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Abstract

We work in the density model of random groups. We prove that they sat-
isfy an isoperimetric inequality with sharp constant 1− 2d depending upon
the density parameter d. This implies in particular a property generalizing
the ordinary C ′ small cancellation condition, which could be termed “macro-
scopic cancellation”. This also sharpens the evaluation of the hyperbolicity
constant δ.

As a consequence we get that the standard presentation of a random
group at density d < 1/5 satisfies the Dehn algorithm and Greendlinger’s
Lemma, and that it does not for d > 1/5.

For this we establish a version of the local-global principle for hyperbolic
spaces (Cartan-Hadamard-Gromov theorem) involving arbitrarily small loss
in the isoperimetric constant.

Statements

Gromov introduced in [Gro93] the so-called density model of random groups, which
allows the study of generic groups with a very precise control on the number of
relators put in the group, depending on a density parameter d.

A set of m generators a1, . . . , am being fixed, this model consists in choosing a
(large) length ℓ and a density parameter 0 6 d 6 1, and choosing at random a set
R of (2m − 1)dℓ reduced words of length ℓ. The random group is then the group
given by the presentation 〈 a1, . . . , am | R 〉. (Recall a word is reduced if it does not
contain a generator immediately followed by its inverse).

In this model, we say that a property occurs with overwhelming probability if
its probability of occurrence tends to 1 as ℓ → ∞ (everything else being fixed).

The basic intuition behind the model is that at density d, subwords of length
(d − ε)ℓ of the relators will exhaust all possible reduced words of this length.
Also, at density d, with overwhelming probability there are two relators sharing a
subword of length (2d− ε)ℓ. We refer to [Gro93], [Ghy03] or [Oll-b] for a general
discussion on random groups and the density model.
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The interest of this way to measure the number of relators in a presentation is
largely established by the following foundational theorem, due to Gromov ([Gro93],
see also [Oll04]).

Theorem 1 (M. Gromov) –
If d < 1/2, with overwhelming probability a random group at density d is

infinite and hyperbolic.
If d > 1/2, with overwhelming probability a random group at density d is either

{e} or Z/2Z.

(Occurrence of Z/2Z of course corresponds to even ℓ.)
Other properties of random groups are known, some of which depending on the

density parameter (works of Arzhantseva, Champetier, Gromov, Ollivier, Ol’shanksĭı,
Żuk; see references in [Ghy03, Oll04, Oll-b]). The construction can be modified
and iterated in various ways to achieve specific goals [Gro03].

Hyperbolicity for d < 1/2 is achieved by proving that van Kampen diagrams
satisfy some isoperimetric inequality (we refer to [LS77] for definitions about van
Kampen diagrams and to [Sho91] for the equivalence between hyperbolicity and
isoperimetry of van Kampen diagrams). The main result of this paper is a sharp
version of this isoperimetric inequality.

Theorem 2 – For every ε > 0, with overwhelming probability, every reduced
van Kampen diagram D in a random group at density d satisfies

|∂D| > (1− 2d− ε) ℓ |D|

This was already known to hold for diagrams of size bounded a priori (see
Theorem 14), but the passage to all diagrams involves the local-global hyperbolic
principle of Gromov (see e.g. [Pap96] for a constructive statement), which implies
a substantial loss in the constants. After using this, the only constant available
for all diagrams was something like (1− 2d)/1020. We solve the problem by giving
a variant of the principle best suited to our needs (Theorem 8), which may have
independent interest.

This inequality is sharp: indeed, at density d there are very probably two
relators sharing a subword of length (2d − ε)ℓ, so that they can be arranged to
form a 2-face van Kampen diagram of boundary length 2(1−2d+ε)ℓ. At density d
one can always glue some new relator to any diagram along a path of length (d−ε)ℓ,
so that adding relators to this example provides an arbitrarily large diagram with
the same isoperimetric constant.

Corollary 3 – At density d, with overwhelming probability the hyperbolicity
constant of a random group satisfies δ 6 4ℓ/(1− 2d).

Corollary 4 – For every ε > 0, with overwhelming probability, random groups
at density d satisfy the following: Let D1 and D2 be two reduced van Kampen
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diagrams, both of them homeomorphic to a disk. Suppose that their boundaries
share a common reduced subword w. Suppose moreover that the diagram D =
D1 ∪w D2 obtained by gluing D1 and D2 along w is still reduced. Then we have

|w| 6 d (|∂D1|+ |∂D2|) (1 + ε)

When D1 and D2 each consist of only one face, this exactly states that random
groups satisfy the C ′(2d) small cancellation property (which implies hyperbolicity
only when d < 1/12). So this property is a kind of “macroscopic cancellation”
(though not “small” cancellation when d is close to 1/2).

Our last application of Theorem 2 has to do with the Dehn algorithm and
Greendlinger’s Lemma, which are classical properties considered in combinatorial
group theory (see [LS77], [Gre60]).

There are several versions of Greendlinger’s Lemma. We will not use the
strongest version which holds for C ′(1/6) presentations ([LS77], Theorem V.4.5).
The exact property we will use is the following.

Given a face f of a van Kampen diagram D, a countour segment of f in D is
a subset of edges of ∂f ∩ ∂D which are consecutive in the boundary path of D.

Definition 5 (Greendlinger’s property) – We say that a group presen-
tation satisfies the Greendlinger property if the following holds: For any reduced
van Kampen diagram D w.r.t. the presentation, with reduced boundary word, ei-
ther D has only one face or there exist at least two faces of D having contour
segments of lengths more than half their respective lengths.

Of course this implies that Dehn’s algorithm works.
One might expect from Theorem 2 that the Dehn algorithm holds as soon as

d < 1/4. Indeed, d < 1/4 implies that some face of any reduced diagram has at
least ℓ/2 boundary edges; but these might not be consecutive. Actually the critical
density is 1/5.

Theorem 6 – If d < 1/5, with overwhelming probability, the standard pre-
sentation of a random group satisfies the Dehn algorithm and the Greendlinger
property.

More precisely, for any ε > 0, with overwhelming probability, in every reduced
van Kampen diagram with reduced boundary word, with at least two faces, there
are at least two faces having a contour segment of length more than ℓ

2
+ ℓ

2
(1−5d−ε).

If d > 1/5, with overwhelming probability, the standard presentation of a
random group does not satisfy the Dehn algorithm nor the Greendlinger property.

See p. 13 for a simple example of a van Kampen diagram violating the Greendlinger
property when d > 1/5.
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Discussion of the results. The interest of the sharp constant depending on
density in Theorem 2, compared to the 1020 times smaller previous estimate, is
not only aethestic. Let us stress that the Dehn algorithm could not be obtained
with the previous constant, if only for the reason that (1−2d)/1020 is never greater
than 1/2... So the improvement allows qualitative progress.

Both Theorem 2 and the Greendlinger property will be crucially used in [OW]
to show that random groups at densities < 1/6 act freely cocompactly on CAT (0)
cube complexes and satisfy the Haagerup property.

Corollary 4 is probably unimportant but might justify to some extent the term
“cancellation on average” applied to the density model (although this is certainly
not “small cancellation on average”, since when d is close to 1/2 the cancellation
becomes arbitrarily large).

The estimate of the hyperbolicity constant in Corollary 3 is of course not qual-
itatively different from the previous, 1020 times larger one.

Theorem 6 refers to the random presentation obtained by applying directly the
definition of the density model. Note that in any δ-hyperbolic group, the set of
words of length at most 8δ representing the identity constitutes a presentation of
the group satisfying the Dehn algorithm ([Sho91], Theorem 2.12); however, this
set of words is quite large, and computing it is feasible but tedious. Moreover this
set of words does not in general satisfy the Greendlinger property, which is what
is really needed in lots of applications.

What happens at d = 1/5 is not known (just as what happens for infiniteness
or triviality at d = 1/2), but probably depends on more precise subexponential
terms in the number of relators of the presentation, and so might not be very
interesting.

Theorem 2 seems to remain valid in more general random group models when
the lengths of the relators are not the same but lie within some bounded ratio
(see [Oll04]). However I do not know if this is the case for Theorem 6.

Theorem 2 may also help show that random groups at different densities are
indeed different.

Acknowledgements. Part of the ideas presented here arose during my stay in
Montréal in July 2004 at the invitation of Daniel T. Wise, whom I would like to
thank for helpful discussions and his so warm welcome. I would also like to thank
Thomas Delzant who asked for the sharp isoperimetric constant in random groups,
and insisted on the importance of the Dehn algorithm.

Local-global principles

Following Gromov ([Gro87], 2.3.F, 6.8.M), there have been lots of somewhat dif-
ferent phrasings of the local-global principle for hyperbolic groups (chapter 8 of
[Bow91], [Ols91], [Bow95], [Pap96]). This principle states that to ensure hyper-
bolicity, it is enough to check the isoperimetric inequality on a finite number of
diagrams.
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We give here a version which can be very neatly applied in our context, and
which involves arbitrarily small loss in the isoperimetric constant. Though this
version is not difficult to prove using previously stated results, it does not seem to
be a formal corollary thereof.

Definition 7 – Let D be a van Kampen diagram with respect to some presen-
tation. The area A(D) of D is the sum of the boundary lengths of all faces of D.

We have advocated elsewhere ([Oll05], [Oll-a]) that this is the right way to
measure area in a context of linear isoperimetric inequalities involving relators with
very different lengths. That it allows a formulation of the local-global principle
without loss in the constant is a further argument in this direction.

Theorem 8 – Let G = 〈 a1, . . . , am | R 〉 be a finite group presentation and let
ℓ1, ℓ2 be the minimal and maximal lengths of a relator in R.

Let P be a class of van Kampen diagrams, such that any subdiagram of a
diagram in P lies in P .

Let C > 0. Choose ε > 0. Suppose that for some K > 1050 (ℓ2/ℓ1)
3 ε−2 C−3,

any van Kampen diagram D in P of area at most Kℓ2 satisfies

|∂D| > C A(D)

Then any van Kampen diagram D in P satisfies

|∂D| > (C − ε)A(D)

In particular, if P is such that for each reduced word w representing the identity
in G, there is at least one diagram in P spanning w, then G is hyperbolic.

It is not clear whether ℓ2/ℓ1 really has an impact on the constants.
Typical useful examples of the class P are “reduced”, or “of minimal area”, or

“of minimal number of faces” (minimal for a given boundary word).
This theorem may allow to extend the scope of the density model by taking

relators of length between ℓ and ℓ1+α for some positive α, instead of taking relators
of length exactly ℓ (see the discussions in [Oll04]).

We are going to state closer and closer propositions to the theorem. The first
one is a variant on Papasoglu’s exposition [Pap96] as modified in [Oll04].

Let X be a complex of dimension 2. A circle drawn in X is a sequence of
consecutive edges such that the endpoint of the last edge is the starting point of
the first one. A disk drawn in X is a cellular map (maybe dimension-decreasing)
from a cellular disk to X.

Let f be a face of X. The combinatorial length Lc of f is defined as the number
of edges of its boundary. The combinatorial area Ac of f is defined as Lc(f)

2.
Let D be a disk drawn in X. The combinatorial length Lc of D is the length

of its boundary. The combinatorial area Ac of D is the sum of the combinatorial
areas of its faces.
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We then have ([Oll04], Proposition 42, p. 666):

Proposition 9 – Let X be a complex of dimension 2, simply connected. Sup-
pose that a face of X has at most ℓ edges. Let P be a property of disks in X such
that any subdisk of a disk having P also has P .

Suppose that for some integer k > 1010ℓ, any disk D drawn in X having P ,
whose combinatorial area Ac(D) lies between k2/4 and 480k2 satisfies

Lc(D)2 > 2 · 1014 Ac(D)

Then any disk D drawn in X, having P , with Ac(D) > k2, satisfies

Lc(D) > Ac(D)/104k

This allows to prove one more step:

Proposition 10 – Let G = 〈 a1, . . . , am | R 〉 be a finite presentation and let
ℓ1, ℓ2 be the minimal and maximal lengths of a relator in R.

Let P be a class of van Kampen diagrams, such that any subdiagram of a
diagram in P lies in P .

Let C > 0. Suppose that for some K > 1023 (ℓ2/ℓ1)C
−2, any van Kampen

diagram D in P of area A(D) at most Kℓ2 satisfies

|∂D| > C A(D)

Then any van Kampen diagram D in P satisfies

|∂D| > C ′ A(D)

with C ′ = C (ℓ1/ℓ2)/10
15.

Proof – We have Ac(D)/ℓ2 6 A(D) 6 Ac(D)/ℓ1 for any diagram D in class P
(remember A(D) is the sum of the lengths of the faces whereas Ac(D) is the sum
of the squares of these lengths).

Set k2 = Kℓ1ℓ2/480. Let D be a van Kampen diagram such that k2/4 6

Ac(D) 6 480k2. We have A(D) 6 Ac(D)/ℓ1 6 Kℓ2. So the assumption of the
proposition states that Lc(D) = |∂D| > CA(D). Thus

Lc(D)2 > C2A(D)2 > C2Ac(D)2/ℓ22 > C2Ac(D)k2/4ℓ22 = Ac(D)C2K(ℓ1/ℓ2)/1920

So if k > 1010ℓ2 and C2K(ℓ1/ℓ2)/1920 > 2 · 1014 then the assumptions of
Proposition 9 are fulfilled. Taking K = 1023 (ℓ2/ℓ1)/C

2 is enough to ensure this is
the case. The consequence of Proposition 9 is then that

|∂D| = Lc(D) > Ac(D)/104k > A(D) ℓ1/10
4k

and unwinding the constants shows that ℓ1/10
4k > C (ℓ1/ℓ2)/10

15. �

6



Going on with our approximations of Theorem 8, we now know that there exists
an isoperimetric constant C ′, but its value may be much smaller than the original
constant C. We solve the problem by a kind of bootstrapping: we will re-do some
kind of local-global passage, using our knowledge of hyperbolicity of the group.
This will allow to keep the constants tight.

We need a lemma from [Oll05].
The distance to boundary of a face of a van Kampen diagram is the minimal

length of a sequence of faces adjacent by an edge, beginning with the given face
and ending with a face adjacent to the boundary (so that a boundary face is at
distance 1 from the boundary).

Let C ′ be the isoperimetric constant provided by Proposition 10, so that any
diagram D in P satisfies |∂D| > C ′A(D). Set

α = 1/ log(1/(1− C ′)) 6 1/C ′

The following is Lemma 10 of [Oll05], where we replaced “minimal” by “in class
P ”.

Lemma 11 – Let D be a van Kampen diagram in class P . Then D can be
partitioned into two diagrams D′, D′′ by cutting it along a path of length at most
ℓ2 + 2αℓ2 log(A(D)/ℓ2) with endpoints on the boundary of D, such that each of
D′ and D′′ contains at least one quarter of the boundary of D.

With this we can get closer to Theorem 8.

Proposition 12 – Let G = 〈 a1, . . . , am | R 〉 be a finite presentation and let
ℓ1, ℓ2 be the minimal and maximal lengths of a relator in R.

Let P be a class of van Kampen diagrams, such that any subdiagram of a
diagram in P lies in P .

Let C,C ′ > 0. Choose some ε > 0. Suppose that any van Kampen diagram D
in P satisfies

|∂D| > C ′A(D)

and that, for some A > 50/(εC ′)2, any van Kampen diagram D in P having
boundary length at most Aℓ2 satisfies

|∂D| > CA(D)

Then any van Kampen diagram D in P , with boundary length at most 7Aℓ2/6,
satisfies

|∂D| > (C − ε)A(D)

Proof – Let D be a van Kampen diagram in P , of boundary length between Aℓ2
and 7Aℓ2/6. By the isoperimetry assumption for all diagrams we have A(D) 6

7Aℓ2/6C
′.

By Lemma 11, we can partition D into two diagrams D′ and D′′, each of
them containing at least one quarter of the boundary length of D. So we have
|∂D′| 6 3 |∂D| /4 + ℓ2(1 + 2α log(7A/6C ′)) 6 ℓ2 (7A/8 + 1 + 2α log(7A/6C ′)) and
likewise for D′′.
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Choose A large enough (depending only on C ′) so that 1 + 2α log(7A/6C ′) 6
A/8. Then both D′ and D′′ have boundary length at most Aℓ2. So by assumption
we have

|∂D′| > CA(D′) and |∂D′′| > CA(D′′)

(note the occurrence of C and not C ′).
Now we choose A large enough (again depending only on C ′) so that 2 +

4α log(7A/6C ′) 6 εA (if we remember that α 6 1/C ′, taking A = 50/(εC ′)2 is
enough). We have

|∂D| = |∂D′|+ |∂D′′| − 2 |∂D′ ∩ ∂D′′|

> |∂D′|+ |∂D′′| − ℓ2 (2 + 4α log(7A/6C ′))

> C (A(D′) +A(D′′))− εAℓ2

> (C − ε)A(D)

since A(D′) +A(D′′) = A(D) > |∂D| > Aℓ2. �

The last approximation to Theorem 8 is the following:

Proposition 13 – Let G = 〈 a1, . . . , am | R 〉 be a finite presentation and let
ℓ1, ℓ2 be the minimal and maximal lengths of a relator in R.

Let P be a class of van Kampen diagrams, such that any subdiagram of a
diagram in P lies in P .

Let C,C ′ > 0. Choose some ε > 0. Suppose that any van Kampen diagram D
in P satisfies

|∂D| > C ′A(D)

and that, for some K > 50/(ε2C ′3), any van Kampen diagram D in P having area
at most Kℓ2 satisfies

|∂D| > CA(D)

Then any van Kampen diagram D in P satisfies

|∂D| > (C − 14ε)A(D)

Proof – Set A = C ′K. Let D be a diagram in P of boundary length at most
Aℓ2. By the assumption on all diagrams, D has area at most Aℓ2/C

′ = Kℓ2 so
that by the assumption on small diagrams we have |∂D| > CA(D). In particular,
the assumptions of Proposition 12 are fulfilled.

So this proposition implies that diagrams D in P of area at most 7Aℓ2/6
satisfy |∂D| > (C − ε)A(D). This means that the assumptions of Proposition 12
are fulfilled with the new parameters A1 = 7A/6, ε1 = ε(6/7)1/2 and C1 = C − ε
instead of A, ε, C, and with the same C ′ (these new parameters indeed satisfy
A1 > 50/(ε1C

′)2).
So applying Proposition 12 again, we get that diagrams D in P of area at most

A2 = Aℓ2(7/6)
2 satisfy |∂D| > C2A(D) where C2 = C1 − ε1.
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By induction, we get that diagrams D in P of area at most Aℓ2(7/6)
k satisfy

|∂D| >

(

C − ε

k−1
∑

i=0

(6/7)i/2

)

A(D)

and we conclude by the inequality
∑

∞

i=0
(6/7)i/2 < 14. �

Proof of Theorem 8 – Applying Proposition 10 (which is allowed since
1050 (ℓ2/ℓ1)

3 ε−2 C−3 > 1023 (ℓ2/ℓ1)C
−2), we get that any van Kampen diagram

D in P satisfies |∂D| > C ′A(D) where C ′ = C (ℓ1/ℓ2)/10
15. We conclude with

Proposition 13 (where we replace ε with ε/14). �

Proof of Theorem 2

Now Theorem 2 is an easy consequence of Theorem 8 and already known facts
about random groups. First, we recall the result from [Gro93] (see also [Oll04]) on
diagrams of bounded size.

Suppose we are given a random presentation at density d, by reduced relators
of length ℓ.

Theorem 14 (M. Gromov) – For every ε > 0 and every K ∈ N, with
overwhelming probability, every reduced van Kampen diagram with at most K
faces satisfies

|∂D| > (1− 2d− ε) ℓ |D|

Of course, the point is that the overwhelming probability is a priori not uniform
in K.
Proof – We only have to change a little bit the conclusion of the proof in [Oll04],
p. 613. It is proven there that if D is a reduced van Kampen diagram involving
n 6 |D| distinct relators r1, . . . , rn, with relator ri appearing mi times in the
diagram (we can assume m1 > . . . > mn), then there exist numbers di, 1 6 i 6 n
such that:

|∂D| > (1− 2d) ℓ |D|+ 2
∑

di(mi −mi+1)

and such that the probability of this situation is at most (2m)inf di ([Oll04], p. 613).
In particular, for fixed ε, with overwhelming probability we can suppose that
inf di > −ℓε/2.

If all di’s are non-negative, then we get |∂D| > (1− 2d) ℓ |D| as needed.
Otherwise, as 1 6 mi 6 |D| and mi > mi+1 we have

∑

di(mi − mi+1) >

|D| inf di and so

|∂D| > (1− 2d) ℓ |D|+ 2 |D| inf di > (1− 2d− ε) ℓ |D|

�
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Proof of Theorem 2 – Theorem 2 now is an immediate consequence of
Theorem 14 and Theorem 8 (where the class P is the class of all reduced diagrams).
�

Proof of Corollary 3 – For Corollary 3 we use the following proposi-
tion, which is only a weaker version, adapted to our vocabulary, of Lemma 3.11
of [Cha94]:

Proposition 15 – Suppose that a finite group presentation satisfies the follow-
ing: for every reduced word w representing the identity in the group, there exists
a van Kampen diagram D spanning w with |∂D| > CA(D). Let λ be the maximal
length of a relator in the presentation.

Then the group is δ-hyperbolic with δ < 4λ/C (w.r.t. the metric defined by
the generators in the presentation).

Indeed, Lemma 3.11 of [Cha94] states that for some notion of area areaChampetier,
the isoperimetric inequality areaChampetier(D) 6 α |∂D| for van Kampen diagrams
(actually for curves in a geodesic metric space) implies δ-hyperbolicity with δ 6

20α.
The notion of area used by Champetier (Definition 3.2 in [Cha94]) is different

from A(D) as defined in this paper. However it is noted by Champetier that a
curve of length L has areaChampetier 6 L2/2π. So for a van Kampen diagram D we
have

areaChampetier(D) 6
∑

f face of D

|∂f |2

2π
6

λ

2π

∑

f face of D

|∂f | =
λA(D)

2π

Consequently the inequality |∂D| > CA(D) implies that the Champetier as-
sumption areaChampetier(D) 6 α |∂D| holds with α = λ/(2Cπ), hence Proposi-
tion 15 noting that 20/2π < 4.

Corollary 3 now follows from Theorem 2 and Proposition 15, choosing ε small
enough. �

Proof of Corollary 4 – Corollary 4 is easy. Let D = D1 ∪w D2. Since
|∂D| > (1−2d−ε) ℓ |D|, the number of internal edges of D is at most (d+ε/2)ℓ |D|.
So a fortiori |w| 6 (d+ ε/2)ℓ |D|. Now

|w| 6 (d+ ε/2) ℓ |D| 6
d+ ε

1− 2d− ε
|∂D|

=
d+ ε/2

1− 2d− ε
(|∂D1|+ |∂D2| − 2 |w|)

and so
|w| 6 (d+ ε/2) (|∂D1|+ |∂D2|)

as needed. �
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Dehn’s algorithm and Greendlinger’s Property

We now turn to the proof of Theorem 6. Since the Greendlinger property is
stronger than the Dehn algorithm, it suffices to prove the former for d < 1/5 and
disprove the latter for d > 1/5.

Greendlinger’s Property for d < 1/5. We begin by a lemma which is weaker
in the sense that we do not ask for the boundary edges to be consecutive. We will
then conclude by a standard argument.

Lemma 16 – For any ε > 0, with overwhelming probability, at density d the
following holds:

Let D be a reduced van Kampen diagram with at least two faces. There exist
two faces of D each having at least ℓ(1 − 5d/2 − ε) edges on the boundary of D
(maybe not consecutive).

Observe that when d < 1/5 this is more than ℓ/2 (for small enough ε depending
on 1/5 − d). This lemma is also valid at densities larger than 1/5 but becomes
trivial at d = 2/5.
Proof of the lemma – Let D be a reduced van Kampen diagram with at
least two faces.

First, note that it is enough to consider the case when D is homeomorphic
to a disk. Otherwise, decompose D as the union of “filaments” and maximal
parts homeomorphic to a disk. Adding or removing filaments does not change the
property of a face having so many edges on the boundary of the diagram.

Let f be a face of D having the greatest number of edges on the boundary.
Say f has αℓ edges on the boundary. Suppose that any face other than f has no
more than βℓ edges on the boundary. We want to show that β > 1− 5d/2− ε. So
suppose that β < 1− 5d/2− ε. (The reader may find more convenient to read the
following skipping the ε’s.)

Consider also the (maybe not connected, but this does not matter) diagram D′

obtained by removing face f from D. We have |∂D′| = |∂D|+ ℓ− 2αℓ.
By definition of α and β, and since D is homeomorphic to a disk, we have

|∂D| 6 βℓ(|D| − 1) + αℓ. Consequently |∂D′| 6 βℓ(|D| − 1) + ℓ− αℓ.
But by Theorem 2, with overwhelming probability we can suppose that we

have |∂D| > (1 − 2d − ε/2) ℓ |D| and |∂D′| > (1 − 2d − ε/2) ℓ |D′| = (1 − 2d −
ε/2) ℓ (|D| − 1). So combining these inequalities we get

(1− 2d− ε/2) |D| 6 β(|D| − 1) + α

(1− 2d− ε/2) (|D| − 1) 6 β(|D| − 1) + 1− α

or, since we assumed by contradiction that β < 1− 5d/2− ε,

(1− 2d− ε/2) |D| < (1− 5d/2− ε) (|D| − 1) + α

(1− 2d− ε/2) (|D| − 1) < (1− 5d/2− ε) (|D| − 1) + 1− α
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which yield respectively

|D| <
α + 5d/2− 1 + ε

d/2 + ε/2
(1)

|D| <
d/2 + 1− α + ε/2

d/2 + ε/2
(2)

Either α 6 1− d− ε/4 or α > 1− d− ε/4. In any case, one of (1) or (2) gives

|D| <
3d/2 + 3ε/4

d/2 + ε/2
< 3

(generally, a face having more than (1 − d)ℓ on the boundary is the frontier at
which it is more interesting to remove this face before applying Theorem 2).

The case |D| 6 2 is easily treated by Theorem 2. So we get a contradiction,
and the lemma is proven. �

This somewhat obscure proof and the role of 1/5 will become clearer in the
next paragraph, when we will build a 3-face diagram for d > 1/5 with only one
face having more than ℓ/2 boundary edges.

Back to the proof of Greendlinger’s Property for d < 1/5. If we are facing a
diagram D such that the intersection of the boundary of any face of D with the
boundary of D is connected, then Lemma 16 provides what we want.

Now we apply a standard argument to prove that this case is enough. Suppose
that some face of D has a non-connected intersection with the boundary, having
two (or more) boundary components, so that this face separates the rest of the
diagram into two (or more) components. Call good a face having exactly one
boundary component and bad a face with two or more boundary components
(there are also internal faces, which we are not interested in).

First suppose that D is homeomorphic to a disk (so that no single edge or
vertex removal can disconnect it).

Decompose D into bad faces and maximal parts without bad faces. Call such
a maximal part extremal if it is in contact with only one bad face. It is clear that,
if there exists some bad face, there are at least two such extremal parts.

bad

bad
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To reach the conclusion it is sufficient to find in any extremal part a good face
having more than ℓ(1 − 5d/2 − ε) edges on the boundary. So let f be a bad face
in contact with an extremal part P without bad faces.

Consider the diagram D′ = P ∪ f . This diagram has no bad faces now, and so
by Lemma 16 there are two faces in it having more than ℓ(1−5d/2−ε) consecutive
edges on the boundary. One of these may be f , but the other one has to be in P
and so has more than ℓ(1− 5d/2− ε) consecutive edges on the boundary of D as
well.

Now in the case D is not homeomorphic to a disk, then the “filaments” (the
edges/vertices the removal of which disconnects D) are treated the same way as
bad faces in the previous argument.

A counter-example for d > 1/5. Here we show that the presentation does not
satisfy the Dehn algorithm as soon as d > 1/5.

Fix some ε > 0. We can with overwhelming probability find two relators r1, r2
sharing a common subword w of length (2d− ε)ℓ. Once those are chosen, let x be
the subword of length (d− ε)ℓ of the boundary of the diagram r1 ∪w r2 occurring
around some endpoint of the w-gluing and having length (d − ε)ℓ/2 on each side
of this endpoint (see picture below). (When d > 2/5 there is less than this left on
the boundary of r1 ∪w r2; but the situation is even easier at larger densities and so
we leave this detail aside).

At density d, subwords of length (d − ε)ℓ of the relators exhaust all reduced
words of length (d − ε)ℓ. So it is possible to find a relator r3 gluing to r1 ∪w r2
along x. After this operation r1 and r2 each have less than 1− (2d− ε)ℓ− (d/2−
ε/2)ℓ = (1−5d/2+3ε/2)ℓ of their length on the boundary of the new diagram (see
picture below), which is less than ℓ/2 when d > 1/5, for small enough ε. Compare
Lemma 16 — which is thus sharp.

2dℓ

r1

r2

dℓ/2

dℓ/2

r3

This diagram violates the Greendlinger property (but not yet the Dehn algo-
rithm). Note for later use that at this step, the boundary length of the diagram
so obtained is (3− 6d+ 4ε)ℓ. This is the smallest possible value compatible with
Theorem 2, up to the ε’s.

But (thanks to the ε’s) this will not only happen once but arbitrarily many
times as ℓ → ∞, so we can find another independent triple of relators (r′1, r

′

2, r
′

3)
giving rise to the same configuration.

Now if r3 and r′3 share only a single letter in the region of length ℓ/5 opposite
to the position where they glue to r1∪w r2 (resp. r′1∪w′ r′2) (and this happens all the
time thanks to the law of large numbers), then we can form a diagram in which r3

13



and r′3 become faces having no more than ℓ/2 consecutive edges on the boundary
(they are bad faces in the terminology of the previous proof). So if d > 1/5, no face
of this diagram has more than ℓ/2 consecutive edges on the boundary (although
the two bad faces have more than ℓ/2 non-consecutive boundary edges).

2dℓ

r1

r2

dℓ/2

dℓ/2

r3 r′3

dℓ/2

dℓ/2

r′1

r′2

2dℓ

This is not enough to disprove the Dehn algorithm: this algorithm only de-
mands that for any reduced word representing e, there exists some van Kampen
diagram with the boundary face property. There could exist another van Kampen
diagram D′ with the same boundary word as the diagram D above, in which some
face would have more than ℓ/2 consecutive edges on the boundary. So let r4 be
this face. Since D and D′ have the same boundary word, we can glue r−1

4 to the
previous diagram D to get a new diagram D′′ with 7 faces; since r4 has more than
half of its length on the boundary of D′ we have |∂D′′| < |∂D|.

Either D′ is reduced or r4 is equal to some relator ri already present in the
diagram.

In the former case, we get that |∂D| = (3−6d+4ε)ℓ×2−2 = 6(1−2d) ℓ+8εℓ−2.
Since |∂D′| < |∂D| we get |∂D′| < 6(1 − 2d) ℓ + 8εℓ − 2. But by Theorem 2, for
any ε′ we have |∂D′| > 7(1− 2d− ε′)ℓ, which is a contradiction for small enough
values of ε and ε′.

In the latter case, this means that we can glue a copy of r−1
i along ri on the

boundary of the diagram D along more than ℓ/2 edges. But, since the ri included
in D has no more than ℓ/2 consecutive edges on the boundary, this means that
before gluing r−1

i we could have folded some letters of ri with neighbouring letters
in the boundary of D. This is excluded if we assume (as we can always do) that
the boundary of D is reduced.
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