Noncommutative geometry and particle
physics, after Alain Connes

Edited by Yann Ollivier

The following is directly taken from the very well-written Chapter
VI in Connes’ 1994 book Noncommutative geometry; we focus on the
relationship between noncommutative geometry and the standard model
of particle physics. I am not an expert of either, so use with caution.

This is only an old part of Alain Connes’ work on the subject, dating
back to 1994.

Summary. [For simplicity I excluded the quarks and strong interac-
tion.] Connes defines an algebraic extension of the notion of connection,
exterior calculus, curvature tensor etc., from differential geometry. There
is in particular a notion of connection for vector bundles over finite spaces.
The Yang—Mills functional can be defined for such objects. When starting
with a space V x F where V is a (Riemannian) manifold and F = {a, b}
is a two-point space, and considering a vector bundle isomorphic to C
over a and C®C over b, connections over V x F have a U(1) part, a U(2)
(instead of SU(2)) part and a discrete part given by two scalars (¢1,¢s).
The Yang—Mills functional applied to this connection yields a Lagrangian
very close to the one in the standard model (without quarks or strong
interaction), with a few less free parameters: in particular, the action as-
sociated with the discrete part of the connection gives exactly the quartic
Higgs potential together with its Yukawa coupling to the fermions, and
correctly predicts the hypercharge of the Higgs field (and fixes its mass
term). The “generations” of particles have a nice interpretation in this
model.

[TODO: inclusion of quarks (involves quaternions), and passage from
U(2) to SU(2) using the more recent papers by Connes.]

Reminder on the Yang-Mills action. Let 0, be a reference connec-
tion for a vector bundle E on a Riemannian manifold M. Let A, be a
linear form with values in GL(E) (e.g. for electromagnetism and spin-0
particles, E is the trivial 1-dimensional bundle, and A, is the vector
potential). Consider the connection

Vy=0,+iA,
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then its curvature is
V[uvv] = a[yav] + ia[HAV] —A[/JAV] =: a[ﬂav] + iF’uv

where 0/,0,] is just the curvature of the reference connection. Note that
for a 1-dimensional bundle E, the term A, A, vanishes.
The Yang—Mills action is the following functional of A :

1 ;
YM(A,) = =2 Tr(F;, F*)

where the trace is taken in GL(E), and the metric is used to raise or lower
the components y and v of tensors over the base manifold.

Thus, if the reference connection is flat, this is just the norm of the
curvature form of the connection V, where the norm is defined using the
metric g on the base and the Hilbert—Schmidt norm in the fibers.

1 Non-commutative Yang-Mills action

The goal is to define this Yang—Mills action in a more general setting,
and to obtain something very close to the Lagrangian of the standard
model, by using a noncommutative-geometric version of the above.

Basic pATa.

An x-algebra of with unit, acting on a Hilbert space #. A selfadjoint
unbounded operator D over #, with compact resolvent. We assume that
for any f € of, the commutator [D, f]is bounded.

We assume that the eigenvalues of D grow like A, =~ £V for some
number d > 0.

Basic ExaAMPLE (DIRAC OPERATOR).

o/ is the commutative algebra of complex-valued smooth functions on a
compact spin manifold M, # is the Hilbert space of spinor fields over
M, and D = iy*V, =iV is the Dirac operator (with y the gamma matrices
defining a spin representation, and V the spin connection). In this case
for f € o we have (exercise)

[D,f1= iy o.f = idf.

where df is the ordinary (de Rham) differential of f. Note that df is an
operator on #, but does not belong to «f in general.

The Weyl estimate for the growth of the eigenvalues of the Laplacian
A = D? shows that the eigenvalues of D grow like A =~ £ with d = dim M.
So the operator [D, f] acts on # as Clifford multiplication by idf. Our
next goal is to define, from «/ and D, an object which will play the role of
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the de Rham complex of differential forms, based on this identification
between [D, f]1 and af.

We could use the universal anticommutative differential algebra over
</ ; however, we need an inner product on 1-forms and 2-forms that is
related to the metric structure, and we want an action on # by identifying
df and [D, f1. We proceed as follows.

Exterior calculus over «/. Let Q*</ be the universal differential
graded algebra over <, i.e. the largest algebra containing « and all
formal symbols df for all f € o/, with the relations d1 =0 and

d(fe)=@f)g+fdg

for all f,g € «. Explicitly, elements of Q*«f can be written as sums of
terms fodf1...df using the relation above.

One can extend d into a derivation on Q* <« by imposing d% =0 and
d(fw)=([df)w+ fdw for all f € o/, we Q* /. This implies

d(wo') = (dw)o' +(-1)%E°wdw’
for all w,w’ € Q* /. Let us also set
df)* :==d(f™)

(the reason being [ f'g =- [ fg'; and under the identification df < [D, f]
below, we will have [D, f1* = —[D, f*]1 indeed).

If of acts on a Hilbert space # as above, and D is a selfadjoint operator
on #, we would like to construct a differential algebra in which df
identifies with [D, f1 because the latter is Clifford multiplication by idf.
This can be done by a quotienting procedure as follows.

We can define a morphism of «/-«-algebras!

1: Q%A — L(A)

by sending df to [D, f1. Unfortunately, 7(w) = 0 does not in general imply
7(dw) = 0 so that the image does not have a differential algebra structure?®
(in particular [D,-] does not satisfy [D,[D,-11=0 in general).

IThis works because the defining relations d1 = 0 and d(fg) = ... of the universal
differential «/-algebra are satisfied by [D,].
2For instance, 7(Ql</) contains the elements of the form ¥ f;[D,g;1. One might be

tempted to set d(f[D, gl) 9: [D,f1D, gl but this is ill-defined. Indeed, in the basic example,
we have fog+gdf = d(fg) so that we have f[D,gl+glID, f1=1.ID, fgl in 7(Q'<¢). Thus, the
decomposition of an element as a sum ¥ f;[D, g;1 is not unique; the definition above would
yield [D, f1ID,gl+[D,gllD,f1=[D,11[D, fgl=0 but [D, f1ID,gl1+[D,gllD, f1 does not act on
spinors as 0 (by Clifford calculus, it acts as pointwise multiplication by —2g#"d,,fdyg).



Let J¥ :=kernnQ*o/, and let3 Jy := ®J ckern. It is a graded two-
sided ideal of Q* /. Let J = Jy +dJy, now ¢ is stable by d and is (exercise)
still a graded two-sided ideal of Q* /. Set

Q) = Q Al

then we have
QF = m(QF ot)/m(d(ker n 0 QF1e)).

By construction Q) inherits the differential graded algebra structure
from Q*<«/. So the derivation d is still well-defined, and now coincides
with [D,-], i.e.

d(folD, f11ID, f2l...ID, fz]) =D, follD, f11ID, f2l...ID, 21

using the identification above of Qf) as a quotient of 7(Q*<7) c L(A).
Assume that «¢ acts faithfully on # (ie of — L(#) is injective). Then
Q) = of and Qj, = {¥. f;[D,g;1} c L(#). So in that case both Q) and O, sit
in L(#), and df € Q}) is exactly [D, 1. So in that
In 7(Q* /) c L(#), we can define the inner product

(T1,T2)p, :=Tr, (Tsz IDI_d)

with Tr, the Dixmier trace*. After quotienting and completion, this
defines an inner product on Q% , which we will reuse later.

PROPOSITION 1.

In the basic example, the complex Q) is canonically isomorphic to the de
Rham complex, and the scalar product above is, up to a factor c(d), equal
to (w,0") = [yoA*0.

3My edition of Noncommutative geometry states that Jy = kerx, but this is not true
in general. For instance, in the basic example, ker 7 will contain elements of the form
dfdg+dgdf —c with ¢ = 2(3f,0g) (the Clifford relation), which do not lie in Jy. Using kern
instead of J results in a smaller object in the end, not equal to the de Rham complex in
the basic example.

4By definition, the Dixmier trace Tro(T) of a compact operator T is
mp— oo ﬁ Yr<NHp With py the eigenvalues of |T| := (T*T)Y2, arranged in de-
creasing order. Note that Y.<y, = sup{||Tpg|;,dimE = N} with pg the orthogonal
projector onto E. The Dixmier trace is a trace, and, in particular, does not depend on the
choice of the scalar product in 7.

Here the f; and [D, f;] have been assumed to be bounded, and the eigenvalues of D
have been assumed to grow like 24, so that the limit exists.

In the basic example the Weyl asymptotic for the spectrum of A = D2 implies:

ProrosITION.
Let f be a smooth function on the compact d-dimensional spin manifold M. Then [y f =
e(d)Tro(F1D~%), with c(d) = 297142154121 (q/2 + 1),



Let us prove, for instance, that dfdg = -dgdf in Q%). As operators on
#, we have 0(fg) = fog +gdf, so that d(fg)—fdg—gdf e kerrnQlo/. Now
d(d(fg)—fdg — gdf)=-dfdg —dgdf in Q*«/, so by construction this will
vanish in Q2.

Algebraic vector bundles and connections. The sections of a vector
bundle over a manifold M form a module over the algebra < of smooth
functions on M, and this module is finitely generated and projective®
(Swan’s theorem). Conversely, every such finitely generated projective
</-module has this form.

Moreover, given a Hermitian vector bundle over M, the pointwise
scalar product of two sections of this bundle gives a function on M, i.e.
an element of <.

DEFINITION 2 (HERMITIAN BUNDLES).
Let E be a finitely generated projective right module over «f. A Hermitian
structure on E is a sesquilinear form E x E — o such that®:

1 (wf,wg)=f*w,w)g Vf,ged,v,weE

2. (v,v) =0 YveE

3. E is self-dual for {-,-).

DErFINITION 3 (CONNECTIONS).
A connection on E is a C-linear map V:E — E ® 4 Q}) satisfying

Vf)=(v)f +vedf

forall ve E and f € of/. The connection is said to be compatible (with the
Hermitian structure in E) if

d((v,w)) = —(Vv,w) + (v, Vw)
in Q}), forall v,wekE.

(The minus sign comes from sesquilinearity and the fact that (df)* =
-d(f*)in Q}.)

If V is an ordinary Riemannian connection, then iV is a compatible
connection in this sense.

One checks that one can extend the connection V to higher degrees:
let E7, = E ® 4 Qj,, and set

Vvew):=(Vv)w+vedw

5A projective module is a module E such that there exists E’ such that E e E’ is free.
For instance, the tangent bundle of a manifold in R” is projective because adding to it
the normal bundle makes it free (turns it into a direct product bundle).

6For the second condition we would need to define positivity in *-algebras, which we
omit as we never use it here.



for veE, we Q. Then, for ¢ € E% one has
V(Ew) = (VEw + (-1 &dw

and then, the same computation as for Riemannian curvature yields that
V2:E — E Q2 is “pointwise” i.e. «/-linear (actually Q}-linear):

V2(Ef) = (V2O F

so that the operator V2 can be seen as an element 6 € Hom 4 (E,E ®_, Q%)).

Now, E carries a Hermitian structure, which provides a Hilbert—
Schmidt norm on Hom(E,E) (which is finite since E is of finite rank);
and we defined an inner product on Q% above (using the Dixmier trace);
together these define an inner product on Hom(E,E ® Q%). Thus we
can set

o 2
YMY) = 100, o)

as desired. [So far I have not used the compatibility of the connection,
which is used to prove gauge invariance, i.e. “parallel transport is an
isometry”.]

Note that if we replace D by AD for some 1 € R, we have to replace V
with AV, and the Yang—Mills functional gets multiplied by A1*4~<.

PROPOSITION 4.

In the basic example, with E a Hermitian vector bundle over M and V a
compatible connection on E, the Yang—-Mills functional YM(V) is equal, up
to a factor c(d), to the integral over M of the square norm of the ordinary
curvature tensor of V.

Trivial one-dimensional bundle and electromagnetism. The triv-
ial 1-dimensional bundle is given by E = o/ (in the basic example, C-valued
functions over the manifold). In this case, the map d from E = «/ to
E®,Qf =QF given by f — df is a connection, and so is d+V for any fixed
“vector potential” V € Qll). The connection d +V is compatible if and only
if V.=V*. Its curvature is equal to dV + V? € Q7. Beware that even if o
is commutative, the term V2 may not vanish in Q%—this requires both
that «f be commutative and that fdg =dgf in QE.

Let us rewrite the electromagnetic action in the current language.
Here we have E = o = C*°(X1,C) the trivial bundle of smooth functions
over X;. Let 0 be the usual differential on functions on X;. Let V be a
real-valued 1-form on X; (electromagnetic vector potential) and consider
the connection V, := 8, +iV),. Then iV is indeed a connection in the sense
of Definition 3, where we note that Q}) identifies to usual 1-forms by
df € Q}, < idf. In this situation, we have d(fg) = fdg + gdf and this,
together with commutativity, implies that the term V2 vanishes.
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Fermionic part of the action. Here we identify o/ with its image in
L(#°). The action of f on v € # is denoted f.y.

Given the vector bundle E, fermions over E are sections of E ® 4 /.
Let endow E ® # with the inner product

wewy,v' ey’ =y, v,v).y).

Given a connection V over the «/-module E, one extends D into an
operator Y acting on E ® , # by

Yvew):=Vvy+veDy

for ve E, v € #, where the first multiplication uses the facts that Vv e
Eoy Q}) and that Q}) c L(#). Using that df acts on # as [D, f1, we check
that Y(vf ® ¢) = Y(v ® fy) so this is well-defined.

Moreover, if V is compatible, then V is selfadjoint.

We then define a Lagrangian for pairs (V,¥) as

LV, V) =AYM\V)+(¥Y,VV¥)

for V a compatible connection and ¥ € E ® , #. Here 1€ R is a coupling
constant.

Note that the Yang—Mills term is the curvature of V as a connection
on the bundle E, not as an operator on spinors E ® /.

2 Examples

Ultimately, we will consider a space X = X; x Xo where X; is a spin
manifold, and Xy is a finite set; o will simply be the set of functions of
X. A connection will thus have a continuous part identical to a usual
Yang—Mills connection, and a discrete part akin to a discrete derivative.
As usual the continuous part of the connection will be the gauge fields;
the discrete part of the connection will describe the Higgs field, which
thus appears as a discrete gauge field.
We begin with the case of a two-point space alone.

2.1 Two-space point and quartic potential

Let X ={a, b} be a two-point space, and let o« = CoC be the set of functions
on X. Let # = 7, & #, be a direct sum of some Hilbert spaces over a
and b, with the obvious action of < by scaling on each component.



Exterior calculus. For f € o/, one would like to think of df as a discrete
derivative, so one would like to define D such that df =[D, f] acts on #
in a way related to f(b) - f(a). This is possible by intertwining ¢ and b by
setting

0o M*
p=(y 0]
where M : 76, — 7, is some linear operator (e.g., the identity if A, = #3).

Then we have

4f —1D. 1 ( 0 (f(b)—f(a))M*)_

(fl@)-fONIM 0

The algebra «f is generated by 1 and 1, with 1(a) = 1(6) =1, 1,(a) =1,
14(b)=0. We have d1=0 and d(1,) = (; “¥"). Thus the set of 1-forms Q},

is the set gd(1,) for g€ o7, i.e., the set (g(l?)M —g(%)M* )

The set of 2-forms Q3 is generated by d1,d1, = (™™ _,9 .) so that

2-forms are the matrices gd1,d1, = (_g(az)M*M _g(b?MM* ) Note that if M #0

the map sending df (as an element of the universal differential algebra
Q* /) to [D, f]1is injective over Q!, so that there is no quotient involved in
the definition of Q2; so Q2 sits in L(#) and the norm on Q2 is just the

usual Hilbert—Schmidt norm?.

Discrete connections. Let E = E, o E; be a vector bundle over X =
{a,b}, with the obvious action of «¢ by scaling on each component. Keep
the space # and the operator D = () %) as above. Connections are

C-linear maps E - E ® 4 Q},, where we recall that Q%) consists of all the

operators ( u(Z)VI ’”51 ) with A, u € C. Generically, the action of a connection V

on the section (¢,,¢,) € E can be written as

wfa,fb):( 0 (@l — )@ M )

(Ppasa —cp) M 0

where @, @y, are C-linear maps from E; to E, and E, to E, respectively.

V(¢q,&p) is an element of E , QF with Q} a set of matrices on 7, so the

matrix above is a 2 x 2 matrix sending vectors A = (Z’Z) e A to vectors

in Ee®y /A =(E,®75,)eE,®74); hence the coefficient in the first row,
second column must send ., to (E, ® #,), etc. The constraint for V to be
compatible yields @, = @; .

This represents the idea that connections are ways to take derivatives
between infinitely close vector spaces E, and E, with @;, the Christoffel
symbols in the direction from b to a.

"We use the usual trace instead of the Dixmier trace in finite dimension.



Setting {; = o — Pupép and (p = Opaéy — &y, We see that VE=(®d(1,)
where d(1,) = (3 %) as before. Thus VV¢ = (V{)d(1,). So we find the
curvature of V to be

o2 _ [@asPsa~1dg,)e M* M 0
0 (®p Dy —IdEb)®MM* ’

Compare this to the intuition of curvature as parallel-transporting along

a small loop (from a to b then back) and comparing to the original value.

Discrete Yang-Mills action. Let us compute the action
L(V,¥)=YM(\V) +(¥,YV¥)

where ¥ is a (fermionic) section in E ® 4 /.
Taking the (Hilbert—Schmidt) square norm of the curvature yields

YM(V) = (200" [fig ~ 4 1Pl +na + 7 [ MM g

where n, =dimE,, n, = dimE}, and @ is indifferently ®,; or ®;,. Note
the quartic dependence on ®.

Now for the fermionic part of the action. Fermions are sections of

E & #; it is enough to compute (¥, VW¥) for ¥ = ¢, @ v, + & @y with

¢ a section of E and y a section of #, and likewise for ¥/. We have
VY = (Vé).y + ¢ @Dy and since D = (9 ") we simply find

O Cp @ My

="oc onter

with ® = @, so that

(P, VW) = (D&, Ep) (Mg, wp) + (&), PE) Wy, Myg).

Take for instance the case of the trivial vector bundle E = o (or, more
exactly, E = C, @ C, where C,, C, are 1-dimensional Hermitian spaces
isomorphic to C but with no preferred isomorphism). Then compatible
connections are parametrized by a single complex number ¢ € C (well-
defined only up to phase) as

0 (p*fb)-fa)M*

vi= ((<Pf(a)—f(b))M 0

Applying the above we simply find

2
YM(V) =2 (|g]” - 1) Te(1* M)?)



which is a quartic potential. For the fermionic part we have ¥ = ( (p(])ll ‘p*éw )

so that we find
(w,Yy) =2Rel(p{wp, My,))

which is of Yukawa type.
As a second example, if n, =2 and n; = 1, we have @, = (5.) so that
the connection is given by a pair (“doublet”) of complex numbers. Then
2 2
DpaPap = |@1|” +|p2|” so that

M) = (20l + gal?) 4 Jonl + al”) +3) a1 b

In this case fermionic sections ¥ € E, ® /4, + E; ® A4, are represented by
a pair (“doublet”) (y,1,w,2) together with a “singlet” v, and

(V,V¥) =2Re (p1(Mya1,¥s) + p2(Mya2,vp))

so that v is coupled to both v,; and y,s.

2.2 Product of a manifold and two points

Let V be a compact d-dimensional Riemannian spin manifold, and F =
{a,b} a two-point space as above. Let ./ be the space of spinors on V,
with Dy the Dirac operator. Let /£ = /7, ® #rp as above, and let Dy
be the operator acting on ## by (9 ") as before. Let oy, o/ be the
(commutative) algebra of complex functions on V and F.

Set of = oy @ AR and = Sy @ S = Sy @ Hpg ® Ay ® HFp. Let

D:=Dyeld+ys®Dp

where ys is the “fifth gamma matrix”8 or “orientation 7/2-grading” acting
on Sy .

Exterior calculus. Let f =(f;,f3) € «/, where f, and f} are both func-
tions over the manifold V. Then one checks that

idf, ®1d (fo—fa)ys®M*

I =ID.11=\f ZfoyseM  idfyeld

8The map y from a vector space E to the algebra of operators on # extends to NS E;
the matrix y5 is the image of the positively-oriented unit element of ASE with E the
cotangent space to the spin manifold. If ey,...,e4 is any positively-oriented orthonormal
basis of E, then y5 is equal to y(e1)---y(ey).

The main point of y5 is that it anticommutes with Dy, so that D? = D2 ®1d+IdeD?
as is expected from the behavior of Dirac operators under direct products. It moreover
bears an analogy with the direct product of differential algebras, where one must define
d(w1 ® w2) = dw1 ® g +(~1)8%1 1 @ wg.

One could of course start with Dy ® Id+Id®D g and apply the general construction, but
this would imply drastic quotienting in the definition of the space Qp.
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acting on /A ® A, ® S ® #o,. Consequently, the set of 1-forms Q}, =
{3 g;df;} is the set of all operators of the form

iwg®Id dgys@M*
51,}/5 M iwb®Id

where 6, and 6, are arbitrary functions on the manifold V, and w, and
wp are (the Clifford image of) arbitrary 1-forms on V.
Let us now turn to Q%. A priori, elements of Q% can be written as

—a,®ld+h, e M*M 1Y5Ba ® M*
1ysP8p © M —ap@ld+hy @ MM*

where h, and h; are functions on V, g, and g, are (the Clifford image
of) 1-forms on V, and a, and a;, are degree-2 elements of the Clifford
bundle over V. However, the definition of Q% involves a quotient by
by d(kerQles — Q7). In the case of a manifold, we have seen that this
quotient produces the de Rham complex. This means that a, and a,
are ordinary 2-forms on V—i.e., degree-2 elements of the Clifford bundle
quotiented by functions on V. In particular, if M*M is a multiple of the
identity, the functions A, and &; above will be absorbed by the quotient
as well.

So from now on we assume MM* # A1d. Let (MM™*)y denote the projec-
tion of MM™* onto the orthogonal of {11d} (i.e. the traceless part of MM*).
Thus elements of Q% are described as

—aq®Id+h, ® (M* M)y iv5Ba® M*
1ys5Pp ® M —ap ®Id+hy ® (MM*)g

where a,, ap are usual 2-forms on V, 8., B are 1-forms and A, hp are
functions.

In this computation, we have implicitly used the commutation relation of y5
with Vf. If we had used something else instead of y5 the space Q% would be less
intuitive.

Indeed, differentiating d(fg) = (df)g + fdg we find 0 =d((df)g)+dfdg in Q%;

computing explicitly, we find d((df)g)+dfdg = (O %8 ges% N [ 0 s pretd)

so that we put no more relations in Qp than the de Rham complex, but the off-
diagonal terms would not vanish if we used 1 instead of ys.

ProposITION 5.
The square norm of an element in Q% as above is given by 1/c(d) times

fv(na||aa||2+nb ||ab||2)+tr(M*M)fV(||ﬁa||2+||ﬁb||2)+tr((M*M)%)fV(||ha||2+||hb||2)

with n, = dim #p,, ny = dim Az, and (M* M)y the trace-free part of M* M.
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Connections and curvature. A vector bundle E on X =V x {a,b} is
given by two ordinary vector bundles E, and E; on V. A connection on
X is given by two connections V, and V; on E, and E; together with @,
and @y, as before for each point of V, so that @, is a section of E; ®y E,
and likewise for ®@,.

Explicitly, if ¢ = (¢,,¢p) is a section of E, its derivative V¢ is given by

62 ( ivafa ®Id YS((Dabfb_fa)®M*
Y5(Ppaba —Ep) @M iV )

To compute the curvature of such a connection, one computes V2¢ by
decopmosing V¢ into elements of the form { ® df with { a section of E. In
the end the curvature is

V2o (—Vﬁ 8 Id 7, +(PgpPpq — Idg,) @ (M* M) —iy5V Dy ® M*
—iysVDp, © M ~V2 @1d 7, +(@pPap —1dE,) @ (MM*)g

where the connection acts on ®,; by the usual extension of connections to
tensors, i.e., VO, = (V,’; ®1+1®V,)P,;, seeing ®,; as a section ofEZ v E,
over the manifold V, and likewise for @,.

From this and Proposition 5 the computation of the action is straight-
forward. The terms obtained are:

* n, and np times, respectively, the usual Yang—Mills terms for V,
and V.

* The quartic term

@2 | 0D* i~ 41DI1Zg + dim E, +dimEp) [|(M*M)o | .-

e A kinetic ® term
28" Tr(V Dy Vo D) 1M 114

1Y, 0Id Dy ®M* .

Feelde 1049 ooting
on E ® 4 Hy ® 4 A, where in the usual way YV, = Vo, @ y# +1d®y*0q,
acts on the E,-valued spinors E, ® #y over V, and likewise for
Vp. One gets the usual kinetic terms for E-valued spinors, plus
Yukawa-type terms coupling the ¢ and 4 components using ®,;, ® M.

e The fermionic term is obtained from V = (

Standard model without quarks. LetustakeEp, =CandEp, =C+C.
Let us also take dim #r, = dim #%, = N, the number of generations in
the standard model. Remember that 4y is just the space of spinors on V.
Now fermions ¥ € E ® ,; #y ® 4 /F are given by (wq,(wp1,¥p2)) where each
w is made of N spinors on V. We leave the operator M unspecified. The N
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components of y, are identified with the right-handed leptons (electron,
muon, tau). The N components of 1, are the left-handed neutrinos, and
the N components of ;9 are the left-handed electron, muon, tau.

The fiber above a is 1-dimensional; thus, the connection V, can be
written as V, = d, + i where § is a one-form on V (vector potential). This
connection is compatible (with the inner product in C, i.e., with the U(1)
gauge group) if and only if B is real.

The fiber above b is 2-dimensional (fiber C2). Thus we can write
Vy = 0p + iw where w is a self-adjoint 2 x 2 matrix of 1-forms on V (the
Christoffel symbols of V).

The discrete part of the connection is given by a vector @y, = (¢1,¢2)
representing the ways to send C to C+C, with @, = ®; . The action of
the connection V on ®,, isby V=090+iw—ip.

If one sets

B:=-p W:i=2w-8

one finds that the various couplings reproduce those observed in the
standard model with the correct values of the hypercharges®.

Note that since the image of ®;, in C? is one-dimensional, the part
of v, which is orthogonal to ®;, does not interact with v,. By definition
this part of v, is the (massless) neutrino, while the part of y; collinear
with @y, is the massive lepton. The matrix M represents the interactions
between generations; by diagonalizing M one gets three eigenvectors
which are the electron, muon and tau.

Note that since the quartic term (giving the Higgs mass) depends on
MM* while the Yukawa term (giving the lepton masses if the Higgs field
is fixed) depends on M, there is a relationship between the mass of the
Higgs field and that of the leptons; namely, if one rescales ¢ so as to fix
the degree-2 term in ¢ and then rescales the lepton basis so as to fix the
lepton masses, then the degree-4 term in ¢* is fixed.

The way we have defined compatible connections, the gauge group is
U(1) x U(2) (not U(1) x SU(2)). This means that there are too many degrees
of freedom for w compared to what is known. One has to impose the
additional constraint Tr(w) = 8. [This seems to have been fixed in more
recent versions of the model.]

All this is Euclidean, not Lorentzian—indeed we have used an L2
norm on spinors, which is not Lorentz-invariant.

Quarks. To come.

91dentification of B and w with the usual fields is only up to scaling; so actually it is
the relationship between the hypercharges of left-handed leptons, right-handed leptons
and Higgs field which is recovered, i.e. only the hypercharge of the Higgs.
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