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In this document we describe the spectral characterization of property (T ), that is, its
interpretation in terms of group-equivariant random walks. This leads to some efficient suffi-
cient criteria for property (T ), which can, notably, be algorithmically checked on a given group
presentation. This is but one of the numerous lines of recent progress of research on property
(T ) (see [V]).

Credit for the results presented here is to be shared between Garland, Pansu, Ballmann,
Swiatkowski, Żuk, Gromov. The presentation is much inspired by Étienne Ghys (see [Gh]).

We assume that the reader is already familiar with property (T ). If not, the only definition
we will use is the following: A finitely generated group G has property (T ) if and only if for any
finite generating set S of G, there exists a constant κ (Kazhdan constant) such that for any
unitary representation π of G in an Hilbert space H, either there is an invariant vector in H for
the action of G, or, for any u ∈ H of norm 1, there exists some s ∈ S such that ‖π(s)u− u‖ > κ.
That is, if every vector is displaced, then we know what the minimal displacement is. Checking
this property for one generating set S is enough to ensure property (T ).

In the following all groups are assumed to be finitely generated.

1 Invariant random walks

We begin by giving some definitions about G-invariant random walks on discrete sets and their
spectral properties.

Random walks on discrete sets. Usually, a discrete random walk (or Markov chain) is
given by a set X together with, for each x ∈ X, a probability measure µ(x → ·) so that
µ(x → y) represents the transition probability from x to y.

We want to study an invariant analogue of this notion. As we will work with finitely
generated groups we make further finiteness assumptions.

Definition 1 (G-invariant random walk) – Let G be a discrete group. A G-
invariant random walk is a random walk

(

X, (µ(x → ·))x∈X
)

such that:

• X is enumerable and X/G is finite;

• for each x ∈ X, there are only a finite number of y ∈ X such that µ(x → y) > 0;

• µ is G-invariant, that is, for all g ∈ G, for all x, y ∈ X, we have µ(gx → gy) = µ(x → y);

• the graph on X whose edges consist in pairs (x, y) ∈ X ×X such that µ(x → y) > 0 is
connected as an oriented graph.
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If moreover G acts freely on X, the random walk is said to be free.

The connectedness assumption discards some degenerate cases.
In particular, this allows to define a random walk µ̄ on X/G, by setting µ̄(x̄ → ȳ) =

∑

y µ(x → y) where x is some preimage of x̄ and y runs through all preimages of ȳ. Note that
by the finiteness assumption on the supports of µ(x → ·), the sum is finite. Invariance ensures
that this does not depend on the choice of x. This we will call the quotient random walk.

If we are given two G-invariant random walks (X,µ1) and (X,µ2) on the same G-set X,
then we can define their convolution product (or simply product) by

µ1 ∗ µ2 (x → y) =
∑

z∈X

µ1(x → z)µ2(z → y)

for all x, y ∈ X. (This sum is always finite.) It is immediate to check that this is a G-invariant
random walk as well. In particular we can define the n-th iterate µ∗n = µ ∗ · · · ∗ µ (n times)
of µ. Of course this corresponds to performing n steps of the random walk given by µ.

Let us give the most standard example.

Example 2 – Suppose that G is generated by some finite set S. Then the random walk on
G itself defined by µ(x → y) = 1

|S| if y = xs for some s ∈ S, and 0 otherwise, is a G-invariant
random walk, which we call the random walk on G arising from S. It can naturally be seen as
the simple random walk in the Cayley graph of G with generating set S.

Now it is well-known in group theory that dealing with symmetric generating sets (that is,
s−1 ∈ S when s ∈ S) is much easier, since for example the Cayley graph is unoriented in this
case. In our framework the analogous definition is the following.

Definition 3 (Symmetric random walk) – Let (X,µ) be an G-invariant random
walk. It is said to be symmetric with respect to ν if ν is a non-zero G-invariant measure on
X such that

ν(x)µ(x → y) = ν(y)µ(y → x)

for all x, y ∈ X. It is said to be symmetric if there exists such a non-zero measure ν.

In this situation, it is clear that ν is a stationary measure for the random walk given by µ
(recall a measure is called stationary if ν(x) =

∑

µ(y → x)ν(y)). In fact symmetry is stronger:
not only the weights of each point are stable under the random walk, but for each pair of points,
the mass exchanged between them is zero. The symmetric quantity ν(x)µ(x → y) can be seen
as a measure on the unoriented edges of the graph of points of X joined by µ.

Once again, the most natural situation is when X is G itself and the random walk is the
simple random walk with respect to a symmetric set of generators. Let us, however, give a
second example.

Example 4 – Let X̄ be a finite connected unoriented complex with fundamental group G
and let X be the universal cover of X̄. For x in X let ν(x) be the number of edges originating
from x, and let µ(x → y) be 1

ν(x) times the number of edges from x to y. Then (X,µ) is a
symmetric free G-invariant random walk with respect to ν, which we call the natural random
walk on X.

Note that this construction only depends on the 1-skeleton of X.
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This example shows that, even in the case of a free G-invariant random walk (when, as a G-
set, X is isomorphic to G×X/G), the G-invariant random walk can convey some homological
information in the ways that the random walk wheels around G/X with a non-trivial action
on the fibers.

Spectral properties of random walks. The speed of convergence of a symmetric random
walk to its stationary measure is controlled by spectral quantities, namely by the eigenvalues
of the averaging operator on ℓ2 functions on the space. Here we have a richer structure given
by the G-action. Namely, instead of considering all functions on our space X, we may decide
to keep only equivariant functions with respect to some representation of G. So we view the
G-equivariant random walk as a random walk on the quotient, with some richer structure in
the fibers.

Let H be a Hilbert space and let π be a unitary linear representation of the group G in
H. Let (X,µ) be a G-invariant symmetric random walk on X with respect to the measure
ν. A function f : X → H is said to be G-equivariant if for any x ∈ X and g ∈ G we have
f(gx) = π(g)f(x).

The usual situation when we deal with a random walk on a finite graph X̄ is simply the
case H = C with the trivial action on H and with X = X̄ ×G.

Let Eπ be the space of equivariant functions of X to H (which may be {0} if G does not
act freely enough). As G acts unitarily on H, the function ν(x) ‖f(x)‖2 is invariant on X, and
thus it is meaningful to sum it on X/G. This endows Eπ with a Hilbertian structure by setting

‖f‖2ν =
∑

x∈X/G

‖f(x)‖2 ν(x) =

∫

X/G
‖f‖2 dν

and of course

〈 f | g 〉ν =
∑

x∈X/G

〈 f(x) | g(x) 〉 ν(x) =

∫

X/G
〈 f | g 〉 dν

for each f, g ∈ Eπ.

In usual random walks on a graph there is an averaging operator on functions on the
graph (also equal to 1 minus the discrete Laplacian), whose spectrum controls the speed of
convergence to the possible stationary measure. We give analogous definitions here.

Let f ∈ Eπ be an equivariant function on X. The averaging operator M is defined by

Mf(x) =
∑

y∈X

µ(x → y)f(y)

for every x ∈ X. (Once again the sum is finite.) With obvious notations, we have Mµ1∗µ2
=

Mµ1
Mµ2

.
It is important to note but easy to check, using symmetry of µ, that M is a symmetric

operator for the Hilbertian structure on Eπ defined above. In particular, we can define the
spectrum of M . This spectrum is contained in [−1; 1].

Of course, if f is constant then it is stable by M . So for example if G acts trivially on H,
then 1 will lie in the spectrum of M . Similarly, for any group G there exists an invariant random
walk for which −1 is an eigenvalue of the averaging operator. Indeed, take X = {0, 1} × G
with G acting on G by left multiplication. Let S be some finite generating set of G, such that
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e ∈ S. For x = (a, g) ∈ {0, 1} × G, define µ(x → y) as 1/ |S| if y is of the form (1 − a, gs)
for some s ∈ S, and 0 otherwise. This is a G-invariant random walk, and its quotient on
{0, 1} is the Markov chain which exchanges 0 and 1 at each step. (We include e in S to ensure
connectedness.)

We finally arrive at the crux of the thing.

Definition 5 (G-invariant random walk with spectral gap) – Let G be a
discrete group and let (X,µ) be a G-invariant random walk which is symmetric with respect
to the measure ν. We say that this random walk has a spectral gap if there exists a number
σ < 1 such that for any unitary representation π of G into a Hilbert space H, the spectrum
of the averaging operator M acting on Eπ is included in the set [−1;σ] ∪ {1}, where Eπ is the
space of all equivariant functions from X to H, with the Hilbertian structure above.

The quantity 1− σ is called the spectral gap.
If, in the same circumstances, the spectrum of M is included in the set {−1}∪ [−σ;σ]∪{1}

then we say that this random walk has a double-sided spectral gap.

Of course it is equivalent to ask that, for any representation, there exists a spectral gap.
Indeed, if there is a sequence of representations such that the spectral gap tends to 0, then
the direct orthogonal sum of these has no spectral gap. So if for any representation there is a
spectral gap, then the spectral gap can be taken uniform on all representations.

G-invariant random walks versus ordinary random walks. Let us give two examples
of application of this definition.

If, in the definition of a G-invariant random walk with spectral gap, we restrict ourselves
to H = C with the trivial representation, then we get back the definition of the usual spectral
gap of the quotient random walk on X/G. Hence we get the following.

Proposition 6 – Let (X,µ) be a G-invariant symmetric random walk with spectral gap λ.
Then the spectral gap of the quotient random walk on X/G is at least λ. The same holds for
double-sided spectral gap.

In another direction, if we are given a set X with an action of G, we can define an ordinary
(non G-invariant) random walk on X with respect to some symmetric generating set S of G by
deciding that at each step, we pick some s ∈ S and we let it act on X. The spectral gap of this
ordinary random walk is controlled by the random walk on G with respect to this generating
set, using the representation of G in ℓ2(X).

Proposition 7 – Let G be a discrete group generated by a finite symmetric set S. Let X
be a set on which G acts transitively, and define the symmetric ordinary random walk µ on X
by setting

µ(x → y) =
1

|S|
|{s ∈ S, sx = y}|

for all x, y ∈ X. Suppose that the G-invariant random walk on G arising from S has spectral
gap λ. Then the spectral gap of the ordinary random walk (X,µ) is at least λ.

Proof – Let (G,µG) be the symmetric G-invariant random walk on G arising from the gen-
erating set S, which is symmetric with respect to the counting measure νG. Let π be the
action of G on ℓ2(X) given by π(g)(f)(x) = f(gx) for g ∈ G, f ∈ ℓ2(X), x ∈ X. For
f ∈ ℓ2(X), let f̄ be the function of Eπ defined by f̄(g) = π(g)f for g ∈ G. We have
〈

f̄ | ḡ
〉

νG
=

〈

f̄(e) | ḡ(e)
〉

ℓ2(X)
= 〈 f | g 〉ℓ2(X).
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For x ∈ X we have
((

Mf̄
)

e
)

(x) =
1

|S|

∑

s∈S

f̄(s)(x) =
1

|S|

∑

s∈S

f(sx)

and on the other hand

Mf(e)(x) = (Mf)(x) =
1

|S|

∑

s∈S

f(sx)

so that
〈

f̄ | Mf
〉

νG
= 〈 f | Mf 〉ℓ2(X). So the spectra of M acting on Eπ and M acting on

ℓ2(X) coincide. �

Criteria for the spectral gap. For random walks on finite graphs, it is well-known that
the spectral radius of the averaging operator controls the norm of the gradient of a function
(seen as a function of the edges) in terms of the norm of the function.

If f is an equivariant function on X, we can define its gradient df on X2 by df(x, y) =
f(y) − f(x). This will be an equivariant function again (for the diagonal action on X2). We
have two natural symmetric measures on X2, namely ν(x)ν(y) and µ(x, y)ν(x), but a priori
only the latter has a finite mass on X2/G (however see Proposition 9 for the case when ν has
finite mass). So we will define norms with respect to this latter measure, which can be seen as
a measure on the edges of the graph with vertices in X, edges being defined by positivity of
µ(x → y).

So let F : X2 → H be a G-equivariant function on X2, that is, satisfying F (gx, gy) =
π(g)F (x, y) for all g ∈ G, x, y ∈ X. We set

‖F‖2µ =
∑

(x,y)∈X2/G

‖F (x, y)‖2 µ(x → y)ν(x)

which is meaningful since the summand is G-invariant. Note that the values of F on couples not
connected by µ are not taken into account. We define 〈F | F ′ 〉µ accordingly for G-equivariant
functions on X2.

Now if f is an equivariant function on X, we can define its energy as

Eµ(f) =
1

2
‖df‖2µ = 〈 f | (Id−M)f 〉ν

where we put a factor 1/2 since each difference ‖f(x)− f(y)‖2 is counted once with ν(x)µ(x →
y) and once with ν(y)µ(y → x) (which are equal since µ is symmetric). If f is not constant
this is non-zero.

This quantity evaluates the differences of the values of f on points connected by one step
of the random walk. A natural question is: How is this related to the differences of the values
of f on points connected by k steps of a random walk? We would expect these variations
to be roughly k times greater. Indeed: since Eµ∗k(f) =

〈

f | (Id−Mk)f
〉

ν
, one gets (using

the spectral decomposition for M) that for any representation π, for any integer k > 1, there
exists a constant ck < k such that for any f in Eπ we have Eµ∗k(f) 6 ckEµ(f). Actually, the
constant ck is given by ck = (1 − σk)/(1 − σ) < k where σ is the greatest eigenvalue (apart
from 1) of M acting on Eπ.

Conversely, as (1− σk)/(1− σ) < k implies σ < 1, we get that in case ck does not depend
on the representation π, then the random walk µ has a spectral gap.

Proposition 8 – Let (X,µ) be a G-equivariant random walk. The following are equivalent:
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(i) (X,µ) has a spectral gap;

(ii) for any integer k > 2, there exists a constant ck < k such that for any unitary represen-
tation π of G, for any f ∈ Eπ we have Eµ∗k(f) 6 ckEµ(f);

(iii) there exists an integer k > 2 and a constant ck < k such that for any unitary represen-
tation π of G, for any f ∈ Eπ we have Eµ∗k(f) 6 ckEµ(f).

Moreover in this case, the largest eigenvalue σ (apart from 1) and the constants ck are linked
by the relation ck = 1 + σ + · · ·+ σk−1 6 1/(1− σ).

Let us switch back for some time to ordinary random walks. Let µ be an ordinary random
walk on the finite set X, symmetric with respect to measure ν. The energy Eµ(f) is the
average square variation of f on points joined by one step of the random walk µ. This could
be compared to the average square variation of f on all pairs of points, that is, to the variance
of f defined as

Var f =
1

2ν(X)

∑

x,y∈X

‖f(x)− f(y)‖2 ν(x) ν(y) = ‖f − Ef‖2ν

where Ef stands for the average of f under measure ν, which is well-defined since X is finite.
This is the ν-norm of the projection of f on the orthogonal of constant functions.

Let M be the averaging operator associated to µ and let σ be its greatest eigenvalue, apart
from 1. Since the eigenspace associated to the eigenvalue 1 of M is the space of constant
functions, for f a function of average 0 we get 〈Mf | f 〉µ 6 σ ‖f‖2ν . But, as we saw above, we

have Eµ(f) = 〈 f | (1−M)f 〉ν and so Eµ(f) > (1− σ) ‖f‖2ν . So we have shown the following.

Proposition 9 – Let (X,µ) be an ordinary random walk, symmetric with respect to mea-
sure ν. Suppose that this random walk has spectral gap λ. Then

Var f 6
1

λ
Eµ(f)

for any function f on X with values in a Hilbert space.

In other words, the spectral gap controls the maximum ratio between the average square
variation of f on points joined by one step of the random walk, and the average square variation
of f on all pairs of points. This can also serve as a definition of the spectral gap (as the optimal
constant in this inequality). This kind of inequality is usually termed a Poincaré inequality in
analysis (cf. [?]).

This inequality is valid for G-invariant random walks as well, provided Var f is defined as
the squared ν-norm of the projection of f to the orthogonal of the constants.

Last, let us mention a common trick used when a double-sided spectral gap is needed where
only a spectral gap is known. For any random walk µ we can define the random walk µ′ by
deciding that at each step, with probability 1/2 we do not move and with probability 1/2, we
perform the random walk µ. The associated averaging operator is Mµ′ = (1 +Mµ)/2, which
has non-negative spectrum. This is termed lazy random walk and we will use it crucially below.
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2 The spectral characterization of property (T )

Let us now state the theorem motivating all the above definitions.

Theorem 10 – Let G be a discrete group. The following are equivalent:

(i) G has property (T );

(ii) any G-invariant symmetric random walk has a double-sided spectral gap;

(iii) there exists a free G-invariant symmetric random walk with spectral gap.

Some lemmas. Before proceeding to the proof, we need to recall some basic facts on ordinary
random walks and geometry in Hilbert spaces.

Consider an ordinary random walk µ on a finite set X, which is symmetric w.r.t. some
measure ν. We can associate to it, as above, an averaging operator M on the space of all
complex functions on X. Then, it is well-known that there exists a number σ < 1 such that
for any complex-valued function f on X such that f is of zero mean (“orthogonal to the
constants”), we have 〈Mf | f 〉ν 6 σ ‖f‖2ν .

This immediately extends (with the same constant) to functions with values in some Hilbert
space H, simply by decomposing in a Hilbertian basis. Namely:

Lemma 11 – Let µ be an ordinary random walk on a finite set X, symmetric with respect to
measure ν. Let M be the associated averaging operator. Then there exists a constant σ < 1
such that, for any Hilbert space H, for any function f : X → H which is orthogonal to the
constant functions, we have 〈Mf | f 〉ν 6 σ ‖f‖2ν .

Second, we need a lemma about the norms of averages in Hilbert spaces.

Lemma 12 – Let u and u1, . . . , uk be vectors in a Hilbert space, all of them of norm 1. Let
a1, . . . , ak be positive numbers such that

∑

ai = 1. Suppose that there exists some i0 such
that ‖u− ui0‖ > ε. Then Re 〈u |

∑

aiui 〉 6 1− ai0ε
2/2, where Re denotes the real part.

Proof of the lemma – Using ‖x− y‖2 = ‖x‖2+‖y‖2−2Re 〈x | y 〉, we get Re 〈ui0 | u 〉 6
1− ε2/2.

Since all ui’s are of norm 1, we have Re 〈ui | u 〉 6 1 for any i. Thus, we have
∑

i aiRe 〈ui | u 〉 6
1− ai0ε

2/2. �

The squaring is clear on a picture: in the Euclidean plane, take u a unitary vector and u1, u2
two vectors on each side of u making the same small angle ε with it. Then ‖u− (u1 + u2)/2‖
is of order ε2/2.

Our next lemma is a simple exercise in using the arithmetico-geometric inequality 2ab 6

a2 + b2.

Lemma 13 – Let (νi)i∈I be a family of non-negative numbers. Let (µij)i,j∈I2 be a family
of non-negative numbers such that for any i we have

∑

j µij = 1. Assume furthermore that

νiµij = νjµji for any i, j. Let xi be a family of real numbers. Then
∑

ij νiµijxixj 6
∑

i νix
2
i .

Proof of Theorem 10 –
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(i) ⇒ (ii). Let G be a discrete group and let (X,µ) be a G-invariant symmetric random walk
with respect to measure ν.

We begin with spectral gap-ness instead of double-sided spectral gap-ness. We have to
prove that the averaging operator of this random walk has a spectrum included in [−1;σ]∪{1}
for some σ < 1.

Let S be a finite symmetric generating set of G. Let κ be a Kazhdan constant of G with
respect to S, that is, for any unitary representation π in the Hilbert space H without invariant
vectors, for any u ∈ H of norm 1, there exists s ∈ S such that ‖π(s)u− u‖ > κ.

Let p be the quotient map X → X/G. For i ∈ X/G let Xi = p−1(i) and choose once and
for all some base point xi ∈ Xi.

By assumption the graph on X whose edges are the pairs (x, y) with µ(x → y) > 0 is
connected. For each i ∈ X/G and s ∈ S we can thus find an integer ki,s such that the ki,s-step
transition probability µ∗ki,s(xi → sxi) is positive.

Now take k = maxi∈X/G,s∈S ki,s. Consider the lazy random walk µ′ associated to µ. Since

at each step this random walk has positive probability to stay in place, we have µ′∗k(xi →
sxi) > 0 for any i ∈ X/G, s ∈ S. Denote by λ = µ′∗k this random walk. Also set α =
mins∈S mini∈X/G λ(xi → sxi). By definition of λ this is positive.

Let π be a unitary representation of G on the Hilbert space H. Let f ∈ Eπ be a G-
equivariant function on X which is orthogonal to the constants in Eπ.

Let M be the averaging operator on Eπ associated to λ. Since λ = (µ/2 + 1/2)∗k, proving
a spectral gap for λ or µ is equivalent.

We want to show that there exists a constant σ < 1, independent of the representation π,
such that for any f ∈ Eπ orthogonal to the constants we have 〈Mf | f 〉ν 6 σ ‖f‖2ν .

Let F1 be the subspace of Eπ made of functions of X to H that are constant on each orbit
Xi (this may well be {0}). Since functions in Eπ are equivariant, if f ∈ F1 then for each x ∈ X,
the vector f(x) ∈ H is invariant under the action of G on H. So F1 is made of the functions
on X which, on each orbit Xi, are equal to some vector vi ∈ H fixed under the action of G on
H.

Let F2 be the orthogonal of F1 in Eπ. Let f ∈ Eπ. Decompose f = f1 + f2 with f1 ∈ F1,
f2 ∈ F2.

Now f1 is constant on each component Xi. So we can view f1 as a function f̄1 on X/G
with values in H. Let λ̄ be the quotient random walk on X/G. It is an ordinary random walk,
which is symmetric with respect to the measure ν̄. Let M̄ be the associated averaging operator
on X/G by π.

Let σ1 be the spectral gap of λ̄. Given that f1 is constant on each component Xi, unwinding
the definitions, one almost tautologically checks that

〈Mf1 | f1 〉ν =
〈

M̄f̄1 | f̄1
〉

ν̄

and so by Lemma 12 (spectral gap in X/G) we get

〈Mf1 | f1 〉ν 6 σ1
∥

∥f̄1
∥

∥

2

ν̄
= σ1 ‖f1‖

2
ν

which holds since f̄1 is orthogonal to the constants. This is the first and simplest half of the
job.
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Now for the f2 component. It is time to use property (T ). We want to show that

〈Mf2 | f2 〉ν 6 σ2 ‖f2‖
2
ν

for some constant σ2 < 1 independent of π.
By definition we have (Re denoting the real part)

〈Mf2 | f2 〉ν =
∑

i

Re

〈

∑

y∈X

λ(xi → y)f2(y) | f2(xi)

〉

ν(xi)

=
∑

i

Re

〈

∑

y∈Xi

λ(xi → y)f2(y) | f2(xi)

〉

ν(xi) +

∑

i

∑

y 6∈Xi

λ(xi → y)Re 〈 f2(y) | f2(xi) 〉 ν(xi)

6
∑

i

Re

〈

∑

y∈Xi

λ(xi → y)f2(y) | f2(xi)

〉

ν(xi) +

∑

i

∑

j 6=i

λ̄(i → j) ‖f2(xi)‖ ‖f2(xj)‖ ν(xi)

since on each Xi, the norm of f2 is constant.
Now fix i and consider the first term. Consider the space of functions f ∈ F2 restricted to

Xi: these functions take values in H and more precisely, by definition of F2, in the orthogonal
in H of the invariant vectors for the action of G on H. So we can apply property (T ) and the
Kazhdan constant given above: we have

‖f2(xi)− π(si)f2(xi)‖ > κ ‖f2(xi)‖

for some si ∈ S.
But by equivariance, π(si)f2(xi) is equal to f2(sixi). But by construction of λ, we have

λ(xi → sxi) > 0. Now apply Lemma 12 (after some renormalizations) and get

Re

〈

∑

y∈Xi

λ(xi → y)f2(y) | f2(xi)

〉

6

(

λ̄(i → i)− λ(xi → sixi)
κ2

2

)

‖f2(xi)‖
2

so that, reminding that α = mins∈S mini∈X/G λ(xi → sxi) > 0, we get from the above

〈Mf2 | f2 〉ν 6
∑

i

λ̄(i → i) ‖f2(xi)‖
2 ν(xi)−

ακ2

2

∑

i

‖f2(xi)‖
2 ν(xi) +

∑

i

∑

j 6=i

λ̄(i → j) ‖f2(xi)‖ ‖f2(xj)‖ ν(xi)

where it is important to remind that κ and α are defined independently of the representation
π at play.

Now applying Lemma 13 to the first and last terms leads to

〈Mf2 | f2 〉ν 6
∑

i

ν(xi) ‖f(xi)‖
2 −

ακ2

2

∑

i

ν(xi) ‖f(xi)‖
2
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hence the conclusion since by definition
∑

ν(xi) ‖f2(xi)‖
2 = ‖f2‖

2
ν .

So finally we can set σ = max(σ1, ακ
2/2) where σ1 comes from the random walk on X/G, κ

is a Kazhdan constant and α depends on the structure of the G-equivariant random walk; all of
this being independent of the representation π (but nevertheless, the decomposition f = f1+f2
actually depends on π).

This does not refer to the original random walk µ but to some iterate of the associated lazy
random walk, but as we said above, bounding the spectrum of the latter also bounds that of
the former.

The “σ1” part accounts for the structure of the random walk on X/G. It is the only one
present, for example, if G acts trivially on X. The “κ2” or “Kazhdan” part amounts for what
is going on with the G-action. This is the only one present, for example, if G acts transitively
(so that X/G is only one point).

Now for double-sided spectral gap-ness. The idea is to apply the above to the random walk
µ∗2, the spectrum of which is non-negative.

But the graph of points of X which can be connected by an even number of steps of µ need
not be connected, whereas we crucially used connectedness above. If this graph is connected,
then applying the above to µ∗2 immediately provides the desired evaluation of the negative
part of the spectrum for µ.

Now suppose this graph is not connected. Let x0 be any point of X; let C0 be the set of
points of X which can be reached from x0 in an even number of steps of the random walk µ,
and let C1 = X \ C0. Using G-invariance, it is easy to see that, for any g ∈ G acting on X,
either g stabilizes C0 and C1 or g exchanges them. This gives rise to a morphism ε from G to
{−1, 1}.

Thus, for any representation π we can define another one π̃ by twisting it by ε. The space
Eπ̃ is obtained from Eπ by changing the sign of the values of equivariant functions on C1. Since
one step of the random walk µ only connects points between C0 and C1, it is easy to see that
the spectrum of the averaging operator on Eπ̃ is exactly the opposite of that on Eπ. So in order
to control the negative part of the spectrum for the representation π, it is enough to apply the
above to the representation π̃.

This proves the first (and most delicate) implication of the theorem. We will see below
that when the random walk µ arises from some generating set of G, things become somewhat
simpler since we do not have to take some iterate or to decompose into different components.

(ii) ⇒ (iii). Clear (there exist some free G-invariant random walks!).

(iii) ⇒ (i). Let (X,µ) be a G-invariant random walk, symmetric with respect to measure ν,
such that G acts freely on X. Let σ be such that the spectrum of the averaging operator M
of µ on any representation is included in [−1;σ] ∪ {1}.

Let as above p be the projection from X to X/G and, for each i ∈ X/G, set Xi = p−1(i)
and choose some xi ∈ Xi.

As G acts freely on X, if x and y both belong to Xi the meaning of yx−1 is a well-defined
element of G. Let

S = {yx−1
j , j ∈ X/G, y ∈ Xj , ∃i ∈ X/G, µ(xi → y) > 0}

be a set of elements of G with the following property: if µ(xi → y) > 0, then y = sxj for some
s ∈ S, j ∈ X/G. By the finiteness assumption in the definition of G-invariant random walks,
this set is finite.
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Let π be a representation of G on the Hilbert space H without invariant vectors. As 1
is isolated in the spectrum of M it has to be an eigenvalue. A fixed point of M in Eπ is, by
connectedness of the graph of the random walk, a constant vector on X; but as there are no
invariant vectors in the representation π, there is no non-zero constant equivariant function on
X. So there is no eigenvector of M in Eπ associated to 1. Hence, the spectrum of M on Eπ is
included in [−1;σ].

As G acts freely on X, if for each i ∈ X/G we choose a vector vi ∈ H then this determines
a unique equivariant function on X by imposing f(xi) = vi.

For some ε > 0, let v ∈ H be a (S, ε)-invariant vector for the action of G. Define f in
Eπ by setting f(xi) = v for each i ∈ X/G and extending this definition equivariantly to X.
Now, by definition of S, for any i ∈ X/G, for any y ∈ X such that µ(xi → y) > 0 we have
‖f(xi)− f(y)‖ 6 ε ‖v‖. Hence after averaging, for any x ∈ X we have ‖Mf(x)− f(x)‖ 6 ε ‖v‖
and so

‖Mf − f‖2ν 6 ε2
∑

i

ν(xi) ‖v‖
2 = ε2 ‖f‖2ν

from which we deduce, using elementary Hilbertian geometry,

〈Mf | f 〉ν > (1− ε) ‖f‖2ν

hence 1− ε 6 σ, by definition of the spectrum of M .
So the representation π has no (S, ε)-invariant vectors for ε < 1 − σ, hence property (T )

for G.
This ends the proof of the theorem. �

Random walks arising from generating sets. All of this quite simplifies when the random
walk µ is a random walk on G arising from some finite symmetric set of generators.

Indeed, in this case, in the proof of the implication (i) ⇒ (ii) above we do not need to
consider lazy random walks, and we can take k = 1 so that λ = µ and α = 1/ |S|. Moreover,
in this case the quotient random walk is trivial. So for any unitary representation π and any
f ∈ Eπ orthogonal to the constants we get

〈Mf | f 〉ν 6
(

1− κ2/2 |S|
)

‖f‖2ν

where κ is a Kazhdan constant. So:

Proposition 14 – Let G be a group with property (T ), generated by a finite symmetric set
S. Let κ be a Kazhdan constant for G with respect to S. Then the G-equivariant random
walk on G arising from S has spectral gap at least κ2/2 |S|.

In the reverse direction, it is clear from the proof of (iii) ⇒ (i) that the spectral gap of the
random walk on G arising from S is a Kazhdan constant for S.

If G′ is a quotient of G and if S is a finite set generating G then we can also consider the
random walk on G′ arising from right multiplication by S. Then, using Proposition 7 we get

Proposition 15 – Let G be a group with property (T ), generated by a finite symmetric
set S. Let κ be a Kazhdan constant for G with respect to S. Let G′ be any quotient of G.
Then the random walk on the Cayley graph of G′ with respect to S has spectral gap at least
κ2/2 |S|

If G′ is infinite, then 1 and −1 cannot belong to the spectrum of the ordinary random walk,
and so the spectral gap provides a uniform control on the growth and cogrowth of all infinite
quotients of a Kazhdan group (cf. [?]).
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3 A spectral sufficient criterion for property (T )

Let us now state some sufficient criterion for property (T ). This criterion enables us to transfer
some spectral estimate on the bowls of radius 2 in a simplicial complex to the whole complex.

Let X be a simplicial complex and let x be a vertex of X. The link Lx of x in X in the
graph whose vertices are the vertices of X linked to x by some edge; there is an edge between
y and z in Lx if and only if xyz is a 2-face of X (if there are several such triangles we put as
many edges).

By the spectral gap of a graph we mean the spectral gap of the random walk in which
the transition probability between two vertices x and y is the number of edges joining x to y
divided by the degree of x (cf. Example 4).

Theorem 16 – Let X be a connected simplicial complex. Suppose that each vertex belongs
to some 2-face. Suppose moreover that for each x ∈ X, the link Lx of x is connected and has
a spectral gap greater than 1/2. Then, any discrete group G acting freely on X with finite
quotient has property (T ).

Thanks to this theorem, we get a criterion for property (T ) of a group with a given pre-
sentation, which depends only on the relations of length 3 in the presentation. In particular,
this criterion can be algorithmically checked.

Corollary 17 – Let G be a group generated by a finite symmetric set S, with e 6∈ S. Let
L(S) be the graph with vertex set S and in which {s, s′} is an edge if and only if s−1s′ ∈ S.
Suppose that L(S) is connected and has spectral gap greater than 1/2. Then G has property
(T ).

Proof of the corollary – Let 〈S | R 〉 be a presentation of G. Add to R all relations
of length 3 which hold in G (that is, which are consequences of R: this is still a presentation
of G). Consider the Cayley complex X0 of this presentation: the vertex set of X0 is G; the
edge set is G.S i.e. for each g ∈ G, s ∈ S there is an edge between g and gs; the face set
is G.R i.e. for each g ∈ G, for each r = s1 . . . , sk with si ∈ S, there is a face spanning the
points g, gs1, gs1s2, . . . , gs1 . . . sk = g. Define X by removing some 2-faces to this complex:
keep only those 2-faces which express a relation of length 3 in the generators (and, if several
2-faces share the same boundary, keep only one). By definition, G acts freely on X with finite
quotient. Now it is immediate to see that the graph L(S) of the statement is isomorphic to
the link at any point in X. (We have to exclude e from S since the link of a point does not
contain this point.) �

Remark 18 – It may not be easy, given a group presentation, to check whether or not
s−1s′ ∈ S for some s, s′ ∈ S. However, since a quotient of a group with property (T ) still has
property (T ), it is enough to apply the criterion above using only the relations of length 3 that
are explicitly in some given presentation of the group. That is, if adding only the edges (s, s′)
for which one has some way to check that s−1s′ ∈ S already gives a graph with spectral gap
greater than 1/2 then the group has property (T ).

Note that it is easy to obtain presentations with lots of relations of length 3, since any
presentation can be triangulated. Similarly, it is possible to ensure connectedness of L(S) by
replacing S by the set of words of length 1 and 2 on S. This criterion can be applied especially
to random groups, showing that “generic” groups with “enough” relations have property (T )
(cf. [Z]).

The value 1/2 given in these statements cannot be improved. Indeed, consider the tiling
of the Euclidean plane by equilateral triangles. The link of each point is a cycle of length 6,
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which has spectral gap 1/2 as can be checked. But the group of isometries of this tiling is
isomorphic to Z

2 for which property (T ) fails.

Proof of Theorem 16 – The idea is the following: perform a random walk µ in X in
which the transition probability from y to z is proportional to the number of triangles of X
containing y and z. This random walk is such that two points y and z belong to the link of
some point if and only if µ∗2(y → z) > 0; and (by definition of the links) they are joined by
an edge in some link if and only if they belong to the same triangle i.e. µ(y → z) > 0. So if
the spectral gaps of the links are greater than 1/2, then, by Proposition 9, the variance over
the points joined by µ accounts for more than half the variance over the points joined by µ∗2.
But this is a Poincaré inequality (Proposition 8), so the random walk has a spectral gap, hence
property (T ).

Namely, for x ∈ X let ν(x) be two times the number of triangles (2-faces) containing x. For
x, y ∈ X,x 6= y let µ(x → y) be 1/ν(x) times the number of triangles containing both x and
y. By construction, µ is a random walk on X, symmetric with respect to ν. It is G-invariant
since G acts on the simplicial complex X sending triangles to triangles. Given a starting point,
this random walk chooses some triangle containing this point and then jumps to one of the
two other vertices of this triangle (hence the factor 2).

The graph of points joined by one step of the random walk is connected. Indeed, suppose
to the contrary that there exist two points joined by an edge in X but not joined by a path
of triangles; in this case each point is isolated in the link of the other one, which contradicts
the connectedness assumption on the links (unless X is just two points with an edge, which is
further excluded by the assumption that any point belongs to some triangle).

Now let x ∈ X and consider points y, z in the link of x. We define an ordinary random walk
µx on Lx, symmetric with respect to some measure νx, by setting νx(y) equal to the number
of triangles containing x and y, and µx(y → z) equal to 1/νx(y) times the number of triangles
containing x, y and z, for y 6= z. By definition of edges in the link, this is simply the natural
random walk in the link.

Now suppose that each link Lx is connected, and let λ(x) be the spectral gap of the natural
random walk in Lx. By Proposition 9, since

∑

y νx(y) = ν(x) we have

1

ν(x)

∑

(y,z)∈Lx×Lx

‖f(y)− f(z)‖2 νx(y)νx(z) 6
1

λ(x)

∑

(y,z)∈Lx×Lx

‖f(y)− f(z)‖2 νx(y)µx(y → z)

for any function f from Lx to any Hilbert space.
It is clear that νx(y) = ν(x)µ(x → y) (where we extend νx and µx by 0 on points not in

Lx): these are different ways of writing the same number of triangles. So for any fixed y and
z we have

∑

x∈X

1

ν(x)
νx(y)νx(z) =

∑

x∈X

1

ν(x)
ν(y)µ(y → x) ν(x)µ(x → z) = ν(y)µ∗2(y → z)

which basically says that points y and z are connected by two steps of the random walk µ if
they both belong to the link of some point; similarly,

∑

x∈X

νx(y)µx(y → z) = ν(y)µ(y → z)

since the number of triangles containing y and z is the number of triangles containing x, y and
z for some x.
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So if we know that for any x we have λ(x) > λ, we can sum the inequality above for all
(x, y, z) ∈ (X ×X ×X)/G and get

∑

(y,z)∈X×X/G

‖f(y)− f(z)‖2 ν(y)µ∗2(y → z) 6
1

λ

∑

(y,z)∈X×X/G

‖f(y)− f(z)‖2 ν(y)µ(y → z)

for any G-equivariant function f into a Hilbert space with a action of G, or, in other words,

Eµ∗2(f) 6
1

λ
Eµ(f)

which means that, if λ > 1/2, we can apply the criterion of Proposition 8. We deduce that the
random walk has a spectral gap. Of course we conclude using Theorem 10. �
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