
Layer-wise learning of deep generative models

Ludovic Arnold, Yann Ollivier

Abstract

When using deep, multi-layered architectures to build generative
models of data, it is difficult to train all layers at once. We propose
a layer-wise training procedure admitting a performance guarantee
compared to the global optimum. It is based on an optimistic proxy
of future performance, the best latent marginal. We interpret auto-
encoders in this setting as generative models, by showing that they train
a lower bound of this criterion. We test the new learning procedure
against a state of the art method (stacked RBMs), and find it to improve
performance. Both theory and experiments highlight the importance,
when training deep architectures, of using an inference model (from
data to hidden variables) richer than the generative model (from hidden
variables to data).

Introduction

Deep architectures, such as multiple-layer neural networks, have recently been
the object of a lot of interest and have been shown to provide state-of-the-art
performance on many problems [BCV12]. A key aspect of deep learning is to
help in learning better representations of the data, thus reducing the need
for hand-crafted features, a very time-consuming process requiring expert
knowledge.

Due to the difficulty of training a whole deep network at once, a so-
called layer-wise procedure is used as an approximation [HOT06, BLPL07].
However, a long-standing issue is the justification of this layer-wise training:
although the method has shown its merits in practice, theoretical justifications
fall somewhat short of expectations. A frequently cited result [HOT06] is
a proof that adding layers increases a so-called variational lower bound on
the log-likelihood of the model, and therefore that adding layers can improve
performance.

We reflect on the validity of layer-wise training procedures, and discuss
in what way and with what assumptions they can be construed as being
equivalent to the non-layer-wise, that is, whole-network, training. This leads
us to a new approach for training deep generative models, using a new criterion
for optimizing each layer starting from the bottom and for transferring the
problem upwards to the next layer. Under the right conditions, this new
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layer-wise approach is equivalent to optimizing the log-likelihood of the full
deep generative model (Theorem 1).

As a first step, in Section 1 we re-introduce the general form of deep
generative models, and derive the gradient of the log-likelihood for deep
models. This gradient is seldom ever considered because it is considered
intractable and requires sampling from complex distributions. Hence the
need for a simpler, layer-wise training procedure.

We then show (Section 2.1) how an optimistic criterion, the BLM upper
bound, can be used to train optimal lower layers provided subsequent training
of upper layers is successful, and discuss what criterion to use to transfer the
learning problem to the upper layers.

This leads to a discussion of the relation of this procedure with stacked
restricted Boltzmann machines (SRBMs) and auto-encoders (Sections 2.3
and 2.4), in which a new justification is found for auto-encoders as optimizing
the lower part of a deep generative model.

In Section 2.7 we spell out the theoretical advantages of using a model for
the hidden variable h having the form 𝑄(h) = 𝑞(h|x)𝑃data(x) when looking
for hidden-variable generative models of the data x, a scheme close to that
of auto-encoders.

Finally, we discuss new applications and perform experiments (Section 3)
to validate the approach and compare it to state-of-the-art methods, on two
new deep datasets, one synthetic and one real. In particular we introduce
auto-encoders with rich inference (AERIes) which are auto-encoders modified
according to this framework.

Indeed both theory and experiments strongly suggest that, when using
stacked auto-associators or similar deep architectures, the inference part
(from data to latent variables) should use a much richer model than the
generative part (from latent variables to data), in fact, as rich as possible.
Using richer inference helps to find much better parameters for the same
given generative model.

1 Deep generative models

Let us go back to the basic formulation of training a deep architecture
as a traditional learning problem: optimizing the parameters of the whole
architecture seen as a probabilistic generative model of the data.

1.1 Deep models: probability decomposition

The goal of generative learning is to estimate the parameters 𝜃 = (𝜃1, . . . , 𝜃𝑛)
of a distribution 𝑃𝜃(x) in order to approximate a data distribution 𝑃𝒟(x) on
some observed variable x.

The recent development of deep architectures [HOT06, BLPL07] has
given importance to a particular case of latent variable models in which the
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distribution of x can be decomposed as a sum over states of latent variables
h,

𝑃𝜃(x) =
∑︁
h

𝑃𝜃1,...,𝜃𝑘(x|h)𝑃𝜃𝑘+1,...,𝜃𝑛(h)

with separate parameters for the marginal probability of h and the conditional
probability of x given h. Setting 𝐼 = {1, 2, . . . , 𝑘} such that 𝜃𝐼 is the set
of parameters of 𝑃 (x|h) and 𝐽 = {𝑘 + 1, . . . , 𝑛} such that 𝜃𝐽 is the set of
parameters of 𝑃 (h), this rewrites as

𝑃𝜃(x) =
∑︁
h

𝑃𝜃𝐼 (x|h)𝑃𝜃𝐽 (h) (1)

In deep architectures, the same kind of decomposition is applied to h
itself recursively, thus defining a layered model with several hidden layers
h(1), h(2), . . . , h(𝑘max), namely

𝑃𝜃(x) =
∑︁
h(1)

𝑃𝜃𝐼0
(x|h(1))𝑃𝜃𝐽0

(h(1)) (2)

𝑃 (h(𝑘)) =
∑︁

h(𝑘+1)

𝑃𝜃𝐼𝑘
(h(𝑘)|h(𝑘+1))𝑃𝜃𝐽𝑘

(h(𝑘+1)), 1 6 𝑘 6 𝑘max − 1 (3)

At any one time, we will only be interested in one step of this decomposi-
tion. Thus for simplicity, we consider that the distribution of interest is on
the observed variable x, with latent variable h. The results extend to the
other layers of the decomposition by renaming variables.

In Sections 2.3 and 2.4 we quickly present two frequently used deep
architectures, stacked RBMs and auto-encoders, within this framework.

1.2 Data log-likelihood

The goal of the learning procedure, for a probabilistic generative model, is
generally to maximize the log-likelihood of the data under the model, namely,
to find the value of the parameter 𝜃* = (𝜃*𝐼 , 𝜃

*
𝐽) achieving

𝜃* := argmax
𝜃

Ex∼𝑃𝒟 [log𝑃𝜃(x)] (4)

= argmin
𝜃

𝐷KL(𝑃𝒟 ‖𝑃𝜃), (5)

where 𝑃𝒟 is the empirical data distribution, and 𝐷KL(·‖ ·) is the Kullback–
Leibler divergence. (For simplicity we assume this optimum is unique.)

An obvious way to tackle this problem would be a gradient ascent over
the full parameter 𝜃. However, this is impractical for deep architectures
(Section 1.3 below).

It would be easier to be able to train deep architectures in a layer-wise
fashion, by first training the parameters 𝜃𝐼 of the bottom layer, deriving a
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new target distribution for the latent variables h, and then training 𝜃𝐽 to
reproduce this target distribution on h, recursively over the layers, till one
reaches the top layer on which, hopefully, a simple probabilistic generative
model can be used.

Indeed this is often done in practice, except that the objective (4) is
replaced with a surrogate objective. For instance, for architectures made of
stacked RBMs, at each level the likelihood of a single RBM is maximized,
ignoring the fact that it is to be used as part of a deep architecture, and
moreover often using a further approximation to the likelihood such as
contrastive divergence [Hin02]. Under specific conditions (i.e., initializing
the upper layer with an upside-down version of the current RBM), it can be
shown that adding a layer improves a lower bound on performance [HOT06].

We address in Section 2 the following questions: Is it possible to compute
or estimate the optimal value of the parameters 𝜃*𝐼 of the bottom layer,
without training the whole model? Is it possible to compare two values
of 𝜃𝐼 without training the whole model? The latter would be particularly
convenient for hyper-parameter selection, as it would allow to compare lower-
layer models before the upper layers are trained, thus significantly reducing
the size of the hyper-parameter search space from exponential to linear in
the number of layers.

We propose a procedure aimed at reaching the global optimum 𝜃* in a
layer-wise fashion, based on an optimistic estimate of log-likelihood, the best
latent marginal (BLM) upper bound. We study its theoretical guarantees
in Section 2. In Section 3 we make an experimental comparison between
stacked RBMs, auto-encoders modified according to this scheme, and vanilla
auto-encoders, on two simple but deep datasets.

1.3 Learning by gradient ascent for deep architectures

Maximizing the likelihood of the data distribution 𝑃𝒟(x) under a model, or
equivalently minimizing the KL-divergence 𝐷KL(𝑃𝒟 ‖ 𝑃𝜃), is usually done
with gradient ascent in the parameter space.

The derivative of the log-likelihood for a deep generative model can be
written as:

𝜕 log𝑃𝜃(x)

𝜕𝜃
=

∑︀
h

𝜕𝑃𝜃𝐼
(x|h)

𝜕𝜃 𝑃𝜃𝐽 (h) +
∑︀

h 𝑃𝜃𝐼 (x|h)
𝜕𝑃𝜃𝐽

(h)

𝜕𝜃

𝑃𝜃(x)
(6)

=
∑︁
h

𝜕 log𝑃𝜃𝐼 (x|h)
𝜕𝜃

𝑃𝜃(h|x) +
∑︁
h

𝜕 log𝑃𝜃𝐽 (h)

𝜕𝜃
𝑃𝜃(h|x)(7)

by rewriting 𝑃𝜃(h)/𝑃𝜃(x) = 𝑃𝜃(h|x)/𝑃𝜃(x|h). The derivative w.r.t. a given
component 𝜃𝑖 of 𝜃 simplifies because 𝜃𝑖 is either a parameter of 𝑃𝜃𝐼 (x|h)
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when 𝑖 ∈ 𝐼, or a parameter of 𝑃𝜃𝐽 (h) when 𝑖 ∈ 𝐽 :

∀𝑖 ∈ 𝐼,
𝜕 log𝑃𝜃(x)

𝜕𝜃𝑖
=
∑︁
h

𝜕 log𝑃𝜃𝐼 (x|h)
𝜕𝜃𝑖

𝑃𝜃𝐼 ,𝜃𝐽 (h|x), (8)

∀𝑖 ∈ 𝐽,
𝜕 log𝑃𝜃(x)

𝜕𝜃𝑖
=
∑︁
h

𝜕 log𝑃𝜃𝐽 (h)

𝜕𝜃𝑖
𝑃𝜃𝐼 ,𝜃𝐽 (h|x). (9)

Unfortunately, this gradient ascent procedure is generally intractable, because
it requires sampling from 𝑃𝜃𝐼 ,𝜃𝐽 (h|x) (where both the upper layer and lower
layer influence h) to perform inference in the deep model.

2 Layer-wise deep learning

2.1 A theoretical guarantee

We now present a training procedure that works successively on each layer.
First we train 𝜃𝐼 together with a conditional model 𝑞(h|x) for the latent
variable knowing the data. This step involves only the bottom part of
the model and is thus often tractable. This allows to infer a new target
distribution for h, on which the upper layers can then be trained.

This procedure singles out a particular setting 𝜃𝐼 for the bottom layer of
a deep architecture, based on an optimistic assumption of what the upper
layers may be able to do (cf. Proposition 3).

Under this procedure, Theorem 1 states that it is possible to obtain a
validation that the parameter 𝜃𝐼 for the bottom layer was optimal, provided
the rest of the training goes well. Namely, if the target distribution for h
can be realized or well approximated by some value of the parameters 𝜃𝐽 of
the top layers, and if 𝜃𝐼 was obtained using a rich enough conditional model
𝑞(h|x), then (𝜃𝐼 , 𝜃𝐽) is guaranteed to be globally optimal.

Theorem 1. Suppose the parameters 𝜃𝐼 of the bottom layer are trained by

(𝜃𝐼 , 𝑞) := argmax
𝜃𝐼 ,𝑞

Ex∼𝑃𝒟

[︃
log
∑︁
h

𝑃𝜃𝐼 (x|h) 𝑞𝒟(h)

]︃
(10)

where the arg max runs over all conditional probability distributions 𝑞(h|x)
and where

𝑞𝒟(h) :=
∑︁
x̃

𝑞(h|x̃)𝑃𝒟(x̃) (11)

with 𝑃𝒟 the observed data distribution.
We call the optimal 𝜃𝐼 the best optimistic lower layer (BOLL). Let 𝑞𝒟(h)

be the distribution on h associated with the optimal 𝑞. Then:
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∙ If the top layers can be trained to reproduce 𝑞𝒟(h) perfectly, i.e., if there
exists a parameter 𝜃𝐽 for the top layers such that the distribution 𝑃𝜃𝐽

(h)
is equal to 𝑞𝒟(h), then the parameters obtained are globally optimal:

(𝜃𝐼 , 𝜃𝐽) = (𝜃*𝐼 , 𝜃
*
𝐽)

∙ Whatever parameter value 𝜃𝐽 is used on the top layers in conjunction
with the BOLL 𝜃𝐼 , the difference in performance (4) between (𝜃𝐼 , 𝜃𝐽) and
the global optimum (𝜃*𝐼 , 𝜃

*
𝐽) is at most the Kullback–Leibler divergence

𝐷KL(𝑞𝒟(h)‖𝑃𝜃𝐽 (h)) between 𝑞𝒟(h) and 𝑃𝜃𝐽 (h).

This theorem strongly suggests using 𝑞𝒟(h) as the target distribution for
the top layers, i.e., looking for the value 𝜃𝐽 best approximating 𝑞𝒟(h):

𝜃𝐽 := argmin
𝜃𝐽

𝐷KL(𝑞𝒟(h)‖𝑃𝜃𝐽 (h)) = argmax
𝜃𝐽

Eh∼𝑞𝒟 log𝑃𝜃𝐽 (h) (12)

which thus takes the same form as the original problem. Then the same
scheme may be used recursively to train the top layers. A final fine-tuning
phase may be helpful, see Section 2.6.

Note that when the top layers fail to approximate 𝑞𝒟 perfectly, the loss
of performance depends only on the observed difference between 𝑞𝒟 and 𝑃𝜃𝐽

,
and not on the unknown global optimum (𝜃*𝐼 , 𝜃

*
𝐽). Beware that, unfortunately,

this bound relies on perfect layer-wise training of the bottom layer, i.e., on 𝑞
being the optimum of the criterion (10) optimized over all possible conditional
distributions 𝑞; otherwise it is a priori not valid.

In practice the supremum on 𝑞 will always be taken over a restricted
set of conditional distributions 𝑞(h|x), rather than the set of all possible
distributions on h for each x. Thus, this theorem is an idealized version of
practice (though Remark 4 below mitigates this). This still suggests a clear
strategy to separate the deep optimization problem into two subproblems to
be solved sequentially:

1. Train the parameters 𝜃𝐼 of the bottom layer after (10), using a model
𝑞(h|x) as wide as possible, to approximate the BOLL 𝜃𝐼 .

2. Infer the corresponding distribution of h by (11) and train the upper
part of the model as best as possible to approximate this distribution.

Then, provided learning is successful in both instances, the result is close
to optimal.

Auto-encoders can be shown to implement an approximation of this
procedure, in which only the terms x = x̃ are kept in (10)–(11) (Section 2.4).

This scheme is designed with in mind a situation in which the upper layers
get progessively simpler. Indeed, if the layer for h is as wide as the layer for
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x and if 𝑃 (x|h) can learn the identity, then the procedure in Theorem 1 just
transfers the problem unchanged one layer up.

This theorem strongly suggests decoupling the inference and generative
models 𝑞(h|x) and 𝑃 (x|h), and using a rich conditional model 𝑞(h|x), con-
trary, e.g., to common practice in auto-encoders1. Indeed the experiments of
Section 3 confirm that using a more expressive 𝑞(h|x) yields improved values
of 𝜃.

Importantly, 𝑞(h|x) is only used as an auxiliary prop for solving the
optimization problem (4) over 𝜃 and is not part of the final generative model,
so that using a richer 𝑞(h|x) to reach a better value of 𝜃 is not simply changing
to a larger model. Thus, using a richer inference model 𝑞(h|x) should not
pose too much risk of overfitting because the regularization properties of the
model come mainly from the choice of the generative model family (𝜃).

The criterion proposed in (10) is of particular relevance to representation
learning where the goal is not to learn a generative model, but to learn a
useful representation of the data. In this setting, training an upper layer
model 𝑃 (h) becomes irrelevant because we are not interested in the generative
model itself. What matters in representation learning is that the lower layer
(i.e., 𝑃 (x|h) and 𝑞(h|x)) is optimal for some model of 𝑃 (h), left unspecified.

We now proceed, by steps, to the proof of Theorem 1. This will be the
occasion to introduce some concepts used later in the experimental setting.

2.2 The Best Latent Marginal Upper Bound

One way to evaluate a parameter 𝜃𝐼 for the bottom layer without training
the whole architecture is to be optimistic: assume that the top layers will be
able to produce the probability distribution for h that gives the best results
if used together with 𝑃𝜃𝐼 (x|h). This leads to the following.

Definition 2. Let 𝜃𝐼 be a value of the bottom layer parameters. The best
latent marginal (BLM) for 𝜃𝐼 is the probability distribution 𝑄 on h maximizing
the log-likelihood:

�̂�𝜃𝐼 ,𝒟 := argmax
𝑄

Ex∼𝑃𝒟

[︃
log
∑︁
h

𝑃𝜃𝐼 (x|h)𝑄(h)

]︃
(13)

where the arg max runs over the set of all probability distributions over h.
The BLM upper bound is the corresponding log-likelihood value:

𝒰𝒟(𝜃𝐼) := max
𝑄

Ex∼𝑃𝒟

[︃
log
∑︁
h

𝑃𝜃𝐼 (x|h)𝑄(h)

]︃
(14)

1 Attempts to prevent auto-encoders from learning the identity (which is completely
justifiable) often result in an even more constrained inference model, e.g., tied weights, or
sparsity constraints on the hidden representation.
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The BLM upper bound 𝒰𝒟(𝜃𝐼) is the least upper bound on the log-
likelihood of the deep generative model on the dataset 𝒟 if 𝜃𝐼 is used for the
bottom layer. 𝒰𝒟(𝜃𝐼) is only an upper bound of the actual performance of 𝜃𝐼 ,
because subsequent training of 𝑃𝜃𝐽 (h) may be suboptimal: the best latent
marginal �̂�𝜃𝐼 ,𝒟(h) may not be representable as 𝑃𝜃𝐽 (h) for 𝜃𝐽 in the model,
or the training of 𝑃𝜃𝐽 (h) itself may not converge to the best solution.

Note that the arg max in (13) is concave in 𝑄, so that in typical situations
the BLM is unique—except in degenerate cases such as when two values of h
define the same 𝑃𝜃𝐼 (x|h)).

Proposition 3. The criterion (10) used in Theorem 1 for training the bottom
layer coincides with the BLM upper bound:

𝒰𝒟(𝜃𝐼) = max
𝑞

Ex∼𝑃𝒟

[︃
log
∑︁
h

𝑃𝜃𝐼 (x|h)𝑞𝒟(h)

]︃
(15)

where the maximum runs over all conditional probability distributions 𝑞(h|x).
In particular the BOLL 𝜃𝐼 selected in Theorem 1 is

𝜃𝐼 = argmax
𝜃𝐼

𝒰𝒟(𝜃𝐼) (16)

and the target distribution 𝑞𝒟(h) in Theorem 1 is the best latent marginal
�̂�𝜃𝐼 ,𝒟.

Thus the BOLL 𝜃𝐼 is the best bottom layer setting if one uses an optimistic
criterion for assessing the bottom layer, hence the name “best optimistic lower
layer”.

Proof. Any distribution 𝑄 over h can be written as 𝑞𝒟 for some conditional
distribution 𝑞(h|x), for instance by defining 𝑞(h|x) = 𝑄(h) for every x in the
dataset. In particular this is the case for the best latent marginal �̂�𝜃𝐼 ,𝒟.

Consequently the maxima in (15) and in (14) are taken on the same set
and coincide.

The argument that any distribution is of the form 𝑞𝒟 may look disappoint-
ing: why choose this particular form? In Section 2.7 we show how writing
distributions over h as 𝑞𝒟 for some conditional distribution 𝑞(h|x) may help
to maximize data log-likelihood, by quantifiably incorporating information
from the data (Proposition 7). Moreover, the bound on loss of performance
(second part of Theorem 1) when the upper layers do not match the BLM
crucially relies on the properties of 𝑞𝒟. A more practical argument for using
𝑞𝒟 is that optimizing both 𝜃𝐼 and the full distribution of the hidden variable h
at the same time is just as difficult as optimizing the whole network, whereas
the deep architectures currently in use already train a model of x knowing h
and of h knowing x at the same time.

8



Remark 4. For Theorem 1 to hold, it is not necessary to optimize over all
possible conditional probability distributions 𝑞(h|x) (which is a set of very
large dimension). As can be seen from the proof above it is enough to optimize
over a family 𝑞(h|x) ∈ 𝒬 such that every (non-conditional) distribution on h
can be represented (or well approximated) as 𝑞𝒟(h) for some 𝑞 ∈ 𝒬.

Let us now go on with the proof of Theorem 1.

Proposition 5. Set the bottom layer parameters to the BOLL

𝜃𝐼 = argmax
𝜃𝐼

𝒰𝒟(𝜃𝐼) (17)

and let �̂� be the corresponding best latent marginal.
Assume that subsequent training of the top layers using �̂� as the target

distribution for h, is successful, i.e., there exists a 𝜃𝐽 such that �̂�(h) = 𝑃𝜃𝐽 (h).
Then 𝜃𝐼 = 𝜃*𝐼 .

Proof. Define the in-model BLM upper bound as

𝒰model
𝒟 (𝜃𝐼) := max

𝜃𝐽
Ex∼𝑃𝒟

[︃
log
∑︁
h

𝑃𝜃𝐼 (x|h)𝑃𝜃𝐽 (h)

]︃
(18)

By definition, the global optimum 𝜃*𝐼 for the parameters of the whole
architecture is given by 𝜃*𝐼 = argmax𝜃𝐼 𝒰

model
𝒟 (𝜃𝐼).

Obviously, for any value 𝜃𝐼 we have 𝒰model
𝒟 (𝜃𝐼) 6 𝒰𝒟(𝜃𝐼) since the argmax

is taken over a more restricted set. Then, in turn, 𝒰𝒟(𝜃𝐼) 6 𝒰𝒟(𝜃𝐼) by
definition of 𝜃𝐼 .

By our assumption, the BLM �̂� for 𝜃𝐼 happens to lie in the model:
�̂�(h) = 𝑃𝜃𝐽 (h). This implies that 𝒰𝒟(𝜃𝐼) = 𝒰model

𝒟 (𝜃𝐼).
Combining, we get that 𝒰model

𝒟 (𝜃𝐼) 6 𝒰model
𝒟 (𝜃𝐼) for any 𝜃𝐼 . Thus 𝜃𝐼

maximizes 𝒰model
𝒟 (𝜃𝐼), and is thus equal to 𝜃*𝐼 .

The first part of Theorem 1 then results from the combination of Propo-
sitions 5 and 3.

We now give a bound on the loss of performance in case further training
of the upper layers fails to reproduce the BLM. This will complete the
proof of Theorem 1. We will make use of a special optimality property
of distributions of the form 𝑞𝒟(h), namely, Proposition 7, whose proof is
postponed to Section 2.7.

Proposition 6. Keep the notation of Theorem 1. In the case when 𝑃𝜃𝐽 (h)

fails to reproduce 𝑞𝒟(h) exactly, the loss of performance of (𝜃𝐼 , 𝜃𝐽) with respect
to the global optimum (𝜃*𝐼 , 𝜃

*
𝐽) is at most

𝐷KL(𝑃𝒟(x)‖𝑃𝜃𝐼 ,𝜃𝐽
(x))−𝐷KL(𝑃𝒟(x)‖𝑞𝒟,𝜃𝐼

(x)) (19)
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where 𝑞𝒟,𝜃𝐼
(x) :=

∑︀
h 𝑃𝜃𝐼

(x|h)𝑞𝒟(h) is the distribution on x obtained by
using the BLM.

This quantity is in turn at most

𝐷KL(𝑞𝒟(h)‖𝑃𝜃𝐽 (h)) (20)

which is thus also a bound on the loss of performance of (𝜃𝐼 , 𝜃𝐽) with respect
to (𝜃*𝐼 , 𝜃

*
𝐽).

Note that these estimates do not depend on the unkown global optimum
𝜃*.

Importantly, this bound is not valid if 𝑞 has not been perfectly optimized
over all possible conditional distributions 𝑞(h|x). Thus it should not be used
blindly to get a performance bound, since heuristics will always be used to
find 𝑞. Therefore, it may have only limited practical relevance. In practice the
real loss may both be larger than this bound because 𝑞 has been optimized
over a smaller set, and smaller because we are comparing to the BLM upper
bound which is an optimistic assessment.

Proof. From (4) and (5), the difference in log-likelihood performance between
any two distributions 𝑝1(x) and 𝑝2(x) is equal to 𝐷KL(𝑃𝒟 ‖𝑝1)−𝐷KL(𝑃𝒟 ‖𝑝2).

For simplicity, denote

𝑝1(x) = 𝑃𝜃𝐼 ,𝜃𝐽
(x) =

∑︁
h

𝑃𝜃𝐼
(x|h)𝑃𝜃𝐽 (h)

𝑝2(x) = 𝑃𝜃*𝐼 ,𝜃
*
𝐽
(x) =

∑︁
h

𝑃𝜃*𝐼
(x|h)𝑃𝜃*𝐽

(h)

𝑝3(x) =
∑︁
h

𝑃𝜃𝐼
(x|h)𝑞𝒟(h)

We want to compare 𝑝1 and 𝑝2.
Define the in-model upper bound 𝒰model

𝒟 (𝜃𝐼) as in (18) above. Then we
have 𝜃*𝐼 = argmax𝜃𝐼 𝒰

model
𝒟 (𝜃𝐼) and 𝜃𝐼 = argmax𝜃𝐼 𝒰𝒟(𝜃𝐼). Since 𝒰model

𝒟 6

𝒰𝒟, we have 𝒰model
𝒟 (𝜃*𝐼 ) 6 𝒰𝐷(𝜃𝐼). The BLM upper bound 𝒰𝐷(𝜃𝐼) is attained

when we use 𝑞𝒟 as the distribution for h, so 𝒰model
𝒟 (𝜃*𝐼 ) 6 𝒰𝐷(𝜃𝐼) means that

the performance of 𝑝3 is better than the performance of 𝑝2:

𝐷KL(𝑃𝒟 ‖𝑝3) 6 𝐷KL(𝑃𝒟 ‖𝑝2)

(inequalities hold in the reverse order for data log-likelihood).
Now by definition of the optimum 𝜃*, the distribution 𝑝2 is better than 𝑝1:

𝐷KL(𝑃𝒟 ‖𝑝2) 6 𝐷KL(𝑃𝒟 ‖𝑝1). Consequently, the difference in performance
between 𝑝2 and 𝑝1 (whether expressed in data log-likelihood or in Kullback–
Leibler divergence) is smaller than the difference in performance between 𝑝3
and 𝑝1, which is the difference of Kullback–Leibler divergences appearing in
the proposition.
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Let us now evaluate more precisely the loss of 𝑝1 with respect to 𝑝3.
By abuse of notation we will indifferently denote 𝑝1(h) and 𝑝1(x), it being
understood that one is obtained from the other through 𝑃𝜃𝐼

(x|h), and likewise
for 𝑝3 (with the same 𝜃𝐼).

For any distributions 𝑝1 and 𝑝3 the loss of performance of 𝑝1 w.r.t. 𝑝3
satisfies

Ex∼𝑃𝒟 log 𝑝3(x)− Ex∼𝑃𝒟 log 𝑝1(x) = Ex∼𝑃𝒟

[︃
log

∑︀
h 𝑃𝜃𝐼

(x|h)𝑝3(h)∑︀
h 𝑃𝜃𝐼

(x|h)𝑝1(h)

]︃

and by the log sum inequality log(
∑︀

𝑎𝑖/
∑︀

𝑏𝑖) 6 1∑︀
𝑎𝑖

∑︀
𝑎𝑖 log(𝑎𝑖/𝑏𝑖) [CT06,

Theorem 2.7.1] we get

Ex∼𝑃𝒟 log 𝑝3(x)− Ex∼𝑃𝒟 log 𝑝1(x)

6 Ex∼𝑃𝒟

[︃
1∑︀

h 𝑃𝜃𝐼
(x|h)𝑝3(h)

∑︁
h

𝑃𝜃𝐼
(x|h)𝑝3(h) log

𝑃𝜃𝐼
(x|h)𝑝3(h)

𝑃𝜃𝐼
(x|h)𝑝1(h)

]︃

= Ex∼𝑃𝒟

[︃
1

𝑝3(x)

∑︁
h

𝑝3(x,h) log
𝑝3(h)

𝑝1(h)

]︃

= Ex∼𝑃𝒟

[︃∑︁
h

𝑝3(h|x) log
𝑝3(h)

𝑝1(h)

]︃

= Ex∼𝑃𝒟Eh∼𝑝3(h|x)

[︂
log

𝑝3(h)

𝑝1(h)

]︂
Given a probability 𝑝3 on (x,h), the law on h obtained by taking an x

according to 𝑃𝒟, then taking an h according to 𝑝3(h|x), is generally not equal
to 𝑝3(h). However, here 𝑝3 is equal to the BLM 𝑞𝐷, and by Proposition 7 below
the BLM has exactly this property (which characterizes the log-likelihood
extrema). Thus thanks to Proposition 7 we have

Ex∼𝑃𝒟Eh∼𝑞𝒟(h|x)

[︂
log

𝑞𝒟(h)

𝑝1(h)

]︂
= Eh∼𝑞𝒟

[︂
log

𝑞𝒟(h)

𝑝1(h)

]︂
= 𝐷KL(𝑞𝒟(h)‖𝑝1(h))

which concludes the argument.

2.3 Relation with Stacked RBMs

Stacked RBMs (SRBMs) [HOT06, BLPL07, LBLL09] are deep generative
models trained by stacking restricted Boltzmann machines (RBMs) [Smo86].

A RBM uses a single set of parameters to represent a distribution on
pairs (x,h). Similarly to our approach, stacked RBMs are trained in a greedy
layer-wise fashion: one starts by training the distribution of the bottom RBM
to approximate the distribution of x. To do so, distributions 𝑃𝜃𝐼 (x|h) and
𝑄𝜃𝐼 (h|x) are learned jointly using a single set of parameters 𝜃𝐼 . Then a
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target distribution for h is defined as
∑︀

x𝑄𝜃𝐼 (h|x)𝑃𝒟(x) (similarly to (11))
and the top layers are trained recursively on this distribution.

In the final generative model, the full top RBM is used on the top layer
to provide a distribution for h, then the bottom RBMs are used only for the
generation of x knowing h. (Therefore the h-biases of the bottom RBMs are
never used in the final generative model.)

Thus, in contrast with our approach, 𝑃𝜃𝐼 (x|h) and 𝑄𝜃𝐼 (h|x) are not
trained to maximize the least upper bound of the likelihood of the full deep
generative model but are trained to maximize the likelihood of a single RBM.

This procedure has been shown to be equivalent to maximizing the
likelihood of a deep generative model with infinitely many layers where the
weights are all tied [HOT06]. The latter can be interpreted as an assumption
on the future value of 𝑃 (h), which is unknown when learning the first layer.
As such, SRBMs make a different assumption about the future 𝑃 (h) than
the one made in (10).

With respect to this, the comparison of gradient ascents is instructive:
the gradient ascent for training the bottom RBM takes a form reminiscent of
gradient ascent of the global generative model (7) but in which the dependency
of 𝑃 (h) on the upper layers 𝜃𝐽 is ignored, and instead the distribution 𝑃 (h)
is tied to 𝜃𝐼 because the RBM uses a single parameter set for both.

When adding a new layer on top of a trained RBM, if the initialization
is set to an upside down version of the current RBM (which can be seen as
“unrolling” one step of Gibbs sampling), the new deep model still matches
the special infinite deep generative model with tied weights mentioned above.
Starting training of the upper layer from this initialization guarantees that
the new layer can only increase the likelihood [HOT06]. However, this result
is only known to hold for two layers; with more layers, it is only known that
adding layers increases a bound on the likelihood [HOT06].

In our approach, the perspective is different. During the training of lower
layers, we consider the best possible model for the hidden variable. Because
of errors which are bound to occur in approximation and optimization during
the training of the model for 𝑃 (h), the likelihood associated with an optimal
upper model (the BLM upper bound) is expected to decrease each time we
actually take another lower layer into account: At each new layer, errors in
approximation or optimization occur so that the final likelihood of the training
set will be smaller than the upper bound. (On the other way these limitations
might actually improve performance on a test set, see the discussion about
regularization in Section 3.)

In [LRB08] a training criterion is suggested for SRBMs which is reminis-
cent of a BLM with tied weights for the inference and generative parts (and
therefore without the BLM optimality guarantee), see also Section 2.5.
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2.4 Relation with Auto-Encoders

Since the introduction of deep neural networks, auto-encoders [VLBM08]
have been considered a credible alternative to stacked RBMs and have been
shown to have almost identical performance on several tasks [LEC+07].

Auto-encoders are trained by stacking auto-associators [BK88] trained
with backpropagation. Namely: we start with a three-layer network x ↦→
h(1) ↦→ x trained by backpropagation to reproduce the data; this provides
two conditional distributions 𝑃 (h(1)|x) and 𝑃 (x|h(1)). Then in turn, another
auto-associator is trained as a three-layer network h(1) ↦→ h(2) ↦→ h(1), to
reproduce the distribution 𝑃 (h(1)|x) on h(1), etc.

So as in the learning of SRBMs, auto-encoder training is performed in a
greedy layer-wise manner, but with a different criterion: the reconstruction
error.

Note that after the auto-encoder has been trained, the deep generative
model is incomplete because it lacks a generative model for the distribution
𝑃 (h𝑘max) of the deepest hidden variable, which the auto-encoder does not
provide2. One possibility is to learn the top layer with an RBM, which then
completes the generative model.

Concerning the theoretical soundness of stacking auto-associators for train-
ing deep generative models, it is known that the training of auto-associators
is an approximation of the training of RBMs in which only the largest term
of an expansion of the log-likelihood is kept [BD09]. In this sense, SRBM and
stacked auto-associator training approximate each other (see also Section 2.5).

Our approach gives a new understanding of auto-encoders as the lower
part of a deep generative model, because they are trained to maximize a
lower bound of (10), as follows.

To fix ideas, let us consider for (10) a particular class of conditional
distributions 𝑞(h|x) commonly used in auto-associators. Namely, let us
parametrize 𝑞 as 𝑞𝜉 with

𝑞𝜉(h|x) =
∏︁
𝑗

𝑞𝜉(ℎ𝑗 |x) (21)

𝑞𝜉(ℎ𝑗 |x) = sigm(
∑︀

𝑖𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑗) (22)

where the parameter vector is 𝜉 = {W,b} and sigm(·) is the sigmoid function.
Given a conditional distribution 𝑞(h|x) as in Theorem 1, let us expand

2Auto-associators can in fact be used as valid generative models from which sampling
is possible [RBDV12] in the setting of manifold learning but this is beyond the scope of
this article.
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the distribution on x obtained from 𝑃𝜃𝐼 (x|h) and 𝑞𝒟(h):

𝑃 (x) =
∑︁
h

𝑃𝜃𝐼 (x|h)𝑞𝒟(h) (23)

=
∑︁
h

𝑃𝜃𝐼 (x|h)
∑︁
x̃

𝑞(h|x̃)𝑃𝒟(x̃) (24)

where as usual 𝑃𝒟 is the data distribution. Keeping only the terms x = x̃ in
this expression we see that

𝑃 (x) >
∑︁
h

𝑃𝜃𝐼 (x|h)𝑞(h|x)𝑃𝒟(x) (25)

Taking the sum of likelihoods over x in the dataset, this corresponds to the
criterion maximized by auto-associators when they are considered from a
probabilistic perspective3. Since moreover optimizing over 𝑞 as in (10) is more
general than optimizing over the particular class 𝑞𝜉, we conclude that the
criterion optimized in auto-associators is a lower bound on the criterion (10)
proposed in Theorem 1.

Keeping only x = x̃ is justified if we assume that inference is an approxi-
mation of the inverse of the generative process4, that is, 𝑃𝜃𝐼 (x|h)𝑞(h|x̃) ≈ 0
as soon as x ̸= x̃. Thus under this assumption, both criteria will be close,
so that Theorem 1 provides a justification for auto-encoder training in this
case. On the other hand, this assumption can be strong: it implies that no
h can be shared between different x, so that for instance two observations
cannot come from the same underlying latent variable through a random
choice. Depending on the situation this might be unrealistic. Still, using this
as a training criterion might perform well even if the assumption is not fully
satisfied.

Note that we chose the form of 𝑞𝜉(h|x) to match that of the usual auto-
associator, but of course we could have made a different choice such as using
a multilayer network for 𝑞𝜉(h|x) or 𝑃𝜃𝐼 (x|h). These possibilities will be
explored later in this article.

3In all fairness, the training of auto-associators by backpropagation, in probabilistic
terms, consists in the maximization of 𝑃 (y|x)𝑃𝒟(x) = 𝑜(x)𝑃𝒟(x) with y = x [BW91],
where 𝑜 is the output function of the neural network. In this perspective, the hidden
variable h is not considered as a random variable but as an intermediate value in the
form of 𝑃 (y|x). Here, we introduce h as an intermediate random variable as in [Nea90].
The criterion we wish to maximize is then 𝑃 (y|x)𝑃𝒟(x) =

∑︀
h 𝑓(y|h)𝑔(h|x)𝑃𝒟(x), with

y = x. Training with backpropagation can be done by sampling h from 𝑔(h|x) instead of
using the raw activation value of 𝑔(h|x), but in practice we do not sample h as it does not
significantly affect performance.

4which is a reasonable assumption if we are to perform inference in any meaningful
sense of the word.
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2.5 From stacked RBMs to auto-encoders: layer-wise consis-
tency

We now show how imposing a “layer-wise consistency” constraint on stacked
RBM training leads to the training criterion used in auto-encoders with tied
weights. Some of the material here already appears in [LRB08].

Let us call layer-wise consistent a layer-wise training procedure in which
each layer determines a value 𝜃𝐼 for its parameters and a target distribution
𝑃 (h) for the upper layers which are mutually optimal in the following sense:
if 𝑃 (h) is used a the distribution of the hidden variable, then 𝜃𝐼 is the bottom
parameter value maximizing data log-likelihood.

The BLM training procedure is, by construction, layer-wise consistent.
Let us try to train stacked RBMs in a layer-wise consistent way. Given a

parameter 𝜃𝐼 , SRBMs use the hidden variable distribution

𝑄𝒟,𝜃𝐼 (h) = Ex∼𝑃𝒟 𝑃𝜃𝐼 (h|x) (26)

as the target for the next layer, where 𝑃𝜃𝐼 (h|x) is the RBM distribution of h
knowing x. The value 𝜃𝐼 and this distribution over h are mutually optimal
for each other if the distribution on x stemming from this distribution on h,
given by

𝑃
(1)
𝜃𝐼

(x) = Eh∼𝑄𝒟,𝜃𝐼
(h) 𝑃𝜃𝐼 (x|h) (27)

=
∑︁
h

𝑃𝜃𝐼 (x|h)
∑︁
x̃

𝑃𝜃𝐼 (h|x̃)𝑃𝒟(x̃) (28)

maximizes log-likelihood, i.e.,

𝜃𝐼 = argmin𝐷KL(𝑃𝒟(x)‖𝑃 (1)
𝜃𝐼

(x)) (29)

The distribution 𝑃
(1)
𝜃𝐼

(x) is the one obtained from the data after one “forward-
backward” step of Gibbs sampling x → h → x (cf. [LRB08]).

But 𝑃 (1)
𝜃𝐼

(x) is also equal to the distribution (24) for an auto-encoder with
tied weights. So the layer-wise consistency criterion for RBMs coincides with
tied-weights auto-encoder training, up to the approximation that in practice
auto-encoders retain only the terms x = x̃ in the above (Section 2.4).

On the other hand, stacked RBM training trains the parameter 𝜃𝐼 to
approximate the data distribution by the RBM distribution:

𝜃RBM
𝐼 = argmin

𝜃𝐼

𝐷KL(𝑃𝒟(x)‖𝑃RBM
𝜃𝐼

(x)) (30)

where 𝑃RBM
𝜃𝐼

is the probability distribution of the RBM with parameter 𝜃𝐼 ,
i.e. the probability distribution after an infinite number of Gibbs samplings
from the data.
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Thus, stacked RBM training and tied-weight auto-encoder training can
be seen as two approximations to the layer-wise consistent optimization
problem (29), one using the full RBM distribution 𝑃RBM

𝜃𝐼
instead of 𝑃 (1)

𝜃𝐼
and

the other using x = x̃ in 𝑃
(1)
𝜃𝐼

.

It is not clear to us to which extent the criteria (29) using 𝑃
(1)
𝜃𝐼

and (30)
using 𝑃RBM

𝜃𝐼
actually yield different values for the optimal 𝜃𝐼 : although these

two optimization criteria are different (unless RBM Gibbs sampling converges
in one step), it might be that the optimal 𝜃𝐼 is the same (in which case SRBM
training would be layer-wise consistent), though this seems unlikely.

The 𝜃𝐼 obtained from the layer-wise consistent criterion (29) using 𝑃
(1)
𝜃𝐼

(x)
will always perform at least as well as standard SRBM training if the upper
layers match the target distribution on h perfectly—this follows from its very
definition.

Nonetheless, it is not clear whether layer-wise consistency is always a
desirable property. In SRBM training, replacing the RBM distribution over h
with the one obtained from the data seemingly breaks layer-wise consistency,
but at the same time it always improves data log-likelihood (as a consequence
of Proposition 7 below).

For non-layer-wise consistent training procedures, fine-tuning of 𝜃𝐼 after
more layers have been trained would improve performance. Layer-wise
consistent procedures may require this as well in case the upper layers do not
match the target distribution on h (while non-layer-wise consistent procedures
would require this even with perfect upper layer training).

2.6 Relation to fine-tuning

When the approach presented in Section 2 is used recursively to train deep
generative models with several layers using the criterion (10), irrecoverable
losses may be incurred at each step: first, because the optimization problem
(10) may be imperfectly solved, and, second, because each layer was trained
using a BLM assumption about what upper layers are able to do, and
subsequent upper layer training may not match the BLM. Consequently the
parameters used for each layer may not be optimal with respect to each other.
This suggests using a fine-tuning procedure.

In the case of auto-encoders, fine-tuning can be done by backpropaga-
tion on all (inference and generative) layers at once (Figure 1). This has
been shown to improve performance5 in several contexts [LBLL09, HS06],
which confirms the expected gain in performance from recovering earlier
approximation losses. In principle, there is no limit to the number of layers
of an auto-encoder that could be trained at once by backpropagation, but
in practice training many layers at once results in a difficult optimization

5The exact likelihood not being tractable for larger models, it is necessary to rely on a
proxy such as classification performance to evaluate the performance of the deep network.
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Layer-wise deep learning

for several layers
Fine-tuning of all generative

and inference layers

Figure 1: Deep training with fine-tuning.

problem with many local minima. Layer-wise training can be seen as a way
of dealing with the issue of local minima, providing a solution close to a good
optimum. This optimum is then reached by global fine-tuning.

Fine-tuning can be described in the BLM framework as follows: fine-
tuning is the maximization of the BLM upper bound (10) where all the layers
are considered as one single complex layer (Figure 1). In the case of auto-
encoders, the approximation x = x̃ in (10)–(11) is used to help optimization,
as explained above.

Note that there is no reason to limit fine-tuning to the end of the layer-
wise procedure: fine-tuning may be used at intermediate stages where any
number of layers have been trained.

This fine-tuning procedure was not applied in the experiments below
because our experiments only have one layer for the bottom part of the
model.

As mentioned before, a generative model for the topmost hidden layer
(e.g., an RBM) still needs to be trained to get a complete generative model
after fine-tuning.

2.7 Data Incorporation: Properties of 𝑞𝒟

It is not clear why it should be more interesting to work with the conditional
distribution 𝑞(h|x) and then define a distribution on h through 𝑞𝒟, rather
than working directly with a distribution 𝑄 on h.

The first answer is practical: optimizing on 𝑃𝜃𝐼 (x|h) and on the distribu-
tion of h simultaneously is just the same as optimizing over the global network,
while on the other hand the currently used deep architectures provide both
x|h and h|x at the same time.

A second answer is mathematical: 𝑞𝒟 is defined through the dataset
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𝒟. Thus by working on 𝑞(h|x) we can concentrate on the correspondence
between h and x and not on the full distribution of either, and hopefully this
correspondence is easier to describe. Then we use the dataset 𝒟 to provide
𝑞𝒟: so rather than directly crafting a distribution 𝑄(h), we use a distribution
which automatically incorporates aspects of the data distribution 𝒟 even for
very simple 𝑞. Hopefully this is better; we now formalize this argument.

Let us fix the bottom layer parameters 𝜃𝐼 , and consider the problem
of finding the best latent marginal over h, i.e., the 𝑄 maximizing the data
log-likelihood

argmax
𝑄

Ex∼𝑃𝒟

[︃
log
∑︁
h

𝑃𝜃𝐼 (x|h)𝑄(h)

]︃
(31)

Let 𝑄(h) be a candidate distribution. We might build a better one by
“reflecting the data” in it. Namely, 𝑄(h) defines a distribution 𝑃𝜃𝐼 (x|h)𝑄(h)
on (x,h). This distribution, in turn, defines a conditional distribution of h
knowing x in the standard way:

𝑄cond(h|x) := 𝑃𝜃𝐼 (x|h)𝑄(h)∑︀
h′ 𝑃𝜃𝐼 (x|h′)𝑄(h′)

(32)

We can turn 𝑄cond(h|x) into a new distribution on h by using the data
distribution:

𝑄cond
𝒟 (h) :=

∑︁
x

𝑄cond(h|x)𝑃𝒟(x) (33)

and in general 𝑄cond
𝒟 (h) will not coincide with the original distribution 𝑄(h),

if only because the definition of the former involves the data whereas 𝑄
is arbitrary. We will show that this operation is always an improvement:
𝑄cond

𝒟 (h) always yields a better data log-likelihood than 𝑄.

Proposition 7. Let data incorporation be the map sending a distribution
𝑄(h) to 𝑄cond

𝒟 (h) defined by (32) and (33), where 𝜃𝐼 is fixed. It has the
following properties:

∙ Data incorporation always increases the data log-likelihood (31).

∙ The best latent marginal �̂�𝜃𝐼 ,𝒟 is a fixed point of this transformation.
More precisely, the distributions 𝑄 that are fixed points of data incorpo-
ration are exactly the critical points of the data log-likelihood (31) (by
concavity of (31) these critical points are all maxima with the same
value). In particular if the BLM is uniquely defined (the arg max in
(13) is unique), then it is the only fixed point of data incorporation.

∙ Data incorporation 𝑄 ↦→ 𝑄cond
𝒟 coincides with one step of the expectation-

maximization (EM) algorithm to maximize data log-likelihood by opti-
mizing over 𝑄 for a fixed 𝜃𝐼 , with h as the hidden variable.
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This can be seen as a justification for constructing the hidden variable
model 𝑄 through an inference model 𝑞(h|x) from the data, which is the basic
approach of auto-encoders and the BLM.

Proof. Let us first prove the statement about expectation-maximization.
Since the EM algorithm is known to increase data log-likelihood at each step
[DLR77, Wu83], this will prove the first statement as well.

For simplicity let us assume that the data distribution is uniform over
the dataset 𝒟 = (x1, . . . ,x𝑛). (Arbitrary data weights can be approximated
by putting the same observation several times into the data.) The hidden
variable of the EM algorithm will be h, and the parameter over which the EM
optimizes will be the distribution 𝑄(h) itself. In particular we keep 𝜃𝐼 fixed.
The distributions 𝑄 and 𝑃𝜃𝐼 define a distribution 𝑃 (x,h) := 𝑃𝜃𝐼 (x|h)𝑄(h)
over pairs (x,h). This extends to a distribution over 𝑛-tuples of observations:

𝑃 ((x1,h1), . . . , (x𝑛,h𝑛)) =
∏︁
𝑖

𝑃𝜃𝐼 (x𝑖|h𝑖)𝑄(h𝑖)

and by summing over the states of the hidden variables

𝑃 (x1, . . . ,x𝑛) =
∑︁

(h1,...,h𝑛)

𝑃 ((x1,h1), . . . , (x𝑛,h𝑛))

Denote x⃗ = (x1, . . . ,x𝑛) and h⃗ = (h1, . . . ,h𝑛). One step of the EM
algorithm operating with the distribution 𝑄 as parameter, is defined as
transforming the current distribution 𝑄𝑡 into the new distribution

𝑄𝑡+1 = argmax
𝑄

∑︁
h⃗

𝑃𝑡(h⃗|x⃗) log𝑃 (x⃗, h⃗)

where 𝑃𝑡(x⃗, h⃗) = 𝑃𝜃𝐼 (x⃗|h⃗)𝑄𝑡(h⃗) is the distribution obtained by using 𝑄𝑡 for h,
and 𝑃 the one obtained from the distribution 𝑄 over which we optimize. Let
us follow a standard argument for EM algorithms on 𝑛-tuples of independent
observations:∑︁

h⃗

𝑃𝑡(h⃗|x⃗) log𝑃 (x⃗, h⃗) =
∑︁
h⃗

𝑃𝑡(h⃗|x⃗) log
∏︁
𝑖

𝑃 (x𝑖,h𝑖)

=
∑︁
𝑖

∑︁
h⃗

𝑃𝑡(h⃗|x⃗) log𝑃 (x𝑖,h𝑖)

Since observations are independent, 𝑃𝑡(h⃗|x⃗) decomposes as a product and so∑︁
𝑖

∑︁
h⃗

(log𝑃 (x𝑖,h𝑖))𝑃𝑡(h⃗|x⃗) =
∑︁
𝑖

∑︁
h1,...,h𝑛

(log𝑃 (x𝑖,h𝑖))
∏︁
𝑗

𝑃𝑡(h𝑗 |x𝑗)

=
∑︁
𝑖

∑︁
h𝑖

(log𝑃 (x𝑖,h𝑖))𝑃𝑡(h𝑖|x𝑖)
∏︁
𝑗 ̸=𝑖

∑︁
h𝑗

𝑃𝑡(h𝑗 |x𝑗)
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but of course
∑︀

h𝑗
𝑃𝑡(h𝑗 |x𝑗) = 1 so that finally

∑︁
h⃗

𝑃𝑡(h⃗|x⃗) log𝑃 (x⃗, h⃗) =
∑︁
𝑖

∑︁
h𝑖

(log𝑃 (x𝑖,h𝑖))𝑃𝑡(h𝑖|x𝑖)

=
∑︁
h

∑︁
𝑖

(log𝑃 (x𝑖,h))𝑃𝑡(h|x𝑖)

=
∑︁
h

∑︁
𝑖

(log𝑃𝜃𝐼 (x𝑖|h) + log𝑄(h))𝑃𝑡(h|x𝑖)

because 𝑃 (x,h) = 𝑃𝜃𝐼 (x|h)𝑄(h). We have to maximize this quantity over
𝑄. The first term does not depend on 𝑄 so we only have to maximize∑︀

h

∑︀
𝑖(log𝑄(h))𝑃𝑡(h|x𝑖).

This latter quantity is concave in 𝑄, so to find the maximum it is sufficient
to exhibit a point where the derivative w.r.t. 𝑄 (subject to the constraint
that 𝑄 is a probability distribution) vanishes.

Let us compute this derivative. If we replace 𝑄 with 𝑄+ 𝛿𝑄 where 𝛿𝑄 is
infinitesimal, the variation of the quantity to be maximized is∑︁

h

∑︁
𝑖

(𝛿 log𝑄(h))𝑃𝑡(h|x𝑖) =
∑︁
h

𝛿𝑄(h)

𝑄(h)

∑︁
𝑖

𝑃𝑡(h|x𝑖)

Let us take 𝑄 = (𝑄𝑡)
cond
𝒟 . Since we assumed for simplicity that the data

distribution 𝒟 is uniform over the sample this (𝑄𝑡)
cond
𝒟 is

𝑄(h) = (𝑄𝑡)
cond
𝒟 (h) =

1

𝑛

∑︁
𝑖

𝑃𝑡(h|x𝑖)

so that the variation of the quantity to be maximized is∑︁
h

𝛿𝑄(h)

𝑄(h)

∑︁
𝑖

𝑃𝑡(h|x𝑖) = 𝑛
∑︁
h

𝛿𝑄(h)

But since 𝑄 and 𝑄 + 𝛿𝑄 are both probability distributions, both sum to
1 over h so that

∑︀
h 𝛿𝑄(h) = 0. This proves that this choice of 𝑄 is an

extremum of the quantity to be maximized.
This proves the last statement of the proposition. As mentioned above, it

implies the first by the general properties of EM. Once the first statement
is proven, the best latent marginal �̂�𝜃𝐼 ,𝒟 has to be a fixed point of data
incorporation, because otherwise we would get an even better distribution
thus contradicting the definition of the BLM.

The only point left to prove is the equivalence between critical points of
the log-likelihood and fixed points of 𝑄 ↦→ 𝑄cond

𝒟 . This is a simple instance
of maximization under constraints, as follows. Critical points of the data log-
likelihood are those for which the log-likelihood does not change at first order
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when 𝑄 is replaced with 𝑄+ 𝛿𝑄 for small 𝛿𝑄. The only constraint on 𝛿𝑄 is
that 𝑄+ 𝛿𝑄 must still be a probability distribution, so that

∑︀
h 𝛿𝑄(h) = 0

because both 𝑄 and 𝑄+ 𝛿𝑄 sum to 1.
The first-order variation of log-likelihood is

𝛿
∑︁
𝑖

log𝑃 (x𝑖) = 𝛿
∑︁
𝑖

log

(︃∑︁
h

𝑃𝜃𝐼 (x𝑖|h)𝑄(h)

)︃

=
∑︁
𝑖

𝛿
∑︀

h 𝑃𝜃𝐼 (x𝑖|h)𝑄(h)∑︀
h 𝑃𝜃𝐼 (x𝑖,h)𝑄(h)

=
∑︁
𝑖

∑︀
h 𝑃𝜃𝐼 (x𝑖|h)𝛿𝑄(h)

𝑃 (x𝑖)

=
∑︁
h

𝛿𝑄(h)
∑︁
𝑖

𝑃𝜃𝐼 (x𝑖|h)
𝑃 (x𝑖)

=
∑︁
h

𝛿𝑄(h)
∑︁
𝑖

𝑃 (x𝑖,h)/𝑄(h)

𝑃 (x𝑖)

=
∑︁
h

𝛿𝑄(h)
∑︁
𝑖

𝑃 (h|x𝑖)

𝑄(h)

This must vanish for any 𝛿𝑄 such that
∑︀

h 𝛿𝑄(h) = 0. By elementary linear
algebra (or Lagrange multipliers) this occurs if and only if

∑︀
𝑖
𝑃 (h|x𝑖)
𝑄(h) does

not depend on h, i.e., if and only if 𝑄 satisfies 𝑄(h) = 𝐶
∑︀

𝑖 𝑃 (h|x𝑖). Since
𝑄 sums to 1 one finds 𝐶 = 1

𝑛 . Since all along 𝑃 is the probability distribution
on x and h defined by 𝑄 and 𝑃𝜃𝐼 (x|h), namely, 𝑃 (x,h) = 𝑃𝜃𝐼 (x|h)𝑄(h),
by definition we have 𝑃 (h|x) = 𝑄cond(h|x) so that the condition 𝑄(h) =
1
𝑛

∑︀
𝑖 𝑃 (h|x𝑖) exactly means that 𝑄 = 𝑄cond

𝒟 , hence the equivalence between
critical points of log-likelihood and fixed points of data incorporation.

3 Applications and Experiments

Given the approach described above, we now consider several applications
for which we evaluate the method empirically.

The intractability of the log-likelihood for deep networks makes direct
comparison of several methods difficult in general. Often the evaluation is
done by using latent variables as features for a classification task and by
direct visual comparison of samples generated by the model [LBLL09, SH09].
Instead, we introduce two new datasets which are simple enough for the true
log-likelihood to be computed explicitly, yet complex enough to be relevant
to deep learning.

We first check that these two datasets are indeed deep.
Then we try to assess the impact of the various approximations from

theory to practice, on the validity of the approach.
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We then apply our method to the training of deep belief networks using
properly modified auto-encoders, and show that the method outperforms
current state of the art.

We also explore the use of the BLM upper bound to perform layer-wise
hyper-parameter selection and show that it gives an accurate prediction of
the future log-likelihood of models.

3.1 Low-Dimensional Deep Datasets

We now introduce two new deep datasets of low dimension. In order for those
datasets to give a reasonable picture of what happens in the general case,
we first have to make sure that they are relevant to deep learning, using the
following approach:

1. In the spirit of [BB12], we train 1000 RBMs using CD-1 [Hin02] on
the dataset 𝒟, and evaluate the log-likelihood of a disjoint validation
dataset 𝒱 under each model.

2. We train 1000 2-layer deep networks using stacked RBMs trained with
CD-1 on 𝒟, and evaluate the log-likelihood of 𝒱 under each model.

3. We compare the performance of each model at equal number of param-
eters.

4. If deep networks consistently outperform single RBMs for the same
number of parameters, the dataset is considered to be deep.

The comparison at equal number of parameters is justified by one of the
main hypotheses of deep learning, namely that deep architectures are capable
of representing some functions more compactly than shallow architectures
[BL07].

Hyper-parameters taken into account for hyper-parameter random search
are the hidden layers sizes, CD learning rate and number of CD epochs. The
corresponding priors are given in Table 1. In order not to give an obvious
head start to deep networks, the possible layer sizes are chosen so that the
maximum number of parameters for the single RBM and the deep network
are as close as possible.

Cmnist dataset

The Cmnist dataset is a low-dimensional variation on the Mnist dataset
[LBBH98], containing 12,000 samples of dimension 100. The full dataset is
split into training, validation and test sets of 4,000 samples each. The dataset
is obtained by taking a 10× 10 image at the center of each Mnist sample
and using the values in [0,1] as probabilities. The first 10 samples of the
Cmnist dataset are shown in Figure 2.
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Parameter Prior
RBM hidden layer size 1 to 19
Deep Net hidden layer 1 size 1 to 16
Deep Net hidden layer 2 size 1 to 16
inference hidden layer size 1 to 500
CD learn rate log𝑈(10−5, 5× 10−2)

BP learn rate log𝑈(10−5, 5× 10−2)

CD epochs 20× (10000/𝑁)

BP epochs 20× (10000/𝑁)

ANN init 𝜎 𝑈(0, 1)

Table 1: Search space for hyper-parameters when using random search for a
dataset of size 𝑁 .

Figure 2: First 10 samples of the Cmnist dataset.

We propose two baselines to which to compare the log-likelihood values
of models trained on the Cmnist dataset:

1. The uniform coding scheme: a model which gives equal probability to
all possible binary 10× 10 images. The log-likelihood of each sample is
then −100 bits, or −69.31 nats.

2. The independent Bernoulli model in which each pixel is given an
independent Bernoulli probability. The model is trained on the training
set. The log-likelihood of the validation set is −67.38 nats per sample.

The comparison of the log-likelihood of stacked RBMs with that of single
RBMs is presented in Figure 3 and confirms that the Cmnist dataset is deep.

Tea dataset

The Tea dataset is based on the idea of learning an invariance for the amount
of liquid in several containers: a teapot and 5 teacups. It contains 243 distinct
samples which are then distributed into a training, validation and test set
of 81 samples each. The dataset consists of 10× 10 images in which the left
part of the image represents a (stylized) teapot of size 10× 5. The right part
of the image represents 5 teacups of size 2× 5. The liquid is represented by
ones and always lies at the bottom of each container. The total amount of
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Figure 3: Checking that Cmnist is deep: log-likelihood of the validation
dataset 𝒱 under RBMs and SRBM deep detworks selected by hyper-parameter
random search, as a function of the number of parameters dim(𝜃).

liquid is always equal to the capacity of the teapot, i.e., there are always
50 ones and 50 zeros in any given sample. The first 10 samples of the Tea
dataset are shown in Figure 4.

Figure 4: First 10 samples of the Tea dataset.

In order to better interpret the log-likelihood of models trained on the
Tea dataset, we propose 3 baselines:

1. The uniform coding scheme: the baseline is the same as for the Cmnist
dataset: −69.31 nats.

2. The independent Bernoulli model, adjusted on the training set. The
log-likelihood of the validation set is −49.27 nats per sample.

3. The perfect model in which all 243 samples of the full dataset (consituted
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by concatenation of the training, validation and test sets) are given
the probability 1

243 . The expected log-likelihood of a sample from the
validation dataset is then log( 1

243) = −5.49 nats.

The comparison of the log-likelihood of stacked RBMs and single RBMs is
presented in Figure 5 and confirms that the Tea dataset is deep.
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Figure 5: Checking that Tea is deep: log-likelihood of the validation dataset 𝒱
under RBMs and SRBM deep networks selected by hyper-parameter random
search, as a function of the number of parameters dim(𝜃).

3.2 Deep Generative Auto-Encoder Training

A first application of our approach is the training of a deep generative model
using auto-associators. To this end, we propose to train lower layers using
auto-associators and to use an RBM for the generative top layer model.

We will compare three kinds of deep architectures: standard auto-encoders
with an RBM on top (vanilla AEs), the new auto-encoders with rich inference
(AERIes) suggested by our framework, also with an RBM on top, and, for
comparison, stacked restricted Boltzmann machines (SRBMs). All the models
used in this study use the same final generative model class for 𝑃 (x|h) so that
the comparison focuses on the training procedure, on equal ground. SRBMs
are considered the state of the art [HOT06, BLPL07]—although performance
can be increased using richer models [BCV12], our focus here is not on the
model but on the layer-wise training procedure for a given model class.
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In ideal circumstances, we would have compared the log-likelihood ob-
tained for each training algorithm with the optimum of a deep learning
procedure such as the full gradient ascent procedure (Section 2). Instead,
since this ideal deep learning procedure is intractable, SRBMs serve as a
reference.

The new AERIes are auto-encoders modified after the following remark:
the complexity of the inference model used for 𝑞(h|x) can be increased safely
without risking overfit and loss of generalization power, because 𝑞 is not part
of the final generative model, and is used only as a tool for optimization of the
generative model parameters. This would suggest that the complexity of 𝑞
could be greatly increased with only positive consequences on the performance
of the model.

AERIes exploit this possibility by having, in each layer, a modified auto-
associator with two hidden layers instead of one: x → h′ → h → x. The
generative part 𝑃𝜃𝐼 (x|h) will be equivalent to that of a regular auto-associator,
but the inference part 𝑞(h|x) will have greater representational power because
it includes the hidden layer h′ (see Figure 7).

We will also use the more usual auto-encoders composed of auto-associators
with one hidden layer and tied weights, commonly encountered in the litera-
ture (vanilla AE).

For all models, the deep architecture will be of depth 2. The stacked
RBMs will be made of two ordinary RBMs. For AERIes and vanilla AEs, the
lower part is made of a single auto-associator (modified for AERies), and the
generative top part is an RBM. (Thus they have one layer less than depicted
for the sake of generality in Figures 6 and 7.) For AERIes and vanilla AEs the
lower part of the model is trained using the usual backpropagation algorithm
with cross-entropy loss, which performs gradient ascent for the probability of
(25). The top RBM is then trained to maximize (12).

The competitiveness of each model will be evaluated through a compar-
ison in log-likelihood over a validation set distinct from the training set.
Comparisons are made for a given identical number of parameters of the
generative model6. Each model will be given equal chance to find a good
optimum in terms of the number of evaluations in a hyper-parameter selection
procedure by random search.

When implementing the training procedure proposed in Section 2, several
approximations are needed. An important one, compared to Theorem 1,
is that the distribution 𝑞(h|x) will not really be trained over all possible
conditional distributions for h knowing x. Next, training of the upper layers
will of course fail to reproduce the BLM perfectly. Moreover, auto-associators
use an x = x̃ approximation, cf. (25). We will study the effect of these

6Because we only consider the generative models obtained, 𝑞 is never taken into account
in the number of parameters of an auto-encoder or SRBM. However, the parameters of the
top RBM are taken into account as they are a necessary part of the generative model.
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Figure 6: Deep generative auto-encoder training scheme.

approximations.
Let us now provide more details for each model.

Stacked RBMs. For our comparisons, 1000 stacked RBMs were trained
using the procedure from [HOT06]. We used random search on the hyper-
parameters, which are: the sizes of the hidden layers, the CD learning rate,
and the number of CD epochs.

Vanilla auto-encoders. The general training algorithm for vanilla auto-
encoders is depicted in Figure 6. First an auto-associator is trained to
maximize the adaptation of the BLM upper bound for auto-associators
presented in (25). The maximization procedure itself is done with the
backpropagation algorithm and cross-entropy loss. The inference weights are
tied to the generative weights so that Wgen = W⊤

inf as is often the case in
practice. An ordinary RBM is used as a generative model on the top layer.

1000 deep generative auto-encoders were trained using random search on
the hyper-parameters. Because deep generative auto-encoders use an RBM
as the top layer, they use the same hyper-parameters as stacked RBMs, but
also backpropagation (BP) learning rate, BP epochs, and ANN init 𝜎 (i.e.
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Figure 7: Deep generative modified auto-encoder (AERI) training scheme.

the standard deviation of the gaussian used during initialization).

Auto-Encoders with Rich Inference (AERIes). The model and train-
ing scheme for AERIes are represented in Figure 7. Just as for vanilla
auto-encoders, we use the backpropagation algorithm and cross-entropy loss
to maximize the auto-encoder version (25) of the BLM upper bound on the
training set. No weights are tied, of course, as this does not make sense for
an auto-associator with different models for 𝑃 (x|h) and 𝑞(h|x). The top
RBM is trained afterwards. Hyper-parameters are the same as above, with
in addition the size of the new hidden layer h′.
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Figure 8: Comparison of the average validation log-likelihood for SRBMs,
vanilla AE, and AERIes on the Tea dataset.

Results

The results of the above comparisons on the Tea and Cmnist validation
datasets are given in Figures 8 and 9. For better readability, the Pareto
front7 for each model is given in Figures 10 and 11.

As expected, all models perform better than the baseline independent
Bernoulli model but have a lower likelihood than the perfect model8. Also,
SRBMs, vanilla AEs and AERIes perform better than a single RBM, which
can be seen as further evidence that the Tea and Cmnist are deep datasets.

Among deep models, vanilla auto-encoders achieve the lowest performance,
but outperform single RBMs significantly, which validates them not only as
generative models but also as deep generative models. Compared to SRBMs,
vanilla auto-encoders achieve almost identical performance but the algorithm

7The Pareto front is composed of all models which are not subsumed by other models
according to the number of parameters and the expected log-likelihood. A model is said to
be subsumed by another if it has strictly more parameters and a worse likelihood.

8Note that some instances are outperformed by the uniform coding scheme, which may
seem surprising. Because we are considering the average log-likelihood on a validation
set, if even one sample of the validation set happens to be given a low probability by the
model, the average log-likelihood will be arbitrarily low. In fact, because of roundoff errors
in the computation of the log-likelihood, a few models have a measured performance of
−∞. This does not affect the comparison of the models as it only affects instances for
which performance is already very low.
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Figure 9: Comparison of the average validation log-likelihood for SRBMs,
vanilla AE, and AERIes on the Cmnist dataset.
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Figure 10: Pareto fronts for the average validation log-likelihood and number
of parameters for SRBMs, deep generative auto-encoders, and modified deep
generative auto-encoders on the Tea dataset.
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Figure 11: Pareto fronts for the average validation log-likelihood and number
of parameters for SRBMs, deep generative auto-encoders, and modified deep
generative auto-encoders on the Cmnist dataset.

clearly suffers from local optima: most instances perform poorly and only a
handful achieve performance comparable to that of SRBMs or AERIes.

As for the auto-encoders with rich inference (AERIes), they are able
to outperform not only single RBMs and vanilla auto-encoders, but also
stacked RBMs, and do so consistently. This validates not only the general
deep learning procedure of Section 2, but arguably also the understanding of
auto-encoders in this framework.

The results confirm that a more universal model for 𝑞 can significantly
improve the performance of a model, as is clear from comparing the vanilla
and rich-inference auto-encoders. Let us insist that the rich-inference auto-
encoders and vanilla auto-encoders optimize over exactly the same set of
generative models with the same structure, and thus are facing exactly the
same optimization problem (4). Clearly the modified training procedure
yields improved values of the generative parameter 𝜃.

3.3 Layer-Wise Evaluation of Deep Belief Networks

As seen in section 2, the BLM upper bound 𝑈𝒟(𝜃𝐼) is the least upper bound
of the log-likelihood of deep generative models using some given 𝜃𝐼 in the
lower part of the model. This raises the question of whether it is a good
indicator of the final performance of 𝜃𝐼 .
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In this setting, there are a few approximations w.r.t. (10) and (12) that
need to be discussed. Another point is the intractability of the BLM upper
bound for models with many hidden variables, which leads us to propose and
test an estimator in Section 3.3.4, though the experiments considered here
were small enough not to need this unless otherwise specified.

We now look, in turn, at how the BLM upper bound can be applied to
log-likelihood estimation, and to hyper-parameter selection—which can be
considered part of the training procedure. We first discuss various possible
effects, before measuring them empirically.

3.3.1 Approximations in the BLM upper bound

Consider the maximization of (14). In practice, we do not perform a specific
maximization over 𝑞 to obtain the BLM as in (14), but rely on the training
procedure of 𝜃𝐼 to maximize it. Thus the 𝑞 resulting from a training procedure
is generally not the globally optimal 𝑞 from Theorem 1. In the experiments
we of course use the BLM upper bound with the value of 𝑞 resulting from
the actual training.

Definition 8. For 𝜃𝐼 and 𝑞 resulting from the training of a deep generative
model, let

𝒰𝒟,𝑞(𝜃𝐼) := Ex∼𝑃𝒟

[︃
log
∑︁
h

𝑃𝜃𝐼 (x|h)𝑞𝒟(h)

]︃
(34)

be the empirical BLM upper bound.

This definition makes no assumption about how 𝜃𝐼 and 𝑞 in the first layer
have been trained, and can be applied to any layer-wise training procedure,
such as SRBMs.

Ideally, this quantity should give us an idea of the final performance of
the deep architecture when we use 𝜃𝐼 on the bottom layer. But there are
several discrepancies between these BLM estimates and final performance.

A first question is the validity of the approximation (34). The BLM upper
bound 𝒰𝒟(𝜃𝐼) is obtained by maximization over all possible 𝑞 which is of
course untractable. The learned inference distribution 𝑞 used in practice is
only an approximation for two reasons: first, because the model for 𝑞 may
not cover all possible conditional distributions 𝑞(h|x), and, second, because
the training of 𝑞 can be imperfect. In effect 𝒰𝒟,𝑞(𝜃𝐼) is only a lower bound of
the BLM upper bound : 𝒰𝒟,𝑞(𝜃𝐼) 6 𝒰𝒟(𝜃𝐼).

Second, we can question the relationship between the (un-approximated)
BLM upper bound (14) and the final log-likelihood of the model. The BLM
bound is optimistic, and tight only when the upper part of the model manages
to reproduce the BLM perfectly. We should check how tight it is in practical
applications when the upper layer model for 𝑃 (h) is imperfect.
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In addition, as for any estimate from a training set, final performance
on validation and test sets might be different. Performance of a model on
the validation set is generally lower than on the training set. But on the
other hand, in our situation there is a specific regularizing effect of imperfect
training of the top layers. Indeed the BLM refers to a universal optimization
over all possible distributions on h and might therefore overfit more, hugging
the training set too closely. Thus if we did manage to reproduce the BLM
perfectly on the training set, it could well decrease performance on the
validation set. On the other hand, training the top layers to approximate the
BLM within a model class 𝑃𝜃𝐽 introduces further regularization and could
well yield higher final performance on the validation set than if the exact
BLM distribution had been used.

This latter regularization effect is relevant if we are to use the BLM upper
bound for hyper-parameter selection, a scenario in which regularization is
expected to play an important role.

We can therefore expect:

1. That the ideal BLM upper bound, being by definition optimistic, can
be higher that the final likelihood when the model obtained for 𝑃 (h) is
not perfect.

2. That the empirical bound obtained by using a given conditional distri-
bution 𝑞 will be lower than the ideal BLM upper bound either when 𝑞
belongs to a restricted class, or when 𝑞 is poorly trained.

3. That the ideal BLM upper bound on the training set may be either
higher or lower than actual performance on a validation set, because of
the regularization effect of imperfect top layer training.

All in all, the relationship between the empirical BLM upper bound used
in training, and the final log-likelihood on real data, results from several
effects going in both directions. This might affect whether the empirical BLM
upper bound can really be used to predict the future performance of a given
bottom layer setting.

3.3.2 A method for single-layer evaluation and layer-wise hyper-
parameter selection

In the context of deep architectures, hyper-parameter selection is a difficult
problem. It can involve as much as 50 hyper-parameters, some of them
only relevant conditionally to others [BBBK11, BB12]. To make matters
worse, evaluating the generative performance of such models is often in-
tractable. The evaluation is usually done w.r.t. classification performance as
in [LBLL09, BBBK11, BB12], sometimes complemented by a visual compar-
ison of samples from the model [HOT06, SH09]. In some rare instances, a
variational approximation of the log-likelihood is considered [SM08, SH09].
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These methods only consider evaluating the models after all layers have
been fully trained. However, since the training of deep architectures is done
in a layer-wise fashion, with some criterion greedily maximized at each step,
it would seem reasonable to perform a layer-wise evaluation. This would have
the advantage of reducing the size of the hyper-parameter search space from
exponential to linear in the number of layers.

We propose to first evaluate the performance of the lower layer, after it has
been trained, according to the BLM upper bound (34) (or an approximation
thereof) on the validation dataset 𝒟valid. The measure of performance
obtained can then be used as part of a larger hyper-parameter selection
algorithm such as [BB12, BBBK11]. This results in further optimization of
(10) over the hyper-parameter space and is therefore justified by Theorem 1.

Evaluating the top layer is less problematic: by definition, the top layer
is always a “shallow” model for which the true likelihood becomes more easily
tractable. For instance, although RBMs are well known to have an intractable
partition function which prevents their evaluation, several methods are able
to compute close approximations to the true likelihood (such as Annealed
Importance Sampling [Nea98, SM08]). The dataset to be evaluated with this
procedure will have to be a sample of

∑︀
x 𝑞(h|x)𝑃𝒟(x).

In summary, the evaluation of a two-layer generative model can be done
in a layer-wise manner:

1. Perform hyper-parameter selection on the lower layer using 𝒰𝜃𝐼 (𝒟)
as a performance measure (preferably on a validation rather than
training dataset, see below), and keep only the best possible lower
layers according to this criterion.

2. Perform hyper-parameter selection on the upper layer by evaluating the
true likelihood of validation data samples transformed by the inference
distribution, under the model of the top layer9.

Hyper-parameter selection was not used in our experiments, where we
simply used hyper-parameter random search. (This has allowed, in particular,
to check the robustness of the models, as AERIes have been found to perform
better than vanilla AEs on many more instances over hyper-parameter space.)

As mentioned earlier, in the context of representation learning the top
layer is irrelevant because the objective is not to train a generative model
but to get a better representation of the data. With the assumption that
good latent variables make good representations, this suggests that the BLM
upper bound can be used directly to select the best possible lower layers.

9This could lead to a stopping criterion when training a model with arbitrarily many
layers: for the upper layer, compare the likelihood of the best upper-model with the BLM
of the best possible next layer. If the BLM of the next layer is not significatively higher
than the likelihood of the upper-model, then we do not add another layer as it would not
help to achieve better performance.
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3.3.3 Testing the BLM and its approximations

We now present a series of tests to check whether the selection of lower layers
with higher values of the BLM actually results in higher log-likelihood for
the final deep generative models, and to assess the quantitative importance
of each of the BLM approximations discussed earlier.

For each training algorithm (SRBMs, RBMs, AEs, AERIes), the compari-
son is done using 1000 models trained with hyper-parameters selected through
random search as before. The empirical BLM upper bound is computed using
(34) above.

Training BLM upper bound vs training log-likelihood. We first
compare the value of the empirical BLM upper bound 𝒰𝜃𝐼 (𝒟train) over the
training set, with the actual log-likelihood of the trained model on the training
set. This is an evaluation of how optimistic the BLM is for a given dataset,
by checking how closely the training of the upper layers manages to match
the target BLM distribution on h. This is also the occasion to check the
effect of using the 𝑞(h|x) resulting from actual learning, instead of the best 𝑞
in all possible conditional distributions.

In addition, as discussed below, this comparison can be used as a criterion
to determine whether more layers should be added to the model.

The results are given in Figures 12 and 13 for SRBMs, and 14 and 15
for AERIes. We see that the empirical BLM upper bound (34) is a good
predictor of the future log-likelihood of the full model on the training set.
This shows that the approximations w.r.t. the optimality of the top layer and
the universality of 𝑞 can be dealt with in practice.

For AERIes, a few models with low performance have a poor estimation
of the BLM upper bound (estimated to be lower than the actual likelihood),
presumably because of a bad approximation in the learning of 𝑞. This will
not affect model selection procedures as it only concerns models with very
low performance, which are to be discarded.

If the top part of the model were not powerful enough (e.g., if the network
is not deep enough), the BLM upper bound would be too optimistic and
thus significantly higher than the final log-likelihood of the model. To further
test this intuition we now compare the BLM upper bound of the bottom
layer with the log-likelihood obtained by a shallow architecture with only one
layer ; the difference would give an indication of how much could be gained by
adding top layers. Figures 16 and 17 compare the expected log-likelihood10

of the training set under the 1000 RBMs previously trained with the BLM
upper bound11 for a generative model using this RBM as first layer. The

10The log-likelihood reported in this specific experiment is in fact obtained with Annealed
Importance Sampling (AIS).

11The BLM upper bound value given in this particular experiment is in fact a close
approximation (see Section 3.3.4).
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Figure 12: Comparison of the BLM upper bound on the first layer and the
final log-likelihood on the Tea training dataset, for 1000 2-layer SRBMs

−75 −70 −65 −60 −55 −50 −45 −40 −35
Upper Bound

−75

−70

−65

−60

−55

−50

−45

−40

−35

E
T
ra
in
[l
og
P
(x

)]

Figure 13: Comparison of the BLM upper bound on the first layer and the
final log-likelihood on the Cmnist training dataset, for 1000 2-layer SRBMs
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Figure 14: Comparison of the BLM upper bound on the first layer and the
final log-likelihood on the Tea training dataset, for 1000 2-layer AERIes
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Figure 15: Comparison of the BLM upper bound on the first layer and the
final log-likelihood on the Cmnist training dataset, for 1000 2-layer AERIes
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Figure 16: BLM on a too shallow model: comparison of the BLM upper
bound and the AIS log-likelihood of an RBM on the Tea training dataset

results contrast with the previous ones and confirm that final performance is
below the BLM upper bound when the model does not have enough layers.

The alignment in Figures 12 and 13 can therefore be seen as a confirmation
that the Tea and Cmnist datasets would not benefit from a third layer.

Thus, the BLM upper bound could be used as a test for the opportunity
of adding layers to a model.

Training BLM upper bound vs validation log-likelihood. We now
compare the training BLM upper bound with the log-likelihood on a validation
set distinct from the training set: this tests whether the BLM obtained
during training is a good indication of the final performance of a bottom
layer parameter.

As discussed earlier, because the BLM makes an assumption where there is
no regularization, using the training BLM upper bound to predict performance
on a validation set could be too optimistic: therefore we expect the validation
log-likelihood to be somewhat lower than the training BLM upper bound.
(Although, paradoxically, this can be somewhat counterbalanced by imperfect
training of the upper layers, as mentioned above.)

The results are reported in Figures 18 and 19 and confirm that the
training BLM is an upper bound of the validation log-likelihood. As for
regularization, we can see that on the Cmnist dataset where there are 4000
samples, generalization is not very difficult: the optimal 𝑃 (h) for the training
set used by the BLM is in fact almost optimal for the validation set too. On
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Figure 17: BLM on a too shallow model: Comparison of the BLM upper
bound and the AIS log-likelihood of an RBM on the Cmnist training dataset
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Figure 18: Training BLM upper bound vs validation log-likelihood on the
Tea training dataset
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Figure 19: Training BLM upper bound vs validation log-likelihood on the
Cmnist training dataset

the Tea dataset, the picture is somewhat different: there is a gap between
the training upper-bound and the validation log-likelihood. This can be
attributed to the increased importance of regularization on this dataset in
which the training set contains only 81 samples.

Although the training BLM upper bound can therefore not be considered
a good predictor of the validation log-likelihood, it is still a monotonous
function of the validation log-likelihood: as such it can still be used for
comparing parameter settings and for hyper-parameter selection.

Feeding the validation dataset to the BLM. Predictivity of the BLM
(e.g., for hyper-parameter selection) can be improved by feeding the validation
rather than training set to the inference distribution and the BLM.

In the cases above we examined the predictivity of the BLM obtained
during training, on final performance on a validation dataset. We have seen
that the training BLM is an imperfect predictor of this performance, notably
because of lack of regularization in the BLM optimistic assumption, and
because we use an inference distribution 𝑞 maximized over the training set.

Some of these effects can easily be predicted by feeding the validation
set to the BLM and the inference part of the model during hyper-parameter
selection, as follows.

We call validation BLM upper bound the BLM upper bound obtained by
using the validation dataset instead of 𝒟 in (34). Note that the values 𝑞 and 𝜃𝐼
are still those obtained from training on the training dataset. This parallels
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Figure 20: Validation upper bound vs log-likelihood on the Tea validation
dataset

the validation step for auto-encoders, in which, of course, reconstruction
performance on a validation dataset is done by feeding this same dataset to
the network.

We now compare the validation BLM upper bound to the log-likelihood
of the validation dataset, to see if it qualifies as a reasonable proxy.

The results are reported in Figures 20 and 21. As predicted, the validation
BLM upper bound is a better estimator of the validation log-likelihood
(compare Figures 18 and 19).

We can see that several models have a validation log-likelihood higher
than the validation BLM upper bound, which might seem paradoxical. This
is simply because the validation BLM upper bound still uses the parameters
trained on the training set and thus is not formally an upper bound.

The better overall approximation of the validation log-likelihood seems to
indicate that performing hyper-parameter selection with the validation BLM
upper bound can better account for generalization and regularization.

3.3.4 Approximating the BLM for larger models

The experimental setting considered here was small enough to allow for an
exact computation of the various BLM bounds by summing over all possible
states of the hidden variable h. However the exact computation of the BLM
upper bound using 𝒰𝒟,𝑞(𝜃𝐼) as in (34) is not always possible because the
number of terms in this sum is exponential in the dimension of the hidden
layer h.
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Figure 21: Validation upper bound vs log-likelihood on the Cmnist validation
dataset

In this situation we can use a sampling approach. For each data sample
x̃, we can take 𝐾 samples from each mode of the BLM distribution 𝑞𝒟 (one
mode for each data sample x̃) to obtain an approximation of the upper bound
in 𝒪(𝐾×𝑁2) where 𝑁 is the size of the validation set. (Since the practitioner
can choose the size of the validation set which need not necessarily be as
large as the training or test sets, we do not consider the 𝑁2 factor a major
hurdle.)

Definition 9. For 𝜃𝐼 and 𝑞 resulting from the training of a deep generative
model, let

ˆ̂𝒰𝒟,𝑞(𝜃𝐼) := Ex∼𝑃𝒟

[︃
log
∑︁
x̃

𝐾∑︁
𝑘=1

𝑃𝜃𝐼 (x|h)𝑞(h|x̃)𝑃𝒟(x̃)

]︃
(35)

where for each x̃ and 𝑘, h is sampled from 𝑞(h|x̃).

To assess the accuracy of this approximation, we take 𝐾 = 1 and compare
the values of ˆ̂𝒰𝒟,𝑞(𝜃𝐼) and of 𝒰𝒟,𝑞(𝜃𝐼), on the Cmnist and Tea training
datasets. The results are reported in Figures 22 and 23 for all three models
(vanilla AEs, AERIes, and SRBMs) superimposed, showing good agreement.

Conclusions

The new layer-wise approach we propose to train deep generative models is
based on an optimistic criterion, the BLM upper bound, in which we suppose
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Figure 22: Approximation of the training BLM upper bound on the Tea
training dataset
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Figure 23: Approximation of the training BLM upper bound on the the
Cmnist training dataset
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that learning will be successful for upper layers of the model. Provided this
optimism is justified a posteriori and a good enough model is found for the
upper layers, the resulting deep generative model is provably close to optimal.
When optimism is not justified, we provide an explicit bound on the loss of
performance.

This provides a new justification for auto-encoder training and fine-tuning,
as the training of the lower part of a deep generative model, optimized using
a lower bound on the BLM.

This new framework for training deep generative models highlights the
importance of using richer models when performing inference, contrary to
current practice. This is consistent with the intuition that it is much harder
to guess the underlying structure by looking at the data, than to derive the
data from the hidden structure once it is known.

This possibility is tested empirically with auto-encoders with rich inference
(AERIes) which are completed with a top-RBM to create deep generative
models: these are then able to outperform current state of the art (stacked
RBMs) on two different deep datasets.

The BLM upper bound is also found to be a good layer-wise proxy to
evaluate the log-likelihood of future models for a given lower layer setting,
and as such is a relevant means of hyper-parameter selection.

This opens new avenues of research, for instance in the design of algorithms
to learn features in the lower part of the model, or in the possibility to consider
feature extraction as a partial deep generative model in which the upper part
of the model is temporarily left unspecified.
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