
Unbiasing Truncated Backpropagation Through
Time

Corentin Tallec, Yann Ollivier

Abstract

Truncated Backpropagation Through Time (truncated BPTT, [Jae05])
is a widespread method for learning recurrent computational graphs.
Truncated BPTT keeps the computational benefits of Backpropagation
Through Time (BPTT [Wer90]) while relieving the need for a complete
backtrack through the whole data sequence at every step. However,
truncation favors short-term dependencies: the gradient estimate of
truncated BPTT is biased, so that it does not benefit from the con-
vergence guarantees from stochastic gradient theory. We introduce
Anticipated Reweighted Truncated Backpropagation (ARTBP), an algo-
rithm that keeps the computational benefits of truncated BPTT, while
providing unbiasedness. ARTBP works by using variable truncation
lengths together with carefully chosen compensation factors in the
backpropagation equation. We check the viability of ARTBP on two
tasks. First, a simple synthetic task where careful balancing of temporal
dependencies at different scales is needed: truncated BPTT displays
unreliable performance, and in worst case scenarios, divergence, while
ARTBP converges reliably. Second, on Penn Treebank character-level
language modelling [MSD+12], ARTBP slightly outperforms truncated
BPTT.

Backpropagation Through Time (BPTT) [Wer90] is the de facto standard
for training recurrent neural networks. However, BPTT has shortcomings
when it comes to learning from very long sequences: learning a recurrent
network with BPTT requires unfolding the network through time for as many
timesteps as there are in the sequence. For long sequences this represents a
heavy computational and memory load. This shortcoming is often overcome
heuristically, by arbitrarily splitting the initial sequence into subsequences,
and only backpropagating on the subsequences. The resulting algorithm is
often referred to as Truncated Backpropagation Through Time (truncated
BPTT, see for instance [Jae05]). This comes at the cost of losing long term
dependencies.

We introduce Anticipated Reweighted Truncated BackPropagation (ARTBP),
a variation of truncated BPTT designed to provide an unbiased gradient
estimate, accounting for long term dependencies. Like truncated BPTT,
ARTBP splits the initial training sequence into subsequences, and only

1

backpropagates on those subsequences. However, unlike truncated BPTT,
ARTBP splits the training sequence into variable size subsequences, and
suitably modifies the backpropagation equation to obtain unbiased gradients.

Unbiasedness of gradient estimates is the key property that provides
convergence to a local optimum in stochastic gradient descent procedures.
Stochastic gradient descent with biased estimates, such as the one provided
by truncated BPTT, can lead to divergence even in simple situations and
even with large truncation lengths (Fig. 3).

ARTBP is experimentally compared to truncated BPTT. On truncated
BPTT failure cases, typically when balancing of temporal dependencies is key,
ARTBP achieves reliable convergence thanks to unbiasedness. On small-scale
but real world data, ARTBP slightly outperforms truncated BPTT on the
test case we examined.

ARTBP formalizes the idea that, on a day-to-day basis, we can perform
short term optimization, but must reflect on long-term effects once in a
while; ARTBP turns this into a provably unbiased overall gradient estimate.
Notably, the many short subsequences allow for quick adaptation to the data,
while preserving overall balance.

1 Related Work
BPTT [Wer90] and its truncated counterpart [Jae05] are nearly uncontested
in the recurrent learning field. Nevertheless, BPTT is hardly applicable
to very long training sequences, as it requires storing and backpropagating
through a network with as many layers as there are timesteps [Sut13]. Storage
issues can be partially addressed as in [GMD+16], but at an increased
computational cost. Backpropagating through very long sequences also
implies performing fewer gradient descent steps, which significantly slows
down learning [Sut13].

Truncated BPTT heuristically solves BPTT deficiencies by chopping the
initial sequence into evenly sized subsequences. Truncated BPTT truncates
gradient flows between contiguous subsequences, but maintains the recurrent
hidden state of the network. Truncation biases gradients, removing any
theoretical convergence guarantee. Intuitively, truncated BPTT has trouble
learning dependencies above the range of truncation. 1

NoBackTrack [OTC15] and Unbiased Online Recurrent Optimization
(UORO) [TO17] both scalably provide unbiased online recurrent learning
algorithms. They take the more extreme point of view of requiring memory-
lessness, thus forbidding truncation schemes and any storage of past states.
NoBackTrack and UORO’s fully online, streaming structure comes at the
price of noise injection into the gradient estimates via a random rank-one

1 Still, as the hidden recurrent state is not reset between subsequences, it may contain
hidden information about the distant past, which can be exploited [Sut13].

2

reduction. ARTBP’s approach to unbiasedness is radically different: ARTBP
is not memoryless but does not inject artificial noise into the gradients, in-
stead, compensating for the truncations directly inside the backpropagation
equation.

2 Background on recurrent models
The goal of recurrent learning algorithms is to optimize a parametric dynam-
ical system, so that its output sequence, or predictions, is as close as possible
to some target sequence, known a priori. Formally, given a dynamical system
with state s, inputs x, parameter θ, and transition function F ,

st+1 = F (xt+1, st, θ) (1)

the aim is to find a θ minimizing a total loss with respect to target outputs
o∗t at each time,

LT =
T∑
t=1

`t =
T∑
t=1

`(st, o∗t). (2)

A typical case is that of a standard recurrent neural network (RNN). In this
case, st = (ot, ht), where ot are the activations of the output layer (encoding
the predictions), and ht are the activations of the hidden recurrent layer. For
this simple RNN, the dynamical system takes the form

ht+1 = tanh(Wx xt+1 +Wh ht + b) (3)
ot+1 = Woht+1 (4)
`t+1 = `(ot+1, o

∗
t+1) (5)

with parameters θ = (Wx,Wh, b).
Commonly, θ is optimized via a gradient descent procedure, i.e. iterating

θ ← θ − η∂LT
∂θ

(6)

where η is the learning rate. The focus is then to efficiently compute ∂LT /∂θ.
Backpropagation through time is a method of choice to perform this

computation. BPTT computes the gradient by unfolding the dynamical
system through time and backpropagating through it, with each timestep
corresponding to a layer. BPTT decomposes the gradient as a sum, over
timesteps t, of the effect of a change of parameter at time t on all subsequent
losses. Formally,

∂LT
∂θ

=
T∑
t=1

δ`t
∂F

∂θ
(xt, st−1, θ) (7)

3

where δ`t := ∂LT
∂st

is computed backward iteratively according to the back-
propagation equation

δ`T = ∂`

∂s
(sT , o∗T)

δ`t = δ`t+1
∂F

∂s
(xt+1, st, θ) + ∂`

∂s
(st, o∗t).

(8)

These backpropagation equations extend the classical ones [Jae05], which
deal with the case of a simple RNN for F .

Unfortunately, BPTT requires processing the full sequence both forward
and backward. This requires maintaining the full unfolded network, or
equivalently storing the full history of inputs and activations (though see
[GMD+16]). This is impractical when very long sequences are processed
with large networks: processing the whole sequence at every gradient step
slows down learning.

Practically, this is alleviated by truncating gradient flows after a fixed
number of timesteps, or equivalently, splitting the input sequence into sub-
sequences of fixed length, and only backpropagating through those subse-
quences. 2 This algorithm is referred to as Truncated BPTT. With truncation
length L < T , the corresponding equations just drop the recurrent term
δ`t+1

∂F
∂s (xt+1, st, θ) every L time steps, namely,

δˆ̀t :=

∂`

∂s
(st, o∗t) if t is a multiple of L

δˆ̀t+1
∂F

∂s
(xt+1, st, θ) + ∂`

∂s
(st, o∗t) otherwise.

(9)

This also allows for online application: for instance, the gradient estimate
from the first subsequence t = 1 . . . , L does not depend on anything at time
t > L.

However, this gradient estimation scheme is heuristic and provides biased
gradient estimates. In general the resulting gradient estimate can be quite far
from the true gradient even with large truncations L (Section 6). Undesired
behavior, and, sometimes, divergence can follow when performing gradient
descent with truncated BPTT (Fig. 3).

3 Anticipated Reweighted Backpropagation Through
Time: unbiasedness through reweighted stochas-
tic truncation lengths

Like truncated BPTT, ARTBP splits the initial sequence into subsequences,
and only performs backpropagation through time on subsequences. However,

2Usually the internal state st is maintained from one subsequence to the other, not
reset to a default value.

4

(a) BPTT (b) Truncated BPTT (c) ARTBP

Figure 1: Graphical representation of BPTT, truncated BPTT and ARTBP.
Blue arrows represent forward propagations, red arrows backpropagations.
Dots represent either internal state resetting or gradient resetting.

contrary to the latter, it does not split the sequence evenly. The length
of each subsequence is sampled according to a specific probability distri-
bution. Then the backpropagation equation is modified by introducing a
suitable reweighting factor at every step to ensure unbiasedness. Figure 1
demonstrates the difference between BPTT, truncated BPTT and ARTBP.

Simply sampling arbitrarily long truncation lengths does not provide
unbiasedness. Intuitively, it still favors short term gradient terms over long
term ones. When using full BPTT, gradient computations flow back 3 from
every timestep t to every timestep t′ < t. In truncated BPTT, gradients
do not flow from t to t′ if t− t′ exceeds the truncation length. In ARTBP,
since random truncations are introduced, gradient computations flow from t
to t′ with a certain probability, decreasing with t− t′. To restore balance,
ARTBP rescales gradient flows by their inverse probability. Informally, if
a flow has a probability p to occur, multiplication of the flow by 1

p restores
balance on average.

Formally, at each training epoch, ARTBP starts by sampling a random
sequence of truncation points, that is (Xt)1≤t≤T ∈ {0, 1}T . A truncation
will occur at all points t such that Xt = 1. Here Xt may have a probabil-
ity law that depends on X1, . . . , Xt−1, and also on the sequence of states
(st)1≤t≤T of the system. The reweighting factors that ARTBP introduces
in the backpropagation equation depend on these truncation probabilities.
(Unbiasedness is not obtained just by global importance reweighting between
the various truncated subsequences: indeed, the backpropagation equation
inside each subsequence has to be modified at every time step, see (11).)

The question of how to choose good probability distributions for the
truncation points Xt is postponed till Section 4. Actually, unbiasedness holds
for any choice of truncation probabilities (Prop 1), but different choices for
Xt lead to different variances for the resulting gradient estimates.

Proposition 1. Let (Xt)t=1...T be any sequence of binary random variables,
chosen according to probabilities

ct := P(Xt = 1 | Xt−1, . . . , X1) (10)

and assume ct 6= 1 for all t.
3 Gradient flows between timesteps t and t′ if there are no truncations occuring between

t and t′.

5

Define ARTBP to be backpropagation through time with a truncation
between t and t+ 1 iff Xt = 1, and a compensation factor 1

1−ct
when Xt = 0,

namely:

δ˜̀t :=

∂`

∂s
(st, o∗t) if Xt = 1 or t = T

1
1− ct

δ˜̀t+1
∂F

∂s
(xt+1, st, θ) + ∂`

∂s
(st, o∗t) otherwise.

(11)

Let g̃ be the gradient estimate obtained by using δ˜̀t instead of δ`t in
ordinary BPTT (7), namely

g̃ :=
T∑
t=1

δ˜̀t
∂F

∂θ
(xt, st−1, θ) (12)

Then, on average over the ARTBP truncations, this is an unbiased gradient
estimate of the total loss:

EX1,...,XT
[g̃] = ∂LT

∂θ
. (13)

The core of the proof is as follows: With probability ct (truncation),
δ˜̀t+1 does not contribute to δ˜̀t. With probability 1− ct (no truncation), it
contributes with a factor 1

1−ct
. So on average, δ˜̀t+1 contributes to δ˜̀t with a

factor 1, and ARTBP (11) reduces to standard, non-truncated BPTT (8) on
average. The detailed proof is given in Section 8.

While the ARTBP gradient estimate above is unbiased, some noise is
introduced due to stochasticity of the truncation points. It turns out that
ARTBP trades off memory consumption (larger truncation lengths) for
variance, as we now discuss.

4 Choice of ct and memory/variance tradeoff
ARTBP requires specifying the probability ct of truncating at time t given
previous truncations. Intuitively the c’s regulate the average truncation
lengths. For instance, with a constant ct ≡ c, the lengths of the subsequences
between two truncations follow a geometric distribution, with average trunca-
tion length 1

c . Truncated BPTT with fixed truncation length L and ARTBP
with fixed c = 1

L are thus comparable memorywise.
Small values of ct will lead to long subsequences and gradients closer to

the exact value, while large values will lead to shorter subsequences but larger
compensation factors 1

1−ct
and noisier estimates. In particular, the product

of the 1
1−ct

factors inside a subsequence can grow quickly. For instance, a
constant ct leads to exponential growth of the cumulated 1

1−ct
factors when

iterating (11).

6

To mitigate this effect, we suggest to set ct to values such that the
probability to have a subsequence of length L decreases like L−α. The
variance of the lengths of the subsequences will be finite if α > 3. Moreover
we might want to control the average truncation length L0. This is achieved
via

ct = P(Xt = 1 | Xt−1, . . . , X1) = α− 1
(α− 2)L0 + δt

(14)

where δt is the time elapsed since the last truncation, δt = t− sup{s | s <
t,Xs = 1}. Intuitively, the more time spent without truncating, the lower
the probability to truncate. This formula is chosen such that the average
truncation length is approximately L0, and the standard deviation from
this average length is finite. The parameter α controls the regularity of the
distribution of truncation lengths: all moments lower than α− 1 are finite,
the others are infinite. With larger α, large lengths will be less frequent, but
the compensating factors 1

1−ct
will be larger.

With this choice of ct, the product of the 1
1−ct

factors incurred by back-
propagation inside each subsequence grows polynomially like Lα−1 in a
subsequence of length L. If the dynamical system has geometrically decaying
memory, i.e., if the operator norm of the transition operator ∂F

∂s is less than
1 − ε most of the time, then the value of δ˜̀t will stay controlled, since
(1 − ε)L · Lα stays bounded. On the other hand, using a constant ct ≡ c
provides bounded δ˜̀t only for small values c < ε.

In the experiments below, we use the ct from (14) with α = 4 or α = 6.

5 Online implementation
Importantly, ARTBP can be directly applied online, thus providing unbiased
gradient estimates for recurrent networks.

Indeed, not all truncation points have to be drawn in advance: ARTBP
can be applied by sampling the first truncation point, performing both forward
and backward passes of BPTT up until this point, and applying a partial
gradient descent update based on the resulting gradient on this subsequence.
Then one moves to the next subsequence and the next truncation point, etc.
(Fig. 1c).

6 Experimental validation
The experimental setup below aims both at illustrating the theoretical
properties of ARTBP compared to truncated BPTT, and at testing the
soundness of ARTBP on real world data.

7

time

lt

lt+1

θ

θ

1
2

−θ

−θ

1
2

1
2

−θ

−θ

1
2

1
2

−θ

−θ

1
2

1
2

Figure 2: Influence balancing dynamics, 1 positive influence, 3 negative
influences.

6.1 Influence balancing

The influence balancing experiment is a synthetic example demonstrating,
in a very simple model, the importance of being unbiased. Intuitively, a
parameter has a positive short term influence, but a negative long term one
that surpasses the short term effect. Practically, we consider a row of agents,
numbered from left to right from 1 to p + n who, at each time step, are
provided with a signal depending on the parameter, and diffuse part of their
current state to the agent directly to their left. The p leftmost agents receive
a positive signal at each time step, and the n rightmost agents a negative
signal. The training goal is to control the state of the leftmost agent. The
first p agents contribute positively to the first agent state, while the next
n contribute negatively. However, agent 1 only feels the contribution from
agent k after k timesteps. If optimization is blind to dependencies above k,
the effect of k is never felt. A typical instantiation of such a problem would
be that of a drug whose effect varies after various delays; the parameter to
be optimized is the quantity of drug to be used daily.

Such a model can be formalized as [TO17]

st+1 = Ast + (θ, . . . , θ,−θ, . . . ,−θ)> (15)

with A a square matrix of size p+ n with Ak,k = 1/2, Ak,k+1 = 1/2, and 0
elsewhere; skt corresponds to the state of the k-th agent. θ ∈ R is a scalar
parameter corresponding to the intensity of the signal observed at each time
step. The right-hand-side has p positive-θ entries and n negative-θ entries.
The loss considered is an arbitrary target on the leftmost agent s1,

`t = 1
2(s1

t − 1)2. (16)

The dynamics is illustrated schematically in Figure 2.
Fixed-truncation BPTT is experimentally compared with ARTBP for

this problem. The setting is online: starting at t = 1, a first truncation
length L is selected (fixed for BPTT, variable for ARTBP), forward and
backward passes are performed on the subsequence t = 1, . . . , L, a vanilla

8

gradient step is performed with the resulting gradient estimate, then the
procedure is repeated with the next subsequence starting at t = L+ 1, etc..

Our experiment uses p = 10 and n = 13, so that after 23 steps the signal
should have had time to travel through the network. Truncated BPTT is
tested with various truncations L = 10, 100, 200. (As the initial θ is fixed,
truncated BPTT is deterministic in this experiment, thus we only provide a
single run for each L.) ARTBP is tested with the probabilities (14) using
L0 = 16 (average truncation length) and α = 6. ARTBP is stochastic: five
random runs are provided to test reliability of convergence.

The results are displayed in Fig. 3. We used decreasing learning rates
ηt = η0√

1+t where η0 = 3 × 10−4 is the initial learning rate and t is the
timestep. We plot the average loss over timesteps 1 to t, as a function of t.

1× 10−5

1× 100

1× 105

1× 1010

1× 1015

1× 1020

1× 1025

1× 1030

1× 1035

20000 40000 60000 80000 100000

C
um

ul
at
ed

lo
ss

Epoch

ARTBP
10-truncated BPTT

100-truncated BPTT
200-truncated BPTT

Figure 3: ARTBP and truncated BPTT on influence balancing, n = 13,
p = 10. Note the log scale on the y-axis.

Truncated BPTT diverges even for truncation ranges largely above the
intrinsic temporal scale of the system. This is an expected result: due to
bias, truncated BPTT ill-balances temporal dependencies and estimates the
overall gradient with a wrong sign. In particular, reducing the learning rate
will not prevent divergence. On the other hand, ARTBP reliably converges
on every run.

Note that for the largest truncation L = 200, truncated BPTT finally
converges, and does so at a faster rate than ARTBP. This is because this
particular problem is deterministic, so that a deterministic gradient scheme
will converge (if it does converge) geometrically like O(e−λt), whereas ARTBP
is stochastic due to randomization of truncations, and so will not converge
faster than O(t−1/2). This difference would disappear, for instance, with
noisy targets or a noisy system.

9

1.4

1.5

1.6

1.7

1.8

1.9

2

2 4 6 8 10 12 14 16 18 20

Tr
ai
n
lo
ss

(b
its

pe
r
ch
ar
ac
te
r)

Training epoch

Truncated BPTT
ARTBP

(a) Learning curves on Penn Treebank
train set.

1.4

1.5

1.6

1.7

1.8

1.9

2

2 4 6 8 10 12 14 16 18 20

Va
lid

at
io
n
lo
ss

(b
its

pe
r
ch
ar
ac
te
r)

Training epoch

Truncated BPTT
ARTBP

(b) Learning curves on Penn Treebank
validation set.

Figure 4: Results on Penn Treebank character-level language modelling.

Character-level Penn Treebank language model. We compare ARTBP
to truncated BPTT on the character-level version of the Penn Treebank
dataset, a standard set of case-insensitive, punctuation-free English text
[MSM93]. Character-level language modelling is a common benchmark for
recurrent models.

The dataset is split into training, validation and test sets following
[MSD+12]. Both ARTBP and truncated BPTT are used to train an LSTM
model [HS97] with a softmax classifier on its hidden state, on the character
prediction task. The training set is batched into 64 subsets processed in
parallel to increase computing speed. Before each full pass on the training
set, the batched training sequences are split into subsequences:

• for truncated BPTT, of fixed size 50;
• for ARTBP, at random following the scheme (14) with α = 4 and
L0 = 50.

Truncated BPTT and ARTBP process these subsequences sequentially, 4 as
in Fig. 1. The parameter is updated after each subsequence, using the Adam
[KB14] stochastic gradient scheme, with learning rate 10−4. The biases of
the LSTM unit forget gates are set to 2, to prevent early vanishing gradients
[GSC00]. Results (in bits per character, bpc) are displayed in Fig. 4. Six
randomly sampled runs are plotted, to test reliability.

In this test, ARTBP slightly outperforms truncated BPTT in terms of
validation and test error, while the reverse is true for the training error
(Fig. 4).

4 Subsequences are not shuffled, as we do not reset the internal state of the network
between subsequences.

10

Even with ordinary truncated BPTT, we could not reproduce reported
state of the art results, and do somewhat worse. We reach a test error of
1.43 bpc with standard truncated BPTT and 1.40 bpc with ARTBP, while
reported values with similar LSTM models range from 1.38 bpc [CBLC16] to
1.26 bpc [Gra13] (the latter with a different test/train split). This may be due
to differences in the experimental setup: we have applied truncated BPTT
without subsequence shuffling or gradient clipping [Gra13] (incidentally, both
would break unbiasedness). Arguably, the numerical issues solved by gradient
clipping are model specific, not algorithm specific, while the point here was
to compare ARTBP to truncated BPTT for a given model.

7 Conclusion
We have shown that the bias introduced by truncation in the backpropagation
through time algorithm can be compensated by the simple mathematical
trick of randomizing the truncation points and introducing compensation
factors in the backpropagation equation. The algorithm is experimentally
viable, and provides proper balancing of the effects of different time scales
when training recurrent models.

8 Proof of Proposition 1
First, by backward induction, we show that for all t ≤ T , for all x1, . . . , xt−1 ∈
{0, 1},

E
[
δ˜̀t | X1:t−1 = x1:t−1

]
= δ`t (17)

where δ`t is the value obtained by ordinary BPTT (8). Here x1:k is short for
(x1, . . . , xk).

For t = T , this holds by definition: δ˜̀T = ∂`
∂s(sT , o

∗
T) = δ`T .

Assume that the induction hypothesis (17) holds at time t + 1. Note
that the values st do not depend on the random variables Xt, as they are
computed during the forward pass of the algorithm. In particular, the various
derivatives of F and ` in (11) do not depend on X1:T .

Thus

E
[
δ˜̀t | X1:t−1 = x1:t−1

]
=

P(Xt = 1 | X1:t−1 = x1:t−1)E
[
δ˜̀t | X1:t−1 = x1:t−1, Xt = 1

]
+ (18)

P(Xt = 0 | X1:t−1 = x1:t−1)E
[
δ˜̀t | X1:t−1 = x1:t−1, Xt = 0

]
(19)

= ct E
[
δ˜̀t | X1:t−1 = x1:t−1, Xt = 1

]
+ (1− ct)E

[
δ˜̀t | X1:t−1 = x1:t−1, Xt = 0

]
(20)

11

If Xt = 1 then δ˜̀t = ∂`
∂s(st, o

∗
t). If Xt = 0, then δ˜̀t = ∂`

∂s(st, o
∗
t) +

1
1−ct

δ˜̀t+1
∂F
∂s (xt+1, st, θ). Therefore, substituting into (20),

E
[
δ˜̀t | X1:t−1 = x1:t−1

]
= ∂`

∂s
(st, o∗t) + E

[
δ˜̀t+1 | X1:t−1 = x1:t−1, Xt = 0

] ∂F
∂s

(xt+1, st, θ)
(21)

but by the induction hypothesis at time t + 1, this is exactly ∂`
∂s(st, o

∗
t) +

δ`t+1
∂F
∂s (xt+1, st, θ), which is δ`t.

Therefore, E
[
δ˜̀t

]
= δ`t unconditionally. Plugging the δ˜̀’s into (7), and

averaging

EX1,...,XT
[g̃] =

T∑
t=1

EXt,...,XT

[
δ˜̀t

] ∂F
∂θ

(xt, st−1, θ) (22)

=
T∑
t=1

δ`t
∂F

∂θ
(xt, st−1, θ) (23)

= ∂LT
∂θ

(24)

which ends the proof.

References
[CBLC16] Tim Cooijmans, Nicolas Ballas, César Laurent, and

Aaron C. Courville. Recurrent batch normalization. CoRR,
abs/1603.09025, 2016.

[GMD+16] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot,
and Alex Graves. Memory-efficient backpropagation through
time. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett, editors, NIPS, pages 4125–
4133, 2016.

[Gra13] Alex Graves. Generating sequences with recurrent neural net-
works. CoRR, abs/1308.0850, 2013.

[GSC00] Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins.
Learning to forget: Continual prediction with LSTM. Neural
Comput., 12(10):2451–2471, October 2000.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Comput., 9(9):1735–1780, November 1997.

[Jae05] Herbert Jaeger. A tutorial on training recurrent neural networks,
covering BPPT, RTRL, EKF and the "echo state network" ap-
proach. 2005. http://minds.jacobs-university.de/sites/
default/files/uploads/papers/ESNTutorialRev.pdf.

12

http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

[MSD+12] Tomás̆ Mikolov, Ilya Sutskever, Anoop Deoras, Le Hai-Son, Ste-
fan Kombrink, and Jan C̆ernocký. Subword language modeling
with neural networks. 2012.

[MSM93] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics, 19(2):313–330,
1993.

[OTC15] Yann Ollivier, Corentin Tallec, and Guillaume Charpiat. Training
recurrent networks online without backtracking. arXiv preprint
arXiv:1507.07680, 2015.

[Sut13] Ilya Sutskever. Training Recurrent Neural Networks. PhD thesis,
Toronto, Ont., Canada, Canada, 2013. AAINS22066.

[TO17] Corentin Tallec and Yann Ollivier. Unbiased online recurrent
optimization. arXiv preprint arXiv:1702.05043, 2017.

[Wer90] P. Werbos. Backpropagation through time: what does it do
and how to do it. In Proceedings of IEEE, volume 78, pages
1550–1560, 1990.

13

	Related Work
	Background on recurrent models
	Anticipated Reweighted Backpropagation Through Time: unbiasedness through reweighted stochastic truncation lengths
	Choice of ct and memory/variance tradeoff
	Online implementation
	Experimental validation
	Influence balancing

	Conclusion
	Proof of Proposition 1

