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ABSTRACT

We study the convergence of mating operators on {0, 1}n. In particular, we answer
questions of Rabani, Rabinovich and Sinclair (cf. [5]) by giving tight estimates on the
divergence between the finite- and infinite-population processes, thus solving positively
the problem of the simulability of such quadratic dynamical systems. c© (Year) John

Wiley & Sons, Inc.
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INTRODUCTION, MAIN RESULTS

We study from a theoretical point of view the rate of convergence of a mating
operator between two “genomes”, in the framework of population genetics or genetic
algorithms: a population is made up of individuals defined by a genome, which is
a string of symbols (taken in {0, 1} for convenience).

The mating operator consists in having a stem population replaced by a new
one in the following way: an individual from the new population is obtained by
randomly, uniformly sampling two distinct individuals in the stem population and
mixing their genomes in some prescribed way. These operations are repeated inde-
pendently in order to obtain all the individuals of the new population.
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Intuitively, mating seems to mix the genes present in the stem population. Biol-
ogy handbooks claim that the interest of sexual reproduction is to keep a high level
of diversity and to mix all available genes. Thus, it can be interesting to study the
speed of such a mixing.

We choose a genome length n, and we define the random offspring of a mating
between two elements of {0, 1}n as follows: Fix a probability distribution Π (a
crossover operator) on the set of subsets of {1 . . . n}. Sample an S ⊂ {1 . . . n} from
Π. Then, the offspring of the pair x, y ∈ {0, 1}n is a random element z ∈ {0, 1}n
whose i-th bit zi is equal to xi if i ∈ S, or yi if i 6∈ S.

According to the chosen distribution Π, different kinds of mating can be obtained.
The simplest one is uniform crossover : Π is the uniform distribution on all subsets
of {1 . . . n}. This amounts to choosing each of the bits zi to be equal to xi or yi
independently of each other with probability 1/2.

We consider a finite population process of size k: at any step, the population is
made up of k (not necessarily distinct) elements of {0, 1}n. The population for the
next step is obtained by uniformly picking, k times with replacement, a random
pair of distinct individuals1 in the previous population, by having them generate a
child from our mating operator and by putting the child in the new population.

Let πt be the random k-tuple in {0, 1}n obtained after t iterations of the process,
given an initial k-tuple π0.

We want to compare this process with the so-called “infinite-population process”
where an infinite population is a probability distribution on {0, 1}n: the law of
an element from the distribution pt+1 is obtained by sampling two individuals
according to pt and mating them according to Π. For a given p0, we obtain a
(deterministic) sequence pt of probability distributions on {0, 1}n.

The infinite-population process is fairly well-known (see the work by Y. Rabani,
Y. Rabinovich and A. Sinclair in [5]). It converges to a distribution p∞ which
depends on p0 in the following way: under p∞, the bits of an individual are chosen
independently of each other, and their value is 0 or 1 with the same probability as
in p0. In other words, the proportion, in the population, of 0 and 1 at each position
in the genome is invariant under the process, but the values at different positions
tend to be independent.

The authors of [5] give essentially tight upper and lower bounds on the conver-
gence of the infinite-population process. Let us recall their main result.

Definition. Let the distance |p− p′| between two probability distributions p and
p′ be

|p− p′| = 1

2

∑

x∈{0,1}n

|p(x)− p′(x)| = sup
X⊂{0,1}n

|p(X)− p′(X)| 6 1

1By “distinct” individuals we do not mean that their genomes are necessarily distinct, but that
they correspond to distinct indices i, j 6 k in the population. This assumption is natural for the
modelling of sexual reproduction in biological systems (excluding occasional parthenogenesis). If
we release this assumption, all results stated here remain true with the constant rΠ replaced with
rΠ(1− 1/k) + 1/k.
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Then, under a natural non-degeneracy assumption on the mating operator, we
have |pt − p∞| 6 n2 rtΠ, where rΠ < 1 is a constant depending on the crossover
operator (equal to 1/2 for uniform crossover). Furthermore, these authors show
that for particular crossover operators, this result is essentially tight, in the sense
that e.g. for uniform crossover, the time required for |pt − p∞| to be less than 1/4
(the “mixing time”) is at least log2 n−O(1) for some initial population. At the end
of the paper we prove a similar but different tightness result (see section 2.A).

On the other hand, the finite-population process is harder to comprehend. It
can be thought of as an approximation of the infinite-population process; but it
seems that, in order to determine an individual at some step, it would be necessary
to know its two parents, its four grandparents, . . . its 2t forefathers. Thus if the
population is small, some forefathers will appear several times in the family tree,
which will result in undesired correlations.

This problem arises for all so-called “quadratic dynamical systems” (cf. [6]), when
we are given some random “mating” between two individuals in a given space, and
we evolve probability measures on this space by defining the law of an individual
at time t + 1 to be the law of the offspring of two individuals picked from the
law at time t. The difficulty of simulating a quadratic dynamical system has been
formalized (cf. [1]): indeed, such systems can solve in polynomial time any PSpace
problem.

The comparison between the two processes goes as follows: Given an infinite
population p0, we sample k individuals from it. This results in a random k-tuple
π0. This k-tuple evolves as described above, and we denote by πt the k-tuple at
time t.

Actually, πt seen as a probability measure on {0, 1}n (each element of the k-tuple
having weight 1/k) is of course not a good approximation of the infinite population
pt since it is supported on only k individuals, whereas in general pt is supported on
all of {0, 1}n more or less uniformly.

We could rather try to compare the law of the random k-tuple πt with the law
p⊗k
t of a random k-sample from pt (after all, π0 was a k-sample from p0). As it turns

out, this is not a good comparison. Indeed, after some time, πt is very probably
made up of k clones of one single individual (this is because at each step, with small
probability, some genetic information gets lost). This well-known phenomenon is
termed coalescence. (By the way, this shows that the process πt converges.) We
will return to this in section 3..

But the random individual making up this uniform population πt will not always
be the same, and its probability law will be close to pt, which is what we wish.
Thus, the law of a single element (e.g. the first one) of πt, taken alone, is a good
approximation to pt.

Hence, denote by qt the probability law of the first element of the random k-tuple
πt.

Y. Rabani, Y. Rabinovich and A. Sinclair prove that |qt − pt| 6
4n2t

k
. Our main

result is that

|qt − p∞| 6 n2

CΠ k
+ n2 rtΠ
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where rΠ is the same constant depending on the crossover operator as in Y. Rabani,
Y. Rabinovich and A. Sinclair’s result on the infinite-population process, and CΠ =
1− rΠ + 1/k.

For example, for uniform crossover, this leads to

|qt − p∞| 6 n2

(

2

k + 2
+

1

2t

)

Considering uniform crossover, letting k → ∞ so that the finite-population process
closely follows the infinite-population process, and applying our lower bound stated
above in that case, shows that the term n2/2t (with rΠ = 1/2) is tight up to a O(n)
factor.

Furthermore, we prove that for k big enough, for some initial population, we

have |p∞ − q∞| > n

Ck
for some constant C 6 32. So, our bounds are essentially

tight up to replacement of n2 by n, which affect the mixing time by at most a factor
of 2.

At the end of the paper, we give a proof of similar results regarding mean-
time (before coalescence) approximation of a whole population rather than a single
individual.

1. CONVERGENCE OF THE FINITE POPULATION PROCESS

1.A Background : convergence of the infinite population process

We recall here the results of Y. Rabani, Y. Rabinovich and A. Sinclair (cf. [5]).
Let p0 be a probability distribution on {0, 1}n. Let ai0 be the probability that

the i-th bit of an individual sampled from p0 is 0, and ai1 = 1− ai0.
Denote by p∞ the probability law which, to the individual x = x1x2 . . . xn,

assigns the weight p∞(x1x2 . . . xn) =
∏

aixi
. This is the probability law where

each bit equals 0 or 1 with the same probability as in p0, but where different bits
are chosen independently of each other.

For example, if p0 is the distribution that puts weight 1/2 on the individual
000 . . . 0 and 1/2 on 111 . . . 1, then p∞ is the uniform distribution on {0, 1}n.

Here, Y. Rabani, Y. Rabinovich and A. Sinclair make a non-degeneracy assump-
tion on the chosen crossover operator Π: they demand that each two different
positions 1 6 i, j 6 n have a positive probability to be separated by the crossover,
that is, that there be an S ⊂ {1 . . . n} with Π(S) > 0 and i ∈ S, j 6∈ S (otherwise,
these two positions could be considered as one single two-bit block).

This natural assumption holds for all usual crossovers. The authors are especially
interested in the following cases:

• Uniform crossover: Π is the uniform distribution on subsets of {1 . . . n}, each
bit is picked independently from one of the two parents.

• One-point crossover: Choose a position 1 6 i 6 n+ 1 uniformly. Those bits
with position less than i will be picked from one parent and the other bits
from the other one. So Π gives equal weight to the n+ 1 sets ∅, {1}, {1, 2},
{1, 2, 3}, . . . , {1, 2, . . . , n}.
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• Poisson crossover: We begin at position 0, picking successive bits of one
parent. Then after some time we jump to the other parent and pick some
successive bits from it, etc. At each step, the probability to jump from one
parent to the other is the same.

Under the non-degeneracy assumption, [5] states the following result:

Theorem 1.1 [5]. The infinite-population process pt converges to p∞ (as prob-
ability measures on {0, 1}n).

Furthermore, they give a good estimate of the rate of convergence. This depends
on details of the crossover operator. Following their notation, let rij(Π) be the
probability that positions i and j are not separated by an S ⊂ {1 . . . n} sampled
from Π. Let rΠ = max

i,j
rij(Π). The non-degeneracy assumption states that rΠ < 1.

Then

Theorem 1.2 [5]. The distance between the population at time t and the limit
population p∞ satisfies

|pt − p∞| 6 n2 rtΠ

For instance, rΠ = 1/2 for uniform crossover, and hence |pt − p∞| 6 n2/2t.

1.B Convergence for finite populations

Recall that qt is the law of the first element of the random k-tuple πt after t steps
of the finite-population process, when π0 is made up of k independent samplings
from p0.

In [5], Y. Rabani, Y. Rabinovich and A. Sinclair show that

|qt − pt| 6
4n2t

k

for any crossover operator. We show here, using similar techniques, that

Theorem 1.3.

|qt − p∞| 6 n2

k (1− rΠ + 1/k)
+ n2 rtΠ

with rΠ as above.
In particular, |q∞ − p∞| 6 n2/(k(1 − rΠ + 1/k)), and for k ≫ n2, the mixing

time is less than 2 log1/rΠ n.
For the sake of optimality, we show below (section 2.B) that |q∞ − p∞| > n/Ck

in some cases (where C is a constant). This is an intrinsic bias due to the finite
population approximation.

Note that this bound is not obtained from bounding |qt − pt| and then using the
bound on |pt − p∞|. We directly compare qt with p∞. The bias of pt and of qt
compared to p∞ may not be of the same kind.
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Proof. We look at the process πt in the following way: To generate πt, we first leave
π0 unspecified, we choose a family tree from generation 0 to generation t from the
correct probability distribution, and, fully independently, we fill π0 by sampling
k individuals from p0. Then we look at how the bits of generation 0 propagate
through the tree.

More precisely, a “family tree” is a structure in which, for each t > 1 and for each
individual number i in generation t, two distinct members i1 and i2 of the previous
generation are specified, together with a “mask” S ⊂ {1 . . . n} describing those bits
of i that come from i1 or i2. This tree gets a probability, which is the product
of the probabilities, under Π, of all masks appearing in it, divided by (k(k − 1))kt

which corresponds to all possible choices of the parents of all individuals.
Once a family tree is given, we fill the bits of generation 0 using the distribution

p0, independently of this tree. Under these conditions, we are in a position to travel
back through the tree and tell, for each bit of any individual at generation t, which
bit from which individual of generation 0 it comes from.

We then note that, if we get a tree such that all n bits of the first individual of
generation t come from distinct individuals from generation 0, these n bits come
from n individuals independently sampled from p0. The values, 0 or 1, of these bits
are thus independent, and the i-th bit is a 1 with probability ai1 (in our earlier
notation). In other words, if we get a tree where the n bits of the first individual
of πt come from distinct individuals, then the law of this individual is exactly p∞
and we are done.

Then, a little manipulation of the definition of |qt − p∞| shows that this distance
is less than the probability that the sampled tree be not of the above kind.

Let’s evaluate this probability. Consider two bits of the first individual at gen-
eration t. If at some time t′ 6 t, these bits belong to the same individual, the
probability that they come from the same parent of this individual at time t′ − 1
is a number p depending on Π, with p 6 rΠ. If at time t′ they belong to two dif-
ferent individuals, their respective parents are chosen independently in πt′−1, and
the probability that they come from the same individual of πt′−1 is 1/k.

Going back through the tree, we thus have a Markov chain with the following
transition probabilities between the two states D (the two bits belong to two distinct
individuals) and S (they belong to the same individual): D → D with probability
1− 1/k, D → S with probability 1/k, S → S with probability p 6 rΠ, S → D with
probability 1− p.

A (very simple) calculation gives that, knowing that at time t the bits are to-
gether, the probability to get a family tree where these two bits are together at
time 0 is

1

k(1− p+ 1/k)
+

(

p− 1

k

)t (

1− 1

k(1− p+ 1/k)

)

which, since p 6 rΠ, is less than

1

k(1− rΠ + 1/k)
+ max(rΠ, 1/k)

t
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In general, 1/k will be smaller than rΠ. If not, note that
1

k(1− rΠ + 1/k)
+

1

kt
6

2

k(1− rΠ + 1/k)
as soon as k > 2, t > 2 (the cases k = 1 or t = 0, 1 being trivial).

Anyway, the probability in question is less than
2

k(1− rΠ + 1/k)
+ rtΠ.

This was for one pair of bits of the first individual of generation t. There are n(n−
1)/2 such pairs. The probability that the sampled tree presents two bits with the

same ancestor from generation 0 is, then, less than
n(n− 1)

2

(

2

k(1− rΠ + 1/k)
+ rtΠ

)

,

hence the theorem.
The main difference with the analysis in [5] is that we make a more refined

analysis of collisions: collisions are not so much disturbing, as two bits which collide
at some time can be separated again further back in the tree. Note that this leads
to a comparison of qt to p∞ and not to pt, because once a collision has occurred
the correlation between qt and pt is lost, and further separation of the collided bits
does not restore this correlation which relies on the specific structure of the tree.

2. LOWER BOUNDS ON CONVERGENCE

We now turn to proving that the bounds for convergence obtained so far are essen-
tially tight. Results in this direction for infinite populations already appear in [5].
We give below a tightness result for finite populations. As a template, we begin
by giving a tightness result for uniform crossover in infinite populations which is
different from that of [5].

2.A Lower bound for uniform crossover in infinite populations

Recall Theorem 1.2: |pt − p∞| 6 n2 rtΠ. The asymptotic part (in t) of this is tight:
indeed, there exists a population p0 such that for all t, |pt − p∞| > rtΠ/2.

Define the mixing time τ of the process as the smallest t such that whatever the
initial population p0 was, we have |pt − p∞| < 1/4. So τ 6 2 log1/rΠ n+2 log1/rΠ 2,
which is a fairly good result.

The authors of [5] show that for particular crossover operators, this result is
essentially tight. Their argument depends on the details of the crossover. For
instance, for uniform crossover, they obtain τ > log2 n−O(1); hence the bound on
the mixing time is tight up to a factor of 2. For Poisson crossover, their result is
tight up to a factor of O(log log log n).

We prove that for uniform crossover, the result is essentially tight in a different
sense than that of [5]. Namely, we show that for some initial population p0, we have

|pt − p∞| > n

C 2t
for some constant C, for t large enough. So we cannot replace n2

by an expression smaller than n in the upper bound above for |pt − p∞|.
These results are not directly comparable: the one deals with the time required to

reach some threshold, whereas the other reflects the asymptotic behavior. However,
assuming that our estimate of the asymptotic behavior is tight even for short times
would result in the same estimate log2 n−O(1) for the mixing time.
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Theorem 2.1. For uniform crossover, for n and t large enough, for some initial
population p0, we have

|pt − p∞| > n

32 · 2t

Inspecting the proof reveals that the result holds as soon as n > 8 and t >

3 log2 n+4 (the time from which the theorem holds depends inevitably on n, since
otherwise n/(32 2t) could be greater than 1).
Proof. Let us have a fresh look at how an individual from generation t is built.
First, let’s fix the 2t ancestors of this individual at time 0, sampled from p0. Then,
we observe that, under uniform crossover, each of the n bits of the individual comes
from one of these ancestors, which we will call the ancestor of the specified bit. In
the case of uniform crossover, by a straightforward induction, the ancestor of each
bit is chosen uniformly and independently among the 2t ancestors of the given
individual (this is specific to uniform crossover). In other words, the distribution
of the ancestors of the n bits of an individual is an independent sampling with
replacement of n individuals among its 2t ancestors.

We will use the fact that, sometimes, two bits come from the same ancestor to
evaluate the deviation of pt from p∞. For this purpose, we will take as our p0 the
distribution on {0, 1}n putting weight 1/2 on the individual 111 . . . 1 and 1/2 on
000 . . . 0. We will consider the law of the number of 1’s in an individual under p∞
and pt, and find a difference.

Under p∞, the law of the number of 1’s is binomial with parameters n and 1/2.
Under pt, each bit of an individual comes from one of its ancestors at time 0. If

the n ancestors of the n bits are all distinct, then these bits are picked uniformly
and independently from p0, in which case we find again a binomial distribution.

If, conversely, two bits of an individual come from the same ancestor at time 0,
given our population p0, these two bits will be equal. This leads to correlations
which result in a quantifiable difference in the law of the number of 1’s in an
individual.

We will first evaluate the deviation obtained when exactly two bits have the
same ancestor. We will then show that exactly two bits have the same ancestor
with a large enough probability, and that the cases when more than one correlation
occurs have a negligible weight when t is large. The first statement is the subject
of the following lemma.

Lemma 2.2. Let n > 8. Let µ1 be the uniform probability measure on {0, 1}n.
Let µ2 be the measure on {0, 1}n equal to 1/2n−1 at those points x = (x1, . . . , xn) ∈
{0, 1}n such that x1 = x2 and equal to 0 elsewhere. Then, the difference between the
probabilities under µ1 and µ2 of the event “the number of 1’s in a sample individual
lies between n/2−

√

n/8 and n/2 +
√

n/8” is larger than 1/2n.

Proof of the lemma. Under µ1, without correlated bits, the law of the number of
1’s is a binomial

(

n
r

)

/2n.



(TITLE RUNNING HEAD) 9

Under µ2, there is one pair of correlated bits, and the law of the number of 1’s

will rather be
1

2

(

n−2
r−2

)

/2n−2 +
1

2

(

n−2
r

)

/2n−2 (respectively for the cases when the

correlated pair is made up of two 1’s or two 0’s).

The latter is less than the former in a zone around n/2, and greater elsewhere.

The difference between the two is
(

(

n
r

)

− 2
(

n−2
r−2

)

− 2
(

n−2
r

)

)

/2n, which is, after a

small calculation, equal to
(

n−2
r−1

)

/2n
(

n− (n− 2r)2

2(n− r)r

)

. The second term is positive

for n/2−
√
n/2 6 r 6 n/2+

√
n/2, equal to 2/n at r = n/2 ; it is greater than 1/n

for |r − n/2| 6
√

n/8.

Then, the difference of the probabilities under µ1 and µ2 that the number of 1’s
falls between n/2−

√

n/8 and n/2 +
√

n/8 is greater than

1

n

n/2+
√

n/8
∑

r=n/2−
√

n/8

1

2n
(

n−2
r−1

)

Knowing that a binomial of parameter 1/2 is almost a bell curve:

n/2+
√

n/8
∑

r=n/2−
√

n/8

1

2n−2

(

n−2
r−1

)

∼ 2√
π

∫ 1/
√
2

−1/
√
2

e−x2/2dx > 1/2

(and the first term is indeed greater than 1/2 as soon as n > 8), we get that this
expression is greater than 1/2n, which proves the lemma.

Observe that, if the n bits of an individual at step t have distinct ancestors at
step 0, the law of the number of 1’s in these n bits is the same as under µ1 in the
lemma. If exactly two bits have the same ancestor, the law of the number of 1’s
will be the same as under µ2 in the lemma.

We will now derive from this an evaluation of the distance between pt and p∞.
Let A0 be the event “all n bits have distinct ancestors at time 0”, A1 the event
“exactly one pair of bits has a common ancestor”, A2 the remaining cases (more
than one coincidence). Let also B be the event “the number of 1’s falls between

n/2−
√

n/8 and n/2 +
√

n/8”.

Then, according to the lemma:

|p∞ − pt| > |p∞(B)− pt(B)|
> |(p∞(B)− pt(B|A0)) pt(A0) + (p∞(B)− pt(B|A1)) pt(A1)|

− |p∞(B)− pt(B|A2)| pt(A2)

> 0 +
1

2n
pt(A1)− pt(A2)

(Knowing A0, the number of 1’s under pt is the same as under p∞.)

Thus, the issue is to evaluate the probabilities that exactly two bits, or more
than two bits, have a common ancestor. We know that these ancestors are sampled
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uniformly and independently from a set of size 2t. We state the following lemma,
which we will use again later.

Lemma 2.3. If n (distinguishible) individuals are placed uniformly at random
into k cells, the probability that exactly two elements are placed in the same cell is

greater than
n2

4k

(

1− n2

2k

)

.

Proof of the lemma. By elementary combinatorics, this probability is
1

kn
n(n− 1)

2
k(k−

1) . . . (k − n + 2), that is
n(n− 1)

2k
1 (1 − 1/k) . . . (1 − (n − 2)/k), which is greater

than
n2

4k

(

1− n2

2k

)

.

Let’s denote k = 2t. By Lemma 2.3, the probability that exactly two bits of
an individual have the same ancestor at time 0 is more than n2/8k for k large
enough. The case when more than two correlations would occur, that is, at least
two pairs of bits with common ancestors, or at least three bits with the same
ancestor, has a probability not greater than n4/k2, which is of greater order in
1/k. Indeed, the probability that two pairs have common ancestors is at most
(n(n − 1)/2)2 k(k − 1)kn−4/kn = O(n4/k2), and the probability that three bits
have the same ancestor is (n(n− 1)(n− 2)/6) kn−2 = O(n3/k2).

We saw above that |p∞ − pt| > 1/(2n) pt(A1)− pt(A2). If we take k > 16n3 we
ensure that the probability of A2 is less than n/32k, in which case the expression
at play is no less than n/32k.

2.B Lower bound for finite populations

It is instructive to note that the difference between the laws q∞ and p∞ cannot be
interpreted as an error due to the sampling with replacement in the k-tuple π0 of
the genes of an individual of q∞, as opposed to sampling without replacement in
p∞. Indeed, if that were the case, the probability that two genes of an individual
of π∞ come from the same individual in π0 would be exactly 1/k, whereas we have
just seen that it is actually 1/(k(1− rΠ+1/k)), which is greater especially for large
populations.

The above analysis shows that |q∞ − p∞| 6
n2

k (1− rΠ + 1/k)
. Let’s prove a

corresponding lower bound, which shows we cannot improve this result by much:

Theorem 2.4. For all n > 2, for k large enough, there exists some initial popu-
lation such that

|q∞ − p∞| > n

32k

The k above which the proposition holds depends on n (otherwise, n/32k could
be more than 1). Since this is a negative asymptotic result, we will not worry too
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much about an explicit value for the k above which the proposition holds; a crude

inspection of the proof reveals it holds at least for k > 48(2n)n
2+2/(1− rΠ)

n2

. Of
course this is probably a gross overestimate.

Proof. As usual, we will consider an individual at time t, and look at the indi-
viduals at time 0 from which its n bits arise. We will have a close look at the
distribution of these n individuals.

We will essentially work as in section 2.A: we will show that, with some prob-
ability of order n2/k, exactly two bits have the same ancestor, which introduces a
deviation of order 1/n.

First, we will evaluate the probability that exactly two bits have a common
ancestor at time 0. This probability is greater than the probability that exactly
two bits have the same ancestor at time 0 and that, in addition, all bits are separated
at time 1.

In the proof of theorem 1.3, we saw that the probability that some two bits of

an individual of π∞ have the same ancestor at time 1 is less than
n2

k(1− rΠ + 1/k)
.

Thus, the probability that all of them are separated at time 1 is greater than

1− n2

k(1− rΠ + 1/k)
.

Now, if all bits are separated at time 1, their parents at time 0 are simply picked
uniformly and independently among k. According to lemma 2.3, the probability
that exactly two of them fall together is greater than (n2/4k)(1− n2/2k).

Thus, the (unconditional) probability that at time 0, exactly two bits fall together

is greater than
n2

4k

(

1− n2

2k

)(

1− n2

k(1− rΠ + 1/k)

)

which in turn is more than

n2

8k
as soon as k is large enough, say k > 3n2/(1− rΠ).

Under the assumption that there exist two bits with the same ancestor, we will
find a deviation between the probabilities of some event under p∞ and qt. Of course,
we will take as our p0 the probability distribution on {0, 1}n which puts weight 1/2
on 111 . . . 1 and 1/2 on 000 . . . 0. Then, we will be interested in the distribution of
the number of 1’s in an individual of generation t.

We will argue as in section 2.A. To do this, we must first establish that the case
when exactly two bits of an individual at time t have the same ancestor at time 0 is
predominant over the cases when there are more coincidences. This is the subject
of the following lemma, which states that the distribution of the ancestors of the n
bits of an individual has roughly the same asymptotics, when k → ∞, as if these
ancestors were sampled uniformly and independently among the k individuals of
the initial population.

In particular, the cases when exactly two bits have the same ancestor will have a
probability of order 1/k, whereas those when more correlations occur will weigh for
less than 1/k2. We measure the number of coincidences by the number of distinct
individuals from which the n bits of our individual at time t come from. This lemma
can be of independent interest.
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Lemma 2.5. There exist constants Cn,Π and C ′
n,Π such that the probability that

the n bits of an individual at time t = ∞ come from m distinct individuals from

time 0 lies between
Cn,Π

kn−m
and

C ′
n,Π

kn−m
, for k large enough.

(It is easy to see that it makes sense to speak about an individual from generation
t = ∞: the process is Markovian on the space of k-individual populations. Often
we will look at the process backwards, as if it started at t = ∞; this can easily be
made rigorous by taking t large enough afterwards.)

Proof of the lemma. Let’s fix an individual from generation t, t ≈ ∞ (i.e. t large
enough). We have already seen that for n = m, the probability that all its bits have
distinct ancestors at time 0 is greater than 1−O(1/k), for large t. (The constants
implied in O() depend of course on n and Π.)

The idea is to consider the Markov chain made up of the positions (in the k-
individual population) of the ancestors of the n bits of the given individual, at time
t− t′ (a Markov chain in t′). We will split this Markov chain into classes, the class
m being made up of those situations when the n bits are distributed over m 6 n
individuals at time t−t′. We will consider the communication probabilities between
these classes, and study the weight of these classes in equilibrium when t′ tends to
infinity (relative to t, but we take a large t).

Let m(t′) be the number of distinct individuals which the n bits come from at
time t − t′, and s(m) the probability that m(∞) = m. We intend to show that
s(m) = O(1/kn−m). We already know that for m < n− 1, s(m) = O(1/k). In the
following, the constants implied by O depend on n, m and rΠ; we only intend to
study the asymptotic behavior in k.

Now, let’s estimate the distribution of m(t′ + 1) for a given m(t′).

To go from generation t − t′ to generation t − t′ − 1, we consider the m(t′)
individuals carrying the n bits. We decompose the process into two steps. In the
first one, we consider the m(t′) blocks of bits, and we apply the mating operator
Π to find 2m(t′) “abstract parents” generating them. Among these 2m(t′), only
m′, where m(t′) 6 m′

6 n, carry some bits. In the second step, we paste back
these m′ abstract parents onto the population at time t − t′ − 1, which is made
up of k individuals. The pasting consists in choosing, for each of the m′ abstract
parents, which individual among the k it really is. These individuals are chosen
independenlty and uniformly among k (there is some additional complication due
to the fact that the two parents of one individual are distinct, in which case we
choose among k − 1 rather than k, which does not affect the calculation much).

The probability that these m′ parents are spread over m′′
6 m′ individuals of

generation t− t′−1 is, by elementary combinatorics, of order Cm′/km
′−m′′

for large
k. Now, knowing m(t′), we know that m′

> m(t′) and that, moreover, if m(t′) < n,
then m′ > m(t′) with probability greater than 1− rΠ.

In other words, the first of our two steps cannot decrease m(t′), and increases
it with probability greater than 1−rΠ (if m(t) < n); the second one decreases the re-

sult with controlled probability, going from m′ to m′′ with probability O(1/km
′−m′′

).

All in all, m(t′+1) < m(t′) with probability O(1/km(t′)−m(t′+1)), m(t′+1) = m(t′)
with probability less than rΠ + O(1/k), and m(t′ + 1) > m(t′) otherwise: gener-
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ally, the number of blocks of bits increases, and it decreases only with probabilities
controlled by powers of k.

Let’s move to the proof proper. We work by backwards induction on m.
Suppose we have already proved that for all m′

6 m, we have s(m′) = O(1/kn−m),

and that for m 6 m′
6 n we have s(m′) = O(1/kn−m′

). Now, the proba-
bility s(1) that at time 0 (t′ ≈ ∞), all bits lie together, is such that s(1) 6

rΠ s(1) + O(1/k) s(2) + O(1/k2) s(3) + . . . + O(1/kn−1) s(n) (in equilibrium). Ac-
cording to our induction hypothesis, and since rΠ < 1, this is O(1/km+1).

Similarly, s(2) 6 s(1) + rΠ s(2) + O(1/k) s(3) + . . . + O(1/kn−2) s(n), which is
O(1/km+1) by our induction hypothesis, and since rΠ < 1.

Step by step, up to m′ = m − 1, we get that for m′
6 m − 1, we have s(m) =

O(1/kn−m+1), which concludes our induction and ends the proof of the upper bound
in the lemma (the constants in the notation O depend on everything except k).

In order to get the lower bound in the lemma, it is enough to observe that
s(n) = 1−O(1/k) and to note that the transition coefficients n → m from the state
m(t′) = n to m(t′ − 1) = m are of order 1/kn−m.

On one hand, we proved that exactly two bits have a common ancestor with
probability greater than n2/8k; on the other hand, the case when more than one
pair of bits have a common ancestor has probability at most O(1/k2). It is then
enough to take k large and apply lemma 2.2 to conclude.

3. COALESCENCE AND MEAN-TIME
APPROXIMATION OF A POPULATION

The results stated above deal with extraction of one individual from the finite
population πt. One can wonder if the law of the whole k-tuple πt is close to, for
example, the law p⊗k

∞ of an independent k-sample from p∞. This is false due to the
coalescence phenomenon.

The following is a classical result in the so-called Wright-Fisher model (see e.g.
[7], [3], [2] or [4]).

Proposition 3.1. For large k, for all ε > 0, for

t > 4k (lnn− ln ε+ ln 2)

then, with probability greater than 1 − ε, the k-tuple πt is made up of k copies of
the same individual.

The k above which the proposition holds is independent of n and ε.

Corollary. Under the same assumptions, the distance
∣

∣σt − p⊗k
∞

∣

∣ is greater
than

1− ε−
∏

16i6n

(

aki + (1− ai)
k
)

where σt is the law of the k-tuple πt, which is a probability distribution on ({0, 1}n)k.
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Proof. Indeed,
∏

16i6n

(

aki + (1− ai)
k
)

is the weight, under p⊗k
∞ , of k-tuples made

up of identical individuals.

However, even for k not too large, the coalescence time 4k log n is much larger
than the characteristic time of the convergence qt → p∞, which is of order 2 log1/rΠ n.
So hopefully, in the meantime, some number m 6 k of individuals could be extracted
from πt, whose joint law would be close to p⊗m

∞ .
Indeed:

Theorem 3.2. Let m 6 k. Let qmt be the joint law in ({0, 1}n)m of the first m
individuals of πt. Then

∣

∣qmt − p⊗m
∞

∣

∣ 6
m2n2

k(1− rΠ + 1/k)
+

m2n

k
t+mn2 rtΠ

Of course, “the m first individuals” could be replaced by any m-tuple chosen in
advance among πt.

The first term corresponds to the intrinsic bias of the finite population, even for
long times, as studied above. The second reflects coalescence. The third renders
the convergence to p∞.

Note that k must be of order (mn)2 for a non-trivial estimate.
The optimum in t (tradeoff between coalescence and convergence to p∞) is

achieved for t ≈ log1/rΠ
nk

m
and is roughly

m2n2

k(1− rΠ + 1/k)
+

nm2

k
log1/rΠ

nk

m
.

Using the same techniques as before (evaluating the number of 1’s among the
mn bits when two bits have the same ancestor), one may derive a lower bound,
which matches the upper bound up to a factor of 1/mn (and constants), for large
k and a given t.
Proof. We will follow the ancestry of the mn bits of the first m individuals of πt.
If these mn bits come from distinct individuals of π0 (which requires k > mn), then
the resulting distribution will be p⊗m

∞ .
Let us consider two given bits among these mn. If they are two different bits from

the same individual, nothing changes in regard to our previous analysis, and the

probability that they are not separated at time 0 is less than
1

k(1− rΠ + 1/k)
+rtΠ.

If these two bits are located at different positions in two different individuals of πt,
then the Markov chain describing their separation is the same. However, initially,
they are separated. Their probability of falling together at a given time begins at 0

and tends geometrically to
1

k(1− rΠ + 1/k)
; it is always less than

2

k(1− rΠ + 1/k)
.

However, the picture is quite different if we consider two bits located at the same
position in two individuals of πt: indeed, if, somewhere in the family tree, these
two bits are gathered into one single individual, they are actually the same bit,
inherited from that individual. Going back further in the tree, up to π0, the bits
can never again be separated.

Given these two bits, at each (backward) generation, their gathering occurs
when they have the same parent, i.e. with probability 1/k. The probability of their
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gathering in t backward steps is, thus, less than t/k (which is essentially tight for
large k).

There are mn(n− 1)/2 pairs of bits at different positions in a single individual;
m(m − 1)n(n − 1)/2 pairs of bits at different positions in two different individu-
als; and m(m − 1)n/2 pairs of bits located at the same position in two distinct
individuals. Hence the result, by the same reasoning as in theorem 1.3.
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