Complement of proof for Proposition 6 from my article "Coarse Ricci curvature of Markov chains on metric spaces".

In the notation of Section 8, we have to prove that

$$W_1(\mu_0,\mu_1) = d(x,y) \left(1 - \frac{\varepsilon^2}{2(N+2)} \operatorname{Ric}(v,v) + O(\varepsilon^3 + \delta\varepsilon^2) \right)$$
(1)

where μ_0 and μ_1 are the uniform measures on the ε -balls around x and y respectively.

Let dw be the uniform probability measure over w in the unit ball of the tangent space at x. Let μ'_0 be, as in the article, the image of this measure under $w \mapsto \exp_x(\varepsilon w)$, and μ'_1 the image of this measure under $w \mapsto \exp_y(\varepsilon w)$ (where we identify the tangent spaces at x and y via parallel transport along the geodesic $\exp_x(\delta v)$; this preserves the uniform measure on the unit ball because parallel transport is isometric).

The density of μ'_0 and μ'_1 wrt μ_0 and μ_1 is $1 + O(\varepsilon^2)$ by properties of the exponential map. More precisely, defining likewise μ_z and μ'_z for any point z in the manifold (in a neighborhood of x), expand $\frac{d\mu_z}{d\mu'_z}(w) = 1 + \varepsilon^2 f_z(\varepsilon, w)$ (where we identify w in tangent spaces at z to the tangent space at x via parallel transport for z in some neighborhood of x). Since $y = \exp_x(\delta v)$, we can expand again $f_y(\varepsilon, w) = f_x(\varepsilon, w) + \delta g(\delta, \varepsilon, w)$. Both f and g are given by various derivatives of the exponential map. Note that $\int_w f_x(\varepsilon, w) dw = 0$ since both μ_x and μ'_x are probability measures.

We have to estimate the W_1 distance between the images by $\exp(\varepsilon w)$ of the measures $(1 + \varepsilon^2 f_x(\varepsilon, w)) dw$ and $(1 + \varepsilon^2 f_x(\varepsilon, w) + \delta \varepsilon^2 g(\delta, \varepsilon, w)) dw$, where the exponential is based at x and y respectively, namely, letting $\varphi_z : w \mapsto \exp_z(\varepsilon w)$, we have to compute

$$W_1\left(\varphi_x^*\left(\left(1+\varepsilon^2 f_x(\varepsilon,w)\right)\mathrm{d}w\right),\varphi_y^*\left(\left(1+\varepsilon^2 f_x(\varepsilon,w)+\delta\varepsilon^2 g(\delta,\varepsilon,w)\right)\mathrm{d}w\right)\right)$$
(2)

We apply the triangle inequality to estimate separately

$$W_1\left(\varphi_x^*\left(\left(1+\varepsilon^2 f_x(\varepsilon,w)\right)\mathrm{d}w\right),\varphi_y^*\left(\left(1+\varepsilon^2 f_x(\varepsilon,w)\right)\mathrm{d}w\right)\right) \tag{3}$$

and

$$W_1\left(\varphi_y^*\left(\left(1+\varepsilon^2 f_x(\varepsilon,w)\right)\mathrm{d}w\right),\varphi_y^*\left(\left(1+\varepsilon^2 f_x(\varepsilon,w)+\delta\varepsilon^2 g(\delta,\varepsilon,w)\right)\mathrm{d}w\right)\right)$$
(4)

By Kantorovich duality, the second one is equal to $\sup_h \int_w h(\varphi_y(w)) \,\delta\varepsilon^2 g(\delta,\varepsilon,w) \,\mathrm{d}w$ where the supremum is on all 1-Lipshitz functions h. By shifting h we can assume that h(y) = 0 (because g integrates to 0 because all measures are probability measures). Then $|h(\varphi_y(w))| \leq \varepsilon$ since $\varphi_y(w)$ is in the ε -ball around y. So the corresponding term is $O(\delta\varepsilon^3)$.

We can bound the first term by choosing a specific coupling, for instance, the trivial coupling, for which $d(\varphi_x(w), \varphi_y(w)) = \delta(1 - \varepsilon^2 K(v, w)/2 + O(\varepsilon^3 +$

 $(\delta \varepsilon^2)$) by Proposition 6. We have to integrate this against $(1 + \varepsilon^2 f_x(\varepsilon, w)) dw$, this yields

$$\int_{w} \delta(1 - \varepsilon^{2} K(v, w)/2 + O(\varepsilon^{3} + \delta\varepsilon^{2}))(1 + \varepsilon^{2} f_{x}(\varepsilon, w)) \,\mathrm{d}w$$
(5)

$$= \delta - \frac{\delta \varepsilon^2}{2} \int_w K(v, w) \, \mathrm{d}w + \delta \varepsilon^2 \int_w f_x(\varepsilon, w) \, \mathrm{d}w + \delta O(\varepsilon^3 + \delta \varepsilon^2) \tag{6}$$

and we conclude using $\int_w f_x(\varepsilon, w) \, \mathrm{d}w = 0$ and $\int_w K(v, w) \, \mathrm{d}w = \frac{1}{N+2} \mathrm{Ric}(v, v)$.