
Noncommutative geometry and particle
physics, after Alain Connes

Edited by Yann Ollivier

The following is directly taken from the very well-written Chapter
VI in Connes’ 1994 book Noncommutative geometry; we focus on the
relationship between noncommutative geometry and the standard model
of particle physics. I am not an expert of either, so use with caution.

This is only an old part of Alain Connes’ work on the subject, dating
back to 1994.

Summary. [For simplicity I excluded the quarks and strong interac-
tion.] Connes defines an algebraic extension of the notion of connection,
exterior calculus, curvature tensor etc., from differential geometry. There
is in particular a notion of connection for vector bundles over finite spaces.
The Yang–Mills functional can be defined for such objects. When starting
with a space V ×F where V is a (Riemannian) manifold and F = {a,b}
is a two-point space, and considering a vector bundle isomorphic to C
over a and C⊗C over b, connections over V ×F have a U(1) part, a U(2)
(instead of SU(2)) part and a discrete part given by two scalars (ϕ1,ϕ2).
The Yang–Mills functional applied to this connection yields a Lagrangian
very close to the one in the standard model (without quarks or strong
interaction), with a few less free parameters: in particular, the action as-
sociated with the discrete part of the connection gives exactly the quartic
Higgs potential together with its Yukawa coupling to the fermions, and
correctly predicts the hypercharge of the Higgs field (and fixes its mass
term). The “generations” of particles have a nice interpretation in this
model.

[TODO: inclusion of quarks (involves quaternions), and passage from
U(2) to SU(2) using the more recent papers by Connes.]

Reminder on the Yang–Mills action. Let ∂µ be a reference connec-
tion for a vector bundle E on a Riemannian manifold M. Let Aµ be a
linear form with values in GL(E) (e.g. for electromagnetism and spin-0
particles, E is the trivial 1-dimensional bundle, and Aµ is the vector
potential). Consider the connection

∇µ = ∂µ+ iAµ
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then its curvature is

∇[µ∇ν] = ∂[µ∂ν] + i∂[µAν] − A[µAν] =: ∂[µ∂ν] + iFµν

where ∂[µ∂ν] is just the curvature of the reference connection. Note that
for a 1-dimensional bundle E, the term A[µAν] vanishes.

The Yang–Mills action is the following functional of Aµ:

YM(Aµ) :=−1
4

Tr(F∗
µνFµν)

where the trace is taken in GL(E), and the metric is used to raise or lower
the components µ and ν of tensors over the base manifold.

Thus, if the reference connection is flat, this is just the norm of the
curvature form of the connection ∇, where the norm is defined using the
metric g on the base and the Hilbert–Schmidt norm in the fibers.

1 Non-commutative Yang–Mills action
The goal is to define this Yang–Mills action in a more general setting,
and to obtain something very close to the Lagrangian of the standard
model, by using a noncommutative-geometric version of the above.

Basic data.
An ∗-algebra A with unit, acting on a Hilbert space H . A selfadjoint
unbounded operator D over H , with compact resolvent. We assume that
for any f ∈A , the commutator [D, f ] is bounded.

We assume that the eigenvalues of D grow like λk ≈ k1/d for some
number d > 0.

Basic example (Dirac operator).
A is the commutative algebra of complex-valued smooth functions on a
compact spin manifold M, H is the Hilbert space of spinor fields over
M, and D = iγµ∇µ = i /∇ is the Dirac operator (with γ the gamma matrices
defining a spin representation, and ∇ the spin connection). In this case
for f ∈A we have (exercise)

[D, f ]= iγµ∂µ f = i /∂ f .

where ∂ f is the ordinary (de Rham) differential of f . Note that /∂ f is an
operator on H , but does not belong to A in general.

The Weyl estimate for the growth of the eigenvalues of the Laplacian
∆= D2 shows that the eigenvalues of D grow like λk ≈ k1/d with d = dim M.

So the operator [D, f ] acts on H as Clifford multiplication by i∂ f . Our
next goal is to define, from A and D, an object which will play the role of
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the de Rham complex of differential forms, based on this identification
between [D, f ] and ∂ f .

We could use the universal anticommutative differential algebra over
A ; however, we need an inner product on 1-forms and 2-forms that is
related to the metric structure, and we want an action on H by identifying
d f and [D, f ]. We proceed as follows.

Exterior calculus over A . Let Ω∗A be the universal differential
graded algebra over A , i.e. the largest algebra containing A and all
formal symbols d f for all f ∈A , with the relations d1= 0 and

d( f g)= (d f )g+ f dg

for all f , g ∈ A . Explicitly, elements of Ω∗A can be written as sums of
terms f0d f1 . . .d fk using the relation above.

One can extend d into a derivation on Ω∗A by imposing d2 = 0 and
d( fω)= (d f )ω+ f dω for all f ∈A , ω ∈Ω∗A . This implies

d(ωω′)= (dω)ω′+ (−1)degωωdω′

for all ω,ω′ ∈Ω∗A . Let us also set

(d f )∗ :=−d( f ∗)

(the reason being
∫

f ′g =−∫
f g′; and under the identification d f ↔ [D, f ]

below, we will have [D, f ]∗ =−[D, f ∗] indeed).
If A acts on a Hilbert space H as above, and D is a selfadjoint operator

on H , we would like to construct a differential algebra in which d f
identifies with [D, f ] because the latter is Clifford multiplication by i∂ f .
This can be done by a quotienting procedure as follows.

We can define a morphism of A -∗-algebras1

π :Ω∗A →L(H )

by sending d f to [D, f ]. Unfortunately, π(ω)= 0 does not in general imply
π(dω)= 0 so that the image does not have a differential algebra structure2

(in particular [D, ·] does not satisfy [D, [D, ·]]= 0 in general).
1This works because the defining relations d1 = 0 and d( f g) = . . . of the universal

differential A -algebra are satisfied by [D, ·].
2For instance, π(Ω1A ) contains the elements of the form ∑

f i[D, g i]. One might be
tempted to set d( f [D, g])

?
:= [D, f ][D, g] but this is ill-defined. Indeed, in the basic example,

we have f ∂g+ g∂ f = ∂( f g) so that we have f [D, g]+ g[D, f ]= 1.[D, f g] in π(Ω1A ). Thus, the
decomposition of an element as a sum ∑

f i[D, g i] is not unique; the definition above would
yield [D, f ][D, g]+ [D, g][D, f ]= [D,1][D, f g]= 0 but [D, f ][D, g]+ [D, g][D, f ] does not act on
spinors as 0 (by Clifford calculus, it acts as pointwise multiplication by −2gµν∂µ f ∂νg).
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Let Jk
0 := kerπ∩ΩkA , and let3 J0 := ⊕

Jk
0 ⊂ kerπ. It is a graded two-

sided ideal of Ω∗A . Let J = J0+dJ0, now J is stable by d and is (exercise)
still a graded two-sided ideal of Ω∗A . Set

Ω∗
D :=Ω∗A /J

then we have
Ωk

D 'π(ΩkA )/π(d(kerπ∩Ωk−1A )).

By construction Ω∗
D inherits the differential graded algebra structure

from Ω∗A . So the derivation d is still well-defined, and now coincides
with [D, ·], i.e.

d( f0[D, f1][D, f2] . . . [D, fk])= [D, f0][D, f1][D, f2] . . . [D, fk]

using the identification above of Ωk
D as a quotient of π(ΩkA )⊂L(H ).

Assume that A acts faithfully on H (ie A →L(H ) is injective). Then
Ω0

D 'A and Ω1
D ' {

∑
f i[D, g i]}⊂L(H ). So in that case both Ω0

D and Ω1
D sit

in L(H ), and d f ∈Ω1
D is exactly [D, f ]. So in that

In π(ΩkA )⊂L(H ), we can define the inner product

〈T1,T2〉k :=Trω
(
T∗

1 T2 |D|−d
)

with Trω the Dixmier trace4. After quotienting and completion, this
defines an inner product on Ωk

D , which we will reuse later.

Proposition 1.
In the basic example, the complex Ω∗

D is canonically isomorphic to the de
Rham complex, and the scalar product above is, up to a factor c(d), equal
to 〈ω,ω′〉 = ∫

Mω∧∗ω′.
3My edition of Noncommutative geometry states that J0 = kerπ, but this is not true

in general. For instance, in the basic example, kerπ will contain elements of the form
d f dg+dgd f − c with c = 2〈∂ f ,∂g〉 (the Clifford relation), which do not lie in J0. Using kerπ
instead of J0 results in a smaller object in the end, not equal to the de Rham complex in
the basic example.

4By definition, the Dixmier trace Trω(T) of a compact operator T is
limN→∞ 1

log N
∑

k6N µk with µk the eigenvalues of |T| := (T∗T)1/2, arranged in de-
creasing order. Note that ∑

k6N µk = sup{
∥∥T pE

∥∥
1 , dimE = N} with pE the orthogonal

projector onto E. The Dixmier trace is a trace, and, in particular, does not depend on the
choice of the scalar product in H .

Here the f i and [D, f j] have been assumed to be bounded, and the eigenvalues of D
have been assumed to grow like k1/d , so that the limit exists.

In the basic example the Weyl asymptotic for the spectrum of ∆= D2 implies:

Proposition.
Let f be a smooth function on the compact d-dimensional spin manifold M. Then

∫
M f =

c(d)Trω( f |D|−d), with c(d)= 2d−[d/2]πd/2Γ(d/2+1).
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Let us prove, for instance, that d f dg =−dgd f in Ω2
D . As operators on

H , we have ∂( f g)= f ∂g+ g∂ f , so that d( f g)− f dg− gd f ∈ kerπ∩Ω1A . Now
d(d( f g)− f dg− gd f ) =−d f dg−dgd f in Ω∗A , so by construction this will
vanish in Ω2

D .

Algebraic vector bundles and connections. The sections of a vector
bundle over a manifold M form a module over the algebra A of smooth
functions on M, and this module is finitely generated and projective5

(Swan’s theorem). Conversely, every such finitely generated projective
A -module has this form.

Moreover, given a Hermitian vector bundle over M, the pointwise
scalar product of two sections of this bundle gives a function on M, i.e.
an element of A .

Definition 2 (Hermitian bundles).
Let E be a finitely generated projective right module over A . A Hermitian
structure on E is a sesquilinear form E×E →A such that6:

1. 〈vf ,wg〉 = f ∗〈v,w〉g ∀ f , g ∈A , v,w ∈ E
2. 〈v,v〉> 0 ∀v ∈ E
3. E is self-dual for 〈·, ·〉.

Definition 3 (Connections).
A connection on E is a C-linear map ∇ : E → E⊗A Ω

1
D satisfying

∇(vf )= (∇v) f +v⊗d f

for all v ∈ E and f ∈A . The connection is said to be compatible (with the
Hermitian structure in E) if

d(〈v,w〉)=−〈∇v,w〉+〈v,∇w〉

in Ω1
D , for all v,w ∈ E.

(The minus sign comes from sesquilinearity and the fact that (d f )∗ =
−d( f ∗) in Ω1

D .)
If ∇ is an ordinary Riemannian connection, then i∇ is a compatible

connection in this sense.
One checks that one can extend the connection ∇ to higher degrees:

let E∗
D = E⊗A Ω

∗
D , and set

∇(v⊗ω) := (∇v)ω+v⊗dω

5A projective module is a module E such that there exists E′ such that E⊕E′ is free.
For instance, the tangent bundle of a manifold in Rn is projective because adding to it
the normal bundle makes it free (turns it into a direct product bundle).

6For the second condition we would need to define positivity in ∗-algebras, which we
omit as we never use it here.
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for v ∈ E, ω ∈Ω∗
D . Then, for ξ ∈ Ek

D , one has

∇(ξω)= (∇ξ)ω+ (−1)kξdω

and then, the same computation as for Riemannian curvature yields that
∇2 : E → E⊗A Ω

2
D is “pointwise” i.e. A -linear (actually Ω∗

D-linear):

∇2(ξ f )= (∇2ξ) f

so that the operator ∇2 can be seen as an element θ ∈HomA (E,E⊗A Ω
2
D).

Now, E carries a Hermitian structure, which provides a Hilbert–
Schmidt norm on HomA (E,E) (which is finite since E is of finite rank);
and we defined an inner product on Ω2

D above (using the Dixmier trace);
together these define an inner product on HomA (E,E⊗A Ω

2
D). Thus we

can set
YM(∇) := ‖θ‖2

HomA (E,E⊗AΩ
2
D )

as desired. [So far I have not used the compatibility of the connection,
which is used to prove gauge invariance, i.e. “parallel transport is an
isometry”.]

Note that if we replace D by λD for some λ ∈R, we have to replace ∇
with λ∇, and the Yang–Mills functional gets multiplied by λ4−d.

Proposition 4.
In the basic example, with E a Hermitian vector bundle over M and ∇ a
compatible connection on E, the Yang–Mills functional YM(∇) is equal, up
to a factor c(d), to the integral over M of the square norm of the ordinary
curvature tensor of ∇.

Trivial one-dimensional bundle and electromagnetism. The triv-
ial 1-dimensional bundle is given by E =A (in the basic example, C-valued
functions over the manifold). In this case, the map d from E = A to
E⊗AΩ

1
D =Ω1

D given by f 7→ d f is a connection, and so is d+V for any fixed
“vector potential” V ∈Ω1

D . The connection d+V is compatible if and only
if V =V∗. Its curvature is equal to dV +V 2 ∈Ω2

D. Beware that even if A

is commutative, the term V 2 may not vanish in Ω2
D—this requires both

that A be commutative and that f dg = dg f in Ω1
D .

Let us rewrite the electromagnetic action in the current language.
Here we have E = A = C∞(X1,C) the trivial bundle of smooth functions
over X1. Let ∂ be the usual differential on functions on X1. Let V be a
real-valued 1-form on X1 (electromagnetic vector potential) and consider
the connection ∇µ := ∂µ+ iVµ. Then i∇ is indeed a connection in the sense
of Definition 3, where we note that Ω1

D identifies to usual 1-forms by
d f ∈ Ω1

D ↔ i∂ f . In this situation, we have d( f g) = f dg + gd f and this,
together with commutativity, implies that the term V 2 vanishes.
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Fermionic part of the action. Here we identify A with its image in
L(H ). The action of f on ψ ∈H is denoted f .ψ.

Given the vector bundle E, fermions over E are sections of E⊗A H .
Let endow E⊗A H with the inner product

〈v⊗ψ,v′⊗ψ′〉 := 〈ψ,〈v,v′〉.ψ′〉.

Given a connection ∇ over the A -module E, one extends D into an
operator /∇ acting on E⊗A H by

/∇(v⊗ψ) :=∇v.ψ+v⊗Dψ

for v ∈ E, ψ ∈ H , where the first multiplication uses the facts that ∇v ∈
E⊗A Ω

1
D and that Ω1

D ⊂L(H ). Using that d f acts on H as [D, f ], we check
that /∇(vf ⊗ψ)= /∇(v⊗ fψ) so this is well-defined.

Moreover, if ∇ is compatible, then /∇ is selfadjoint.
We then define a Lagrangian for pairs (∇,Ψ) as

L (∇,Ψ) :=λYM(∇)+〈Ψ, /∇Ψ〉

for ∇ a compatible connection and Ψ ∈ E⊗A H . Here λ ∈R is a coupling
constant.

Note that the Yang–Mills term is the curvature of ∇ as a connection
on the bundle E, not as an operator on spinors E⊗H .

2 Examples
Ultimately, we will consider a space X = X1 × X2 where X1 is a spin
manifold, and X2 is a finite set; A will simply be the set of functions of
X . A connection will thus have a continuous part identical to a usual
Yang–Mills connection, and a discrete part akin to a discrete derivative.
As usual the continuous part of the connection will be the gauge fields;
the discrete part of the connection will describe the Higgs field, which
thus appears as a discrete gauge field.

We begin with the case of a two-point space alone.

2.1 Two-space point and quartic potential
Let X = {a,b} be a two-point space, and let A =C⊕C be the set of functions
on X . Let H = Ha ⊕Hb be a direct sum of some Hilbert spaces over a
and b, with the obvious action of A by scaling on each component.
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Exterior calculus. For f ∈A , one would like to think of d f as a discrete
derivative, so one would like to define D such that d f = [D, f ] acts on H

in a way related to f (b)− f (a). This is possible by intertwining a and b by
setting

D =
(

0 M∗

M 0

)
where M : Ha →Hb is some linear operator (e.g., the identity if Ha =Hb).
Then we have

d f = [D, f ]=
(

0 ( f (b)− f (a))M∗

( f (a)− f (b))M 0

)
.

The algebra A is generated by 1 and 1a with 1(a)= 1(b)= 1, 1a(a)= 1,
1a(b)= 0. We have d1= 0 and d(1a)= ( 0 −M∗

M 0
)
. Thus the set of 1-forms Ω1

D

is the set gd(1a) for g ∈A , i.e., the set
(

0 −g(a)M∗
g(b)M 0

)
.

The set of 2-forms Ω2
D is generated by d1ad1a = (−M∗M 0

0 −MM∗
)

so that
2-forms are the matrices gd1ad1a =

(−g(a)M∗M 0
0 −g(b)MM∗

)
. Note that if M 6= 0

the map sending d f (as an element of the universal differential algebra
Ω∗A ) to [D, f ] is injective over Ω1, so that there is no quotient involved in
the definition of Ω2

D; so Ω2
D sits in L(H ) and the norm on Ω2

D is just the
usual Hilbert–Schmidt norm7.

Discrete connections. Let E = Ea ⊕Eb be a vector bundle over X =
{a,b}, with the obvious action of A by scaling on each component. Keep
the space H and the operator D = ( 0 M∗

M 0
)

as above. Connections are
C-linear maps E → E⊗A Ω

1
D, where we recall that Ω1

D consists of all the
operators

(
0 λM∗
µM 0

)
with λ,µ ∈C. Generically, the action of a connection ∇

on the section (ξa,ξb) ∈ E can be written as

∇(ξa,ξb)=
(

0 (Φabξb −ξa)⊗M∗

(Φbaξa −ξb)⊗M 0

)
whereΦab, Φba are C-linear maps from Eb to Ea and Ea to Eb, respectively.
∇(ξa,ξb) is an element of E⊗A Ω

1
D with Ω1

D a set of matrices on H , so the
matrix above is a 2×2 matrix sending vectors h =

(
ha
hb

)
∈ H to vectors

in E⊗A H = (Ea ⊗Ha)⊕ (Eb ⊗Hb); hence the coefficient in the first row,
second column must send Hb to (Ea⊗Ha), etc. The constraint for ∇ to be
compatible yields Φab =Φ∗

ba.
This represents the idea that connections are ways to take derivatives

between infinitely close vector spaces Ea and Eb, with Φba the Christoffel
symbols in the direction from b to a.

7We use the usual trace instead of the Dixmier trace in finite dimension.
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Setting ζa = ξa −Φabξb and ζb = Φbaξa − ξb, we see that ∇ξ = ζ⊗d(1a)
where d(1a) = ( 0 −M∗

M 0
)

as before. Thus ∇∇ξ = (∇ζ)d(1a). So we find the
curvature of ∇ to be

∇2 =
(
(ΦabΦba − IdEa )⊗M∗M 0

0 (ΦbaΦab − IdEb )⊗MM∗
)
.

Compare this to the intuition of curvature as parallel-transporting along
a small loop (from a to b then back) and comparing to the original value.

Discrete Yang–Mills action. Let us compute the action

L(∇,Ψ)=YM(∇)+〈Ψ, /∇Ψ〉

where Ψ is a (fermionic) section in E⊗A H .
Taking the (Hilbert–Schmidt) square norm of the curvature yields

YM(∇)=
(
2

∥∥ΦΦ∗∥∥2
HS −4‖Φ‖2

HS +na +nb

)∥∥M∗M
∥∥2

HS

where na = dimEa, nb = dimEb, and Φ is indifferently Φab or Φba. Note
the quartic dependence on Φ.

Now for the fermionic part of the action. Fermions are sections of
E ⊗A H ; it is enough to compute 〈Ψ′, /∇Ψ〉 for Ψ = ξa ⊗ψa + ξb ⊗ψb with
ξ a section of E and ψ a section of H , and likewise for Ψ′. We have
/∇Ψ= (∇ξ).ψ+ξ⊗Dψ and since D = ( 0 M∗

M 0
)

we simply find

/∇Ψ=
(
Φ∗ξb ⊗M∗ψb
Φξa ⊗Mψa

)
with Φ=Φba, so that

〈Ψ′, /∇Ψ〉 = 〈Φξ′a,ξb〉〈Mψ′
a,ψb〉+〈ξ′b,Φξa〉〈ψ′

b, Mψa〉.

Take for instance the case of the trivial vector bundle E =A (or, more
exactly, E = Ca ⊕Cb where Ca, Cb are 1-dimensional Hermitian spaces
isomorphic to C but with no preferred isomorphism). Then compatible
connections are parametrized by a single complex number ϕ ∈ C (well-
defined only up to phase) as

∇ f =
(

0 (ϕ∗ f (b)− f (a))M∗

(ϕ f (a)− f (b))M 0

)
.

Applying the above we simply find

YM(∇)= 2
(∣∣ϕ∣∣2 −1

)2
Tr((M∗M)2)
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which is a quartic potential. For the fermionic part we have /∇=
(

0 ϕ∗M∗
ϕM 0

)
so that we find

〈ψ, /∇ψ〉 = 2Re(ϕ〈ψb, Mψa〉)
which is of Yukawa type.

As a second example, if na = 2 and nb = 1, we have Φab = (ϕ1
ϕ2

)
so that

the connection is given by a pair (“doublet”) of complex numbers. Then
ΦbaΦab =

∣∣ϕ1
∣∣2 + ∣∣ϕ2

∣∣2 so that

YM(∇)=
(
2

(∣∣ϕ1
∣∣2 + ∣∣ϕ2

∣∣2)2 −4
(∣∣ϕ1

∣∣2 + ∣∣ϕ2
∣∣2)

+3
)∥∥M∗M

∥∥2
HS .

In this case fermionic sections Ψ ∈ Ea ⊗Ha +Eb ⊗Hb are represented by
a pair (“doublet”) (ψa1,ψa2) together with a “singlet” ψb, and

〈Ψ, /∇Ψ〉 = 2Re
(
ϕ1〈Mψa1,ψb〉+ϕ2〈Mψa2,ψb〉

)
so that ψb is coupled to both ψa1 and ψa2.

2.2 Product of a manifold and two points
Let V be a compact d-dimensional Riemannian spin manifold, and F =
{a,b} a two-point space as above. Let HV be the space of spinors on V ,
with DV the Dirac operator. Let HF = HFa ⊕HFb as above, and let DF
be the operator acting on HF by

( 0 M∗
M 0

)
as before. Let AV , AF be the

(commutative) algebra of complex functions on V and F.
Set A :=AV ⊗AF and H :=HV ⊗HF =HV ⊗HFa ⊕HV ⊗HFb. Let

D := DV ⊗ Id+γ5 ⊗DF

where γ5 is the “fifth gamma matrix”8 or “orientation Z/2-grading” acting
on HV .

Exterior calculus. Let f = ( fa, fb) ∈A , where fa and fb are both func-
tions over the manifold V . Then one checks that

d f = [D, f ]=
(

i /∂ fa ⊗ Id ( fb − fa)γ5 ⊗M∗

( fa − fb)γ5 ⊗M i /∂ fb ⊗ Id

)
8The map γ from a vector space E to the algebra of operators on H extends to ∧d E;

the matrix γ5 is the image of the positively-oriented unit element of ∧dE with E the
cotangent space to the spin manifold. If e1, . . . , ed is any positively-oriented orthonormal
basis of E, then γ5 is equal to γ(e1) · · ·γ(ed).

The main point of γ5 is that it anticommutes with DV , so that D2 = D2
V ⊗ Id+Id⊗D2

F
as is expected from the behavior of Dirac operators under direct products. It moreover
bears an analogy with the direct product of differential algebras, where one must define
d(ω1 ⊗ω2)= dω1 ⊗ω2 + (−1)degω1ω1 ⊗ω2.

One could of course start with DV ⊗Id+Id⊗DF and apply the general construction, but
this would imply drastic quotienting in the definition of the space ΩD .
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acting on H1 ⊗H2a ⊕H1 ⊗H2b. Consequently, the set of 1-forms Ω1
D =

{
∑

g id f i} is the set of all operators of the form(
iωa ⊗ Id δaγ5 ⊗M∗

δbγ5 ⊗M iωb ⊗ Id

)
where δa and δb are arbitrary functions on the manifold V , and ωa and
ωb are (the Clifford image of) arbitrary 1-forms on V .

Let us now turn to Ω2
D . A priori, elements of Ω2

D can be written as(−αa ⊗ Id+ha ⊗M∗M iγ5βa ⊗M∗

iγ5βb ⊗M −αb ⊗ Id+hb ⊗MM∗
)

where ha and hb are functions on V , βa and βb are (the Clifford image
of) 1-forms on V , and αa and αb are degree-2 elements of the Clifford
bundle over V . However, the definition of Ω2

D involves a quotient by
by d(kerΩ1A →Ω1

D). In the case of a manifold, we have seen that this
quotient produces the de Rham complex. This means that αa and αb
are ordinary 2-forms on V—i.e., degree-2 elements of the Clifford bundle
quotiented by functions on V . In particular, if M∗M is a multiple of the
identity, the functions ha and hb above will be absorbed by the quotient
as well.

So from now on we assume MM∗ 6=λId. Let (MM∗)0 denote the projec-
tion of MM∗ onto the orthogonal of {λId} (i.e. the traceless part of MM∗).
Thus elements of Ω2

D are described as(−αa ⊗ Id+ha ⊗ (M∗M)0 iγ5βa ⊗M∗

iγ5βb ⊗M −αb ⊗ Id+hb ⊗ (MM∗)0

)
where αa, αb are usual 2-forms on V , βa, βb are 1-forms and ha, hb are
functions.

In this computation, we have implicitly used the commutation relation of γ5
with /∇ f . If we had used something else instead of γ5 the space Ω2

D would be less
intuitive.

Indeed, differentiating d( f g)= (d f )g+ f dg we find 0= d((d f )g)+d f dg in Ω2
D ;

computing explicitly, we find d((d f )g)+d f dg =
(

(−∂a f ∂a g−∂a g∂a f )⊗Id 0
0 (−∂b f ∂b g−∂b g∂b f )⊗Id

)
so that we put no more relations in ΩD than the de Rham complex, but the off-
diagonal terms would not vanish if we used 1 instead of γ5.

Proposition 5.
The square norm of an element in Ω2

D as above is given by 1/c(d) times∫
V

(
na ‖αa‖2 +nb ‖αb‖2)+tr(M∗M)

∫
V

(∥∥βa
∥∥2 +∥∥βb

∥∥2
)
+tr

(
(M∗M)2

0
)∫

V

(‖ha‖2 +‖hb‖2)
with na = dimHFa, nb = dimHFb and (M∗M)0 the trace-free part of M∗M.
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Connections and curvature. A vector bundle E on X = V × {a,b} is
given by two ordinary vector bundles Ea and Eb on V . A connection on
X is given by two connections ∇a and ∇b on Ea and Eb together with Φab
and Φba as before for each point of V , so that Φab is a section of E∗

b ⊗V Ea
and likewise for Φba.

Explicitly, if ξ= (ξa,ξb) is a section of E, its derivative ∇ξ is given by

∇ξ=
(

i∇aξa ⊗ Id γ5(Φabξb −ξa)⊗M∗

γ5(Φbaξa −ξb)⊗M i∇bξb

)
.

To compute the curvature of such a connection, one computes ∇2ξ by
decopmosing ∇ξ into elements of the form ζ⊗d f with ζ a section of E. In
the end the curvature is

∇2 =
(−∇2

a ⊗ IdH2a +(ΦabΦba − IdEa )⊗ (M∗M)0 −iγ5∇Φab ⊗M∗

−iγ5∇Φba ⊗M −∇2
b ⊗ IdH2b +(ΦbaΦab − IdEb )⊗ (MM∗)0

)
where the connection acts on Φab by the usual extension of connections to
tensors, i.e., ∇Φab = (∇∗

b ⊗1+1⊗∇a)Φab seeing Φab as a section of E∗
b⊗V Ea

over the manifold V , and likewise for Φba.
From this and Proposition 5 the computation of the action is straight-

forward. The terms obtained are:

• na and nb times, respectively, the usual Yang–Mills terms for ∇a
and ∇b.

• The quartic term

(2
∥∥ΦΦ∗∥∥2

HS −4‖Φ‖2
HS +dimEa +dimEb)

∥∥(M∗M)0
∥∥2

HS .

• A kinetic Φ term

2gµνTr(∇µΦab∇νΦba) ‖M‖2
HS

• The fermionic term is obtained from /∇=
( i /∇a⊗IdHFa γ5Φab⊗M∗

γ5Φba⊗M i /∇b⊗IdHFb

)
acting

on E⊗A HV ⊗A HF , where in the usual way /∇a =∇aµ⊗γµ+Id⊗γµ∂aµ
acts on the Ea-valued spinors Ea ⊗HV over V , and likewise for
/∇b. One gets the usual kinetic terms for E-valued spinors, plus
Yukawa-type terms coupling the a and b components using Φab⊗M.

Standard model without quarks. Let us take EFa =C and EFb =C+C.
Let us also take dimHFa = dimHFb = N, the number of generations in
the standard model. Remember that HV is just the space of spinors on V .
Now fermionsΨ ∈ E⊗A HV ⊗A HF are given by (ψa, (ψb1,ψb2)) where each
ψ is made of N spinors on V . We leave the operator M unspecified. The N
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components of ψa are identified with the right-handed leptons (electron,
muon, tau). The N components of ψb1 are the left-handed neutrinos, and
the N components of ψb2 are the left-handed electron, muon, tau.

The fiber above a is 1-dimensional; thus, the connection ∇a can be
written as ∇a = ∂a+ iβ where β is a one-form on V (vector potential). This
connection is compatible (with the inner product in C, i.e., with the U(1)
gauge group) if and only if B is real.

The fiber above b is 2-dimensional (fiber C2). Thus we can write
∇b = ∂b + iω where ω is a self-adjoint 2×2 matrix of 1-forms on V (the
Christoffel symbols of ∇b).

The discrete part of the connection is given by a vector Φba = (ϕ1,ϕ2)
representing the ways to send C to C+C, with Φab =Φ∗

ba. The action of
the connection ∇ on Φba is by ∇= ∂+ iω− iβ.

If one sets
B :=−β W := 2ω−β

one finds that the various couplings reproduce those observed in the
standard model with the correct values of the hypercharges9.

Note that since the image of Φba in C2 is one-dimensional, the part
of ψb which is orthogonal to Φba does not interact with ψa. By definition
this part of ψb is the (massless) neutrino, while the part of ψb collinear
with Φba is the massive lepton. The matrix M represents the interactions
between generations; by diagonalizing M one gets three eigenvectors
which are the electron, muon and tau.

Note that since the quartic term (giving the Higgs mass) depends on
MM∗ while the Yukawa term (giving the lepton masses if the Higgs field
is fixed) depends on M, there is a relationship between the mass of the
Higgs field and that of the leptons; namely, if one rescales ϕ so as to fix
the degree-2 term in ϕ and then rescales the lepton basis so as to fix the
lepton masses, then the degree-4 term in ϕ4 is fixed.

The way we have defined compatible connections, the gauge group is
U(1)×U(2) (not U(1)×SU(2)). This means that there are too many degrees
of freedom for ω compared to what is known. One has to impose the
additional constraint Tr(ω)=β. [This seems to have been fixed in more
recent versions of the model.]

All this is Euclidean, not Lorentzian—indeed we have used an L2

norm on spinors, which is not Lorentz-invariant.

Quarks. To come.

9Identification of β and ω with the usual fields is only up to scaling; so actually it is
the relationship between the hypercharges of left-handed leptons, right-handed leptons
and Higgs field which is recovered, i.e. only the hypercharge of the Higgs.
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