverse Hessian of the
reconstruction function, for which several approximation techniques exist in
the literature.

A practical consequence is that the noise level should be set differently
for each data sample in a denoising approach.

Under certain approximations, the codelength approach also translates
as a penalty for large derivatives from feature to output, different from that
posited in contractive auto-encoders. However, the resulting criterion is hard
to train for complex models such as multilayer neural networks. More work
is needed on this point.

17

Including the variances of the outputs as parameters results in better com-
pression bounds and a modified reconstruction error involving the logarithms
of the square errors together with the data quantization level. Still, having
these variances as parameters is a modeling choice that may be relevant for
compression but not in applications where the actual reconstruction error is
considered.

It would be interesting to explore the practical consequences of these
insights. Another point in need of further inquiry is how this codelength
viewpoint combines with the stacking approach to deep learning, namely,
after the data 𝑥 have been learned using features 𝑦 and an elementary model
for 𝑦, to further learn a finer model of 𝑦. For instance, it is likely that there
is an interplay, in the denoising interpretation, between the noise level used
on 𝑦 when computing the codelength of 𝑥, and the output variance 𝜎𝑦 used
in the definition of the reconstruction error of a model of 𝑦 at the next level.
This would require modeling the transmission of noise from one layer to
another in stacked generative models and optimizing the levels of noise to
minimize a resulting bound on codelength of the output.

References
[AO12] Ludovic Arnold and Yann Ollivier. Layer-wise learning of deep

generative models. Preprint, arXiv:1212.1524, 2012.

[Bis95] Christopher M. Bishop. Training with noise is equivalent to
Tikhonov regularization. Neural Computation, 7(1):108–116,
1995.

[Bis06] Christopher M. Bishop. Pattern recognition and machine learning.
Springer, 2006.

[GCB97] Yves Grandvalet, Stéphane Canu, and Stéphane Boucheron. Noise
injection: Theoretical prospects. Neural Computation, 9(5):1093–
1108, 1997.

[Gra11] Alex Graves. Practical variational inference for neural networks.
In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fer-
nando C. N. Pereira, and Kilian Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24: 25th Annual Con-
ference on Neural Information Processing Systems 2011. Proceed-
ings of a meeting held 12-14 December 2011, Granada, Spain.,
pages 2348–2356, 2011.

[Grü07] Peter D. Grünwald. The minimum description length principle.
MIT Press, 2007.

18

[HOT06] G.E. Hinton, S. Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 18:1527–1554,
2006.

[HS06] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science, 313:504–
507, 2006.

[HvC93] Geoffrey E. Hinton and Drew van Camp. Keeping the neural
networks simple by minimizing the description length of the
weights. In Lenny Pitt, editor, Proceedings of the Sixth Annual
ACM Conference on Computational Learning Theory, COLT
1993, Santa Cruz, CA, USA, July 26-28, 1993., pages 5–13.
ACM, 1993.

[KW13] Diederik P. Kingma and Max Welling. Stochastic gradient VB
and the variational auto-encoder. Preprint, arXiv:1312.6114,
2013.

[LBOM96] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert
Müller. Efficient backprop. In Genevieve B. Orr and Klaus-
Robert Müller, editors, Neural Networks: Tricks of the Trade,
volume 1524 of Lecture Notes in Computer Science, pages 9–50.
Springer, 1996.

[Oll13] Yann Ollivier. Riemannian metrics for neural networks I: feedfor-
ward networks. Preprint, http://arxiv.org/abs/1303.0818 ,
2013.

[PH87] David C. Plaut and Geoffrey Hinton. Learning sets of filters using
back-propagation. Computer Speech and Language, 2:35–61, 1987.

[RVM+11] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and
Yoshua Bengio. Contractive auto-encoders: Explicit invariance
during feature extraction. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Conference on
Machine Learning, ICML 2011, Bellevue, Washington, USA,
June 28 - July 2, 2011, pages 833–840. Omnipress, 2011.

[VLL+10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio,
and Pierre-Antoine Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network with a lo-
cal denoising criterion. Journal of Machine Learning Research,
11:3371–3408, 2010.

19

http://arxiv.org/abs/1303.0818

Appendix: Derivative of log det 𝐻 for multilayer neu-
ral networks
The codelength bound from Theorem 5 involves a term log det𝐻(𝑥) where 𝐻(𝑥) is
the Hessian of the loss function for input 𝑥. Optimizing this term with respect to
the model parameters is difficult in general.

We consider the case when the generative model 𝑔 : 𝑌 → 𝑋 is a multilayer neural
network. We provide an algorithm to compute the derivative of the log det𝐻(𝑥)
term appearing in Theorem 5 with respect to the network weights, using the layer-
wise diagonal Gauss–Newton approximation of the Hessian 𝐻(𝑥) from [LBOM96].
The algorithm has the same asymptotic computational cost as backpropagation.

So let the generative model 𝑔 be a multilayer neural network with activation
function 𝑠. The activity of unit 𝑖 is

𝑎𝑖 := 𝑠(𝑉𝑖), 𝑉𝑖 :=
∑︁
𝑗→𝑖

𝑎𝑗𝑤𝑗𝑖 (41)

where the sum includes the bias term via the always-activated unit 𝑗 = 0 with
𝑎𝑗 ≡ 1.

Let 𝐿 be the loss function of the network.
The layer-wise diagonal Gauss–Newton approximation computes an approxima-

tion h𝑖 to the Hessian 𝜕2𝐿
𝜕𝑎2

𝑖
in the following way [LBOM96, Sections 7.3–7.4]: On the

output units 𝑘, h𝑘 is directly set to h𝑘 := 𝜕2𝐿
𝜕𝑎2

𝑘

, and this is backpropagated through
the network via

h𝑖 :=
∑︁

𝑗, 𝑖→𝑗

(︂
𝜕𝑎𝑗

𝜕𝑎𝑖

)︂2
h𝑗 =

∑︁
𝑗, 𝑖→𝑗

𝑤2
𝑖𝑗 𝑠

′(𝑉𝑗)2 h𝑗 (42)

so that computing h𝑖 is similar to backpropagation using squared weights. This is
also related to the backpropagated metric from [Oll13].

Theorem 9 (Gradient of the determinant of the Gauss–New-
ton Hessian). Consider a generative model 𝑔 given by a multilayer neural
network. Let the reconstruction error be 𝐿 =

∑︀
𝑘

(𝑥̂𝑘−𝑥𝑘)2

2𝜎2
𝑘

where 𝑥̂𝑘 are the com-
ponents of the reconstructed data 𝑥̂ = 𝑥̂(𝑦) using features 𝑦. Let the elementary
model 𝜌 on 𝑌 be Gaussian with variance diag(𝜆𝑖).

Let 𝐻(𝑥) = 𝜕2

𝜕𝑦2 (𝐿𝑦
rec(𝑥)− log 𝜌(𝑦)) as in Theorem 5. Let 𝐻̂(𝑥) be the layer-wise

diagonal Gauss–Newton approximation of 𝐻(𝑥), namely

𝐻̂(𝑥) := diag
(︀
𝜆−1

𝑖 + h𝑖

)︀
(43)

with h𝑖 computed from (42), initialized via h𝑘 = 1/𝜎2
𝑘 on the output layer.

Then the derivative of log det 𝐻̂(𝑥) with respect to the network weights 𝑤 can
be computed exactly with an algorithmic cost of two forward and backpropagation
passes.

This computation is trickier than it looks because the coefficients 𝑠′(𝑉𝑗)2 used
in the backpropagation for h depend on the weights of all units before 𝑗 (because
𝑉𝑗 does), not only the units directly influencing 𝑗.

20

Proof.
Apply the following lemma with B = h, 𝜙(𝑤, 𝑉) = 𝑤2𝑠′(𝑉)2, and 𝜓𝑖(h𝑖) = log(𝜆−1

𝑖 +
h𝑖).

Lemma 10 (Gradients of backpropagated quantities). Let B be a
function of the state of a neural network computed according to the backpropagation
equation

B𝑖 =
∑︁

𝑗, 𝑖→𝑗

𝜙𝑗(𝑤𝑖𝑗 , 𝑉𝑗)B𝑗 (44)

initialized with some fixed values B𝑘 on the output layer.
Let

𝑆 :=
∑︁

𝑖∈ℒin

𝜓𝑖(B𝑖) (45)

for some functions 𝜓𝑖 on the input layer ℒin.
Then the derivatives of 𝑆 with respect to the network parameters 𝑤𝑖𝑗 can be

computed at the same algorithmic cost as one forward and two backpropagation
passes, as follows.

1. Compute B𝑖 for all 𝑖 by backpropagation.

2. Compute the variable C𝑗 by forward propagation for all units 𝑗, as

C𝑗 :=
∑︁
𝑖→𝑗

C𝑖𝜙𝑗(𝑤𝑖𝑗 , 𝑉𝑗) (46)

initialized with C𝑖 = 𝜓′
𝑖(B𝑖) for 𝑖 in the input layer.

3. Compute the variable 𝐷𝑖 by backpropagation for all units 𝑖, as

𝐷𝑖 :=
∑︁

𝑘, 𝑘→𝑖

C𝑘B𝑖
𝜕𝜙𝑖(𝑤𝑘𝑖, 𝑉𝑖)

𝜕𝑉𝑖
+
∑︁

𝑗, 𝑖→𝑗

𝑠′(𝑉𝑖)𝑤𝑖𝑗𝐷𝑗 (47)

(also used for initialization with 𝑖 in the output layer, with an empty sum in
the second term).

Then the derivatives of 𝑆 are

𝜕𝑆

𝜕𝑤𝑖𝑗
= C𝑖B𝑗

𝜕𝜙𝑗(𝑤𝑖𝑗 , 𝑉𝑗)
𝜕𝑤𝑖𝑗

+ 𝑎𝑖𝐷𝑗 (48)

for all 𝑖, 𝑗.

Note that we assume that the values B𝑘 used to initialize B on the output layer
are fixed (do not depend on the network weights). Any dependency of B𝑘 on the
output layer activity values 𝑎𝑘 can, instead, be incorporated into 𝜙𝑘 via 𝑉𝑘.

Proof.
We assume that the network is an arbitrary finite, directed acyclic graph. We also
assume (for simplicity only) that no unit is both an output unit and influences other
units. We denote 𝑖 → 𝑗 if there is an edge from 𝑖 to 𝑗, 𝑖 > 𝑗 if there is a path of
length > 1 from 𝑖 to 𝑗, and 𝑖 > 𝑗 if 𝑖 > 𝑗 or 𝑖 = 𝑗.

The computation has a structure similar to the forward-backward algorithm
used in hidden Markov models.

21

For any pair of units 𝑙, 𝑚 in the network, define the “backpropagation transfer
rate” [Oll13] from 𝑙 to 𝑚 as

𝜏𝑚
𝑙 :=

∑︁
𝛾

|𝛾|∏︁
𝑡=1

𝜙𝛾𝑡(𝑤𝛾𝑡−1𝛾𝑡 , 𝑉𝛾𝑡) (49)

where the sum is over all paths 𝛾 from 𝑙 to 𝑚 in the network (including the length-0
path for 𝑙 = 𝑚), and |𝛾| is the length of 𝛾. In particular, 𝜏𝑚

𝑚 = 1 and 𝜏𝑚
𝑙 = 0 if

there is no path from 𝑙 to 𝑚. By construction these satisfy the backpropagation
equation

𝜏𝑘
𝑖 =

∑︁
𝑗, 𝑖→𝑗

𝜙𝑗(𝑤𝑖𝑗 , 𝑉𝑗)𝜏𝑘
𝑗 (50)

for 𝑖 ̸= 𝑘. By induction
B𝑖 =

∑︁
𝑘∈ℒout

𝜏𝑘
𝑖 B𝑘 (51)

where the sum is over 𝑘 in the output layer ℒout. Consequently the derivative of
𝑆 =

∑︀
𝑖∈ℒin

𝜓𝑖(B𝑖) with respect to a weight 𝑤𝑚𝑛 is

𝜕𝑆

𝜕𝑤𝑚𝑛
=
∑︁

𝑖∈ℒin

𝜓′
𝑖(B𝑖)

∑︁
𝑘∈ℒout

𝜕𝜏𝑘
𝑖

𝜕𝑤𝑚𝑛
B𝑘 (52)

so that we have to compute the derivatives of 𝜏𝑘
𝑖 . (This assumes that the initialization

of B𝑘 on the output layer does not depend on the weights 𝑤.)
A weight 𝑤𝑚𝑛 influences 𝜙𝑛(𝑤𝑚𝑛, 𝑉𝑛) and also influences 𝑉𝑛 which in turn

influences all values of 𝑉𝑗 at subsequent units. Let us first compute the derivative
of 𝜏𝑘

𝑖 with respect to 𝑉𝑛. Summing over paths 𝛾 from 𝑖 to 𝑘 we find

𝜕𝜏𝑘
𝑖

𝜕𝑉𝑛
=
∑︁

𝛾

𝜕

𝜕𝑉𝑛

|𝛾|∏︁
𝑡=1

𝜙𝛾𝑡(𝑤𝛾𝑡−1𝛾𝑡 , 𝑉𝛾𝑡) (53)

=
∑︁

𝛾

∑︁
𝑡

(︃
𝑡−1∏︁
𝑠=1

𝜙𝛾𝑠(𝑤𝛾𝑠−1𝛾𝑠 , 𝑉𝛾𝑠)
)︃
𝜕𝜙𝛾𝑡

(𝑤𝛾𝑡−1𝛾𝑡
, 𝑉𝛾𝑡

)
𝜕𝑉𝑛

⎛⎝ |𝛾|∏︁
𝑠=𝑡

𝜙𝛾𝑠(𝑤𝛾𝑠−1𝛾𝑠 , 𝑉𝛾𝑠)

⎞⎠
(54)

=
∑︁

(𝑙,𝑚), 𝑙→𝑚

𝜏 𝑙
𝑖

𝜕𝜙𝑚(𝑤𝑙𝑚, 𝑉𝑚)
𝜕𝑉𝑛

𝜏𝑘
𝑚 (55)

by substituting 𝑙 = 𝛾𝑡−1, 𝑚 = 𝛾𝑡 for each value of 𝑡, and unraveling the definition
of 𝜏 𝑙

𝑖 and 𝜏𝑘
𝑚.

Since 𝑉𝑛 only influences later units in the network, the only non-zero terms are
those with 𝑛 > 𝑚. We can decompose into 𝑚 = 𝑛 and 𝑛 > 𝑚:

𝜕𝜏𝑘
𝑖

𝜕𝑉𝑛
=
∑︁

𝑙, 𝑙→𝑛

𝜏 𝑙
𝑖

𝜕𝜙𝑛(𝑤𝑙𝑛, 𝑉𝑛)
𝜕𝑉𝑛

𝜏𝑘
𝑛 +

∑︁
𝑚,𝑛>𝑚

∑︁
𝑙, 𝑙→𝑚

𝜏 𝑙
𝑖

𝜕𝜙𝑚(𝑤𝑙𝑚, 𝑉𝑚)
𝜕𝑉𝑛

𝜏𝑘
𝑚 (56)

Now, for 𝑛 > 𝑚, the influence of 𝑉𝑛 on 𝑉𝑚 has to transit through some unit 𝑗
directly connected to 𝑛, namely, for any function ℱ(𝑉𝑚),

𝜕ℱ(𝑉𝑚)
𝜕𝑉𝑛

=
∑︁

𝑗, 𝑛→𝑗

𝑠′(𝑉𝑛)𝑤𝑛𝑗
𝜕ℱ(𝑉𝑚)
𝜕𝑉𝑗

(57)

22

where 𝑠 is the activation function of the network. So∑︁
𝑚, 𝑛>𝑚

∑︁
𝑙, 𝑙→𝑚

𝜏 𝑙
𝑖

𝜕𝜙𝑚(𝑤𝑙𝑚, 𝑉𝑚)
𝜕𝑉𝑛

𝜏𝑘
𝑚 =

∑︁
𝑗, 𝑛→𝑗

𝑠′(𝑉𝑛)𝑤𝑛𝑗

∑︁
𝑚, 𝑛>𝑚

∑︁
𝑙, 𝑙→𝑚

𝜏 𝑙
𝑖

𝜕𝜙𝑚(𝑤𝑙𝑚, 𝑉𝑚)
𝜕𝑉𝑗

𝜏𝑘
𝑚

(58)

=
∑︁

𝑗, 𝑛→𝑗

𝑠′(𝑉𝑛)𝑤𝑛𝑗

∑︁
𝑚

∑︁
𝑙, 𝑙→𝑚

𝜏 𝑙
𝑖

𝜕𝜙𝑚(𝑤𝑙𝑚, 𝑉𝑚)
𝜕𝑉𝑗

𝜏𝑘
𝑚

(59)

where the difference between the last two lines is that we removed the condition
𝑛 > 𝑚 in the summation over 𝑚: indeed, any 𝑚 with non-vanishing 𝜕𝑉𝑚/𝜕𝑉𝑗

satisfies 𝑗 > 𝑚 hence 𝑛 > 𝑚. According to (55),
∑︀

𝑚

∑︀
𝑙, 𝑙→𝑚 𝜏 𝑙

𝑖
𝜕𝜙𝑚(𝑤𝑙𝑚,𝑉𝑚)

𝜕𝑉𝑗
𝜏𝑘

𝑚 is
𝜕𝜏𝑘

𝑖

𝜕𝑉𝑗
, so that (59) is

∑︀
𝑗, 𝑛→𝑗 𝑠

′(𝑉𝑛)𝑤𝑛𝑗
𝜕𝜏𝑘

𝑖

𝜕𝑉𝑗
. Collecting from (56), we find

𝜕𝜏𝑘
𝑖

𝜕𝑉𝑛
=
∑︁

𝑙, 𝑙→𝑛

𝜏 𝑙
𝑖

𝜕𝜙𝑛(𝑤𝑙𝑛, 𝑉𝑛)
𝜕𝑉𝑛

𝜏𝑘
𝑛 +

∑︁
𝑗, 𝑛→𝑗

𝑠′(𝑉𝑛)𝑤𝑛𝑗
𝜕𝜏𝑘

𝑖

𝜕𝑉𝑗
(60)

so that the quantities 𝜕𝜏𝑘
𝑖

𝜕𝑉𝑛
can be computed by backpropagation on 𝑛, if the 𝜏 are

known.
To compute the derivatives of 𝜏𝑘

𝑖 with respect to a weight 𝑤𝑚𝑛, observe that
𝑤𝑚𝑛 influences the 𝑤𝑚𝑛 term in 𝜙𝑛(𝑤𝑚𝑛, 𝑉𝑛), as well as all terms 𝑉𝑙 with 𝑛 > 𝑙 via
its influence on 𝑉𝑛. Since 𝜕𝑉𝑛

𝜕𝑤𝑚𝑛
= 𝑎𝑚 we find

𝜕𝜙𝑙(𝑤𝑗𝑙, 𝑉𝑙)
𝜕𝑤𝑚𝑛

= 1(𝑗,𝑙)=(𝑚,𝑛)
𝜕𝜙𝑛(𝑤𝑚𝑛, 𝑉𝑛)

𝜕𝑤𝑚𝑛
+ 𝑎𝑚

𝜕𝜙𝑛(𝑤𝑗𝑙, 𝑉𝑙)
𝜕𝑉𝑛

(61)

By following the same procedure as in (53)–(55) we obtain

𝜕𝜏𝑘
𝑖

𝜕𝑤𝑚𝑛
= 𝜏𝑚

𝑖

𝜕𝜙𝑛(𝑤𝑚𝑛, 𝑉𝑛)
𝜕𝑤𝑚𝑛

𝜏𝑘
𝑛 + 𝑎𝑚

∑︁
(𝑗,𝑙), 𝑗→𝑙

𝜏 𝑗
𝑖

𝜕𝜙𝑙(𝑤𝑗𝑙, 𝑉𝑙)
𝜕𝑉𝑛

𝜏𝑘
𝑙 (62)

= 𝜏𝑚
𝑖

𝜕𝜙𝑛(𝑤𝑚𝑛, 𝑉𝑛)
𝜕𝑤𝑚𝑛

𝜏𝑘
𝑛 + 𝑎𝑚

𝜕𝜏𝑘
𝑖

𝜕𝑉𝑛
(63)

by (53).
This allows, in principle, to compute the desired derivatives. By (52) we have

to compute the sum of (63) over 𝑖 ∈ ℒin and 𝑘 ∈ ℒout weighted by 𝜓′
𝑖(B𝑖) and B𝑘.

This avoids a full computation of all transfer rates 𝜏 and yields

𝜕𝑆

𝜕𝑤𝑚𝑛
= C𝑚

𝜕𝜙𝑛(𝑤𝑚𝑛, 𝑉𝑛)
𝜕𝑤𝑚𝑛

B𝑛 + 𝑎𝑚𝐷𝑛 (64)

where we have set
C𝑚 :=

∑︁
𝑖∈ℒin

𝜓′
𝑖(B𝑖)𝜏𝑚

𝑖 , (65)

and
𝐷𝑛 :=

∑︁
𝑖∈ℒin

∑︁
𝑘∈ℒout

𝜓′
𝑖(B𝑖)B𝑘

𝜕𝜏𝑘
𝑖

𝜕𝑉𝑛
(66)

23

and where we have used that B satisfies

B𝑚 =
∑︁

𝑘∈ℒout

𝜏𝑘
𝑚B𝑘 (67)

by (51).
It remains to provide ways to compute C𝑚 and 𝐷𝑛. For C𝑚, note that the

transfer rates 𝜏 satisfy the forward propagation equation

𝜏𝑘
𝑖 =

∑︁
𝑗, 𝑗→𝑘

𝜙𝑘(𝑤𝑗𝑘, 𝑉𝑘)𝜏 𝑗
𝑖 (68)

by construction. Summing over 𝑖 ∈ ℒin with weights 𝜓′
𝑖(B𝑖) yields the forward

propagation equation for C given in the statement of the lemma.
Finally, by summing over 𝑖 and 𝑘 in (60), with weights 𝜓′

𝑖(B𝑖)B𝑘, and using
the definition of C and again the property B𝑛 =

∑︀
𝑘∈ℒout

𝜏𝑘
𝑛B𝑘, we obtain

𝐷𝑛 =
∑︁

𝑙, 𝑙→𝑛

C𝑙
𝜕𝜙𝑛(𝑤𝑙𝑛, 𝑉𝑛)

𝜕𝑉𝑛
B𝑛 +

∑︁
𝑗, 𝑛→𝑗

𝑠′(𝑉𝑛)𝑤𝑛𝑗𝐷𝑗 (69)

which is the backpropagation equation for 𝐷𝑛 and concludes the proof.

24

