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Abstract

We give the sketch of a combinatorial proof of the construction by Gro-

mov of a group whose Cayley graph contains a family of expanders.

Combining the methods in [Oll1] and [Oll2], it is possible to give a proof of the
construction invented by M. Gromov in [G] that there is an infinite group whose
Cayley graph contains (in some quasi-isometric sense) a family of expanders. We
only give the main steps of the proof, as our goal is to illustrate our techniques
and not to re-prove known theorems.

This text is a natural sequel to [Oll2], and also heavily relies on sections 5.1.1,
6.2 to 6.6 and Appendix A of [Oll1].

The main lines of the argument of [G] are also explained in [Gh].

1 Quotients of hyperbolic groups by labelled graphs

We give here a statement of a theorem generalizing the one stated in [Oll2], together
with a sketch of proof.

We use the terminology of [Oll2]: Γ is a graph labelled with the generators
a±1
1 , . . . , a±1

m of some group G0, and we want to study the quotient of G0 by the
words read on cycles of the graph.

In this more complex situation, an ε-piece with respect to G0 is a couple of
words (w1, w2) embedded in Γ (not necessarily distinct) together with a couple of
words (δ1, δ2), such that |δ1| + |δ2| 6 ε(|w1| + |w2|) and such that w1 = δ1w2δ2 in
G0.

Again we have to eliminate trivial cases: for example, if the word uwv is
embedded in Γ, then ((uw,wv), (u, v−1)) is a trivial piece. Generally, a trivial piece
is a piece ((w1, w2), (δ1, δ2)) such that there is a path in Γ joining the beginning of
w1 to the beginning of w2, labelling a word equal to δ1 in G0.

The length of a piece is defined as max(|w1| , |w2|).
We will say that a group is aspherical if it admits a presentation with no

spherical van Kampen diagram (with the convention of [Oll1] for van Kampen
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diagrams). This implies asphericity of the Cayley complex for this presentation,
and thus geometric and cohomological dimension at most 2 hence torsion-freeness.

The theorem is as follows.

Theorem 1 (M. Gromov) – Let Γ be a labelled graph. Let R be the set of
words read on all cycles of Γ (or on a generating family of cycles). Let g be the
girth of Γ.

Let G0 be an aspherical non-elementary hyperbolic group. Let ε > 0, C > 0
and λ < 1/6.

Suppose that g is large enough (depending on G0, ε, C, λ), that diamΓ 6 Cg
and that the length of the longest non-trivial ε-piece with respect to G0 is at most
λg.

Suppose that there exists a constant A > 0 such that any word w embedded in Γ
of length at least (1−6λ)g/2 satisfies ‖w‖G0

> A(|w|−L) for some L 6 (1−6λ)g/2.
Then the group G = G0/〈R〉 is hyperbolic, aspherical and infinite. The radius

of injectivity of the quotient map G0 → G is at least Ag/4, and the natural
application from the labelled graph Γ to the Cayley graph of G is a (2/A, 2AL)
quasi-isometry. Moreover, the Euler characteristic of G is that of G0 plus the rank
of the fundamental group of Γ.

Computation of the Euler characteristic ensures for example that if the rank
of the fundamental group of Γ is greater than the number of generators, then G is
non-elementary (the probabilistic argument for non-elementarity given in [Oll1] is
not available here). Indeed, since G is torsion-free, if it is elementary it is either {e}
or Z, whose Euler characteristic is 1 and 0 respectively, which are excluded when
the number of relators is greater than the number of generators (using asphericity).

The apparently easiest (though the details may be equally tedious) proof, with
λ small enough instead of λ < 1/6, uses a geometrized version of the Eilenberg-
MacLane space for a group as described in Section 1.7 of [G]. We propose here a
combinatorial proof. We only indicate how to put together the ideas from [Oll1]
and [Oll2] and do not repeat the parts of the argument that can be directly trans-
posed.

Proof (elements thereof) –
Let R be the set of words read on the cycles of Γ (or on a generating set of

cycles).
One has to consider a van Kampen diagram D for the quotient, which con-

tains new relators from R and old relators from a presentation of G0. Take as
a generating set of the cycles of Γ all cycles of length at most 3 diamΓ. As the
diameter of Γ is bounded by C times the girth g of Γ, the ratios of the lengths of
these cycles lie between 1/3C and 3C. This is crucial as it is what allows to ap-
ply the local-to-global hyperbolic principle (Cartan-Hadamard-Gromov-Papasoglu
theorem) described in Appendix A of [Oll1].

Here we will work exactly as in Sections 6.2 and 6.3 of [Oll1]. First, proceed as
in [Oll2] to group the new relators of D that share the same edges in D that they
share in Γ (that is, group them into maximal parts which can be lifted to Γ). We
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now reason at the scale of these blocks. The old relators of D form a thin layer
around the new ones, and so it is possible to decompose them into strips which
contain two long sides w1, w2 on the boundary of new relators, and two short sides
(w.r.t. g) δ1, δ2, such that w1 = δ1w2δ2 in Γ. This is where pieces come in. Trivial
pieces do not matter, as a trivial piece precisely means that the two neighbouring
relators are glued along edges they already share in Γ, and so it is possible to
suppress the trivial piece and group the two relators.

Now use the assumption on the length of pieces and the small cancellation
theory as presented in [Oll2] to conclude that if D is a strongly reduced van
Kampen diagram, with D = D′ ∪D′′ with the old relators in D′ and the new ones
in D′′, with D′ minimal, with at most K new relators, and such that the parts of
D that lift to Γ are minimal, then D satisfies an isoperimetric inequality of the
form

|∂D| > α1g |D′′|+ α2 |D′|
where α1 comes from the small cancellation theory (see Remark 7 of [Oll2]), and α2

comes from the isoperimetric inequality in G0. (Compare Proposition 31 in [Oll1].)
Conclude using the hyperbolic local-to-global principle.
As for the radius of injectivity of G0 → G and the quasi-isometricity of the map

Γ → G, the factors 2 instead of what would be expected (which can be reduced to
(1 + o(1)g→∞)) come from the fact that van Kampen diagrams for the quotients
contain some strips of old relators which can slightly decrease the boundary length
(which stays essentially A times the boundary length of the new relators within).
One has to be cautious about this, because the local-to-global principle worsens
the constants: one has to take K large enough so that, when establishing quasi-
isometricity of Γ → G (which involves looking at words of length at most Cg), we
can work only on diagrams with at most K new cells, for which we know decent
constants (by applying directly the small cancellation theory), instead of diagrams
whose isoperimetry was established through the local-to-global principle.

Computation of the Euler characteristic is immediate given that the cohomo-
logical dimension is 2. �

2 Application to random labellings

We now show that a random labelling of the graphs used in [G] very probably
satisfies the assumptions of the above theorem. We recall the properties of these
graphs.

Definition 2 – Let Vgj, g, j ∈ N, be a family of graphs. It is said to be good
for random quotients if the following holds:

• girthVgj = g

• diamVgj 6 100g

• |Vgj| > 2g/j

3



• The balls B(v, g/2) ⊂ Vgj, with v ∈ Vgj, satisfy |B(v, g/2)| 6 10(2g/2j).

Note that, by multiplicativity of the growth of balls, the control on |B(v, r)|
immediately extends to r 6 diamVgj, namely |B(v, r)| 6 2100r/j+800. Of course,
100, 2 and 10 can be replaced by other constants.

Proposition 3 (M. Gromov) – Let θ < 1 and 0 < λ < 1/6. There exists
ε > 0, j0 ∈ N, A > 0 and B < 1 such that for any torsion-free hyperbolic
group G0 generated by a±1

1 , . . . , a±1
m with m > 2 with gross cogrowth at most θ, a

random labelling of a good graph for random quotients satisfies the assumptions
of Theorem 1, provided j > j0 and g large enough (depending on G0) i.e.:

• The longest non-trivial ε-piece has length at most λg;

• Setting L = B(1 − 6λ)g/2, any word w embedded in Γ satisfies ‖w‖G0
>

A(|w| − L).

Proof –
Suppose Γ has been given a random labelling.
There are many variables involved in the proof. In order to help the under-

standing of what follows, we include a dependency graph of the variables used in
the proof. Variables on the right are set last depending on variables on the left.

λ

θ A

α

g

δ,

jβ

A’ γ H, ,

ε

B

G0

Let Bn denote the random element of G0 obtained after a n-step random walk
in G0. On Bn we will use the probability estimates from Section 5.1.1 of [Oll1].
Estimates therein are asymptotic; in order to get exact inequalities, we have to
suppose that the lengths of the words involved are large enough (depending on
G0) and, moreover, we introduce a factor 1/2 in the exponents to compensate
for the limit: for example, instead of Pr(Bn = e) . (2m)−(1−θ)n we will use
Pr(Bn = e) 6 (2m)−(1−θ)n/2 for n large enough.

Let p be a path embedded in Γ, of length between αg and g/2 for some small
α > 0 to be specified later (depending on G0 and λ but not on g). As the girth of
Γ is g, p does not run twice through the same point of Γ, so the letters of the word
w labelled by p are chosen independently and the law of w is the law of B|w|.

Let ‖w‖ denote the norm of w in G0. After Proposition 17 of [Oll1], the
probability that ‖w‖ 6 1−θ

2θ
|w| is less than (2m)−(1−θ)|w|/4 provided that |w| is

large enough depending on G0 (this will be the case since |w| > αg).
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This is for a given path in Γ. A path of length at most g/2 is uniquely defined
by two points in Γ at distance at most g/2. The number of points in Γ is at
most 2100g/j+800. The number of points at distance at most g/2 from a given point
is at most 2g/2j+4. So the number of possible paths p is at most 2100,5g/j+804.
The probability that for some path p, we have ‖w‖ 6 1−θ

2θ
|w| is thus less than

2100,5g/j+804(2m)−
1

2
(1−θ)|w|/2. As |w| > αg, for j large enough (depending on α, θ

and 804 but not on g), we have 100, 5g/j < 1
2
(1 − θ)αg/2 for any g and so this

probability decreases exponentially when g grows to infinity.
So for g large enough, with probability tending to 1 as g → ∞, any word

embedded in Γ, of length between αg and g/2, satisfies ‖w‖ > A |w| with A = 1−θ
2θ

.
In particular, any word embedded in Γ (without restriction of length) is a

(1/A, αg, g/2) local quasi-geodesic (in the notation of [GH]). But any local quasi-
geodesic is a global quasi-geodesic (with some loss in the constants). More pre-
cisely, suppose (as proven in [GH]) that any (1/A, 1, β) local quasi-geodesic in a
1-hyperbolic space, with β large enough, is a (1/A′, γ) global quasi-geodesic lying
at Hausdorff distance at most H from the geodesic joining its endpoints. (The
values of A′, β and γ depend on θ but not otherwise on G0.) In our case we have
a (1/A, αg, g/2) local quasi-geodesic. Scale by 1/αg. If αg > δ and if α < 1/2β
(where δ is a hyperbolicity constant for G0), the scaling gives a (1/A, 1, β) local
quasi-geodesic in a 1-hyperbolic space. Hence (after scaling back by αg) any word
embedded in Γ is a (1/A′, γαg) global quasi-geodesic lying at distance at most
αgH from some geodesic.

For the quasi-embedding assumption of the theorem to be satisfied, take B =
γα. It is thus enough to take α such that γαg < (1− 6λ)g/2 (depending only on
θ and λ, as does γ), and then g large enough (depending on everything) so that
αg > δ and that the probabilistic estimates based on θ hold.

For the small cancellation condition, suppose we are given a non-trivial ε-piece
((w1, w2), (δ1, δ2)) as defined above, with w1 = δ1w2δ2 in G0, with |δ1,2| 6 εg and
max(|w1| , |w2|) > λg.

First, we will shorten w1 and/or w2 as to get max(|w1| , |w2|) = λg. Indeed,
suppose |w1| > λg and let w′

1 be the initial subword of w1 of length λg. Let ∆1,∆2

be the geodesic segments (we reason in G0) joining the ends of w1, w2, respectively.
As w1 lies at Hausdorff distance γαg from ∆1, there is a point x on ∆1 at distance
at most γαg from the endpoint of w′

1. As ∆1 and ∆2 lie at distance εg from each
other, let y be a point of ∆2 at distance at most εg from x, and let w′

2 be an initial
subword of w2 such that the endpoint of w′

2 lies at distance at most γαg from y.
Now if δ′2 is a word joining the endpoints of w′

1 and w′
2, we have w′

1 = δ1w
′
2δ

′
2 with

|δ′2| 6 (ε+ 2γα)g. After this we have |w′
1| = λg; if still |w′

2| > λg we use the same
trick again.

Finally, we can suppose that max(|w1| , |w2|) = λg and that |δ1,2| 6 (ε+4γα)g
(namely, if there exists a longer piece, then a smaller one exists as well).

Now for the evaluation of the probability of the existence of some such piece.
Since the lengths of w1 and w2 are smaller than half the girth of Γ, w1 and w2

are determined by their endpoints. There are at most 2100g/j+800 points in Γ, so
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the number of positions for w1 and w2 in Γ is at most 2400g/j+3200.
We are going to show that, given the position of w1 and w2 in Γ, the probability

that they form a non-trivial piece behaves at most like (2m)−(1−θ)(|w1|+|w2|)/2. As
max(|w1| , |w2|) = λg this is at most (2m)−(1−θ)λg/2. So if j is large enough, namely
j > 200/λ(1−θ), the total probability that there exists a piece will be exponentially
small in g.

First, suppose that w1 and w2 do not intersect (as parts of Γ). Then the random
letters making up w1 and w2 are independent, and after Proposition 22 of [Oll1], the
probability of such a situation is less than (2m)2εg−(1−θ)(|w1|+|w2|)/2 provided |w1|+
|w2| is large enough depending on G0, which holds since max(|w1| , |w2|) > λg,
provided g is large enough. So this probability is at most (2m)−(2ε+8γα)g−(1−θ)λg/2,
and if ε and α are small enough (depending on θ and λ), this probability will be
exponentially small.

Second, suppose that w1 and w2 intersect (in Γ). We first prove that the
intersection is connected (is made of a single subword). Suppose indeed that there
are two points in the intersection. As the length of w1 and w2 is less than half the
girth of Γ, the two subwords of w1 and w2 joining these two points are the same.

So let u be this intersection. Apart from the letters in u, the random letters in
w1 and w2 are independent. Let ∆1,∆2 be geodesic segments joining the endpoints
of w1, w2 respectively; they lie at Hausdorff distance at most γαg from w1 and w2

and at distance at most (ε+ 4γα)g from each other.

u

u

2δ1δ

2∆

1∆

2

1

w

w

Set e = ε + 6γα. Call two points x ∈ w1, y ∈ w2 facing if their distance is at
most eg. For any point on w1 or w2 there is a point facing it. If no point of u ⊂ w1

faces some point of u ⊂ w2, cutting the figure into two parts at some facing points
in between allows to reason on each part separately as above.

Otherwise, reasoning as in [Oll1] (section "Elimination of pieces", where our
pieces here are a kinds of translators there), it is possible to cut the figure into (at
most five) parts at facing points and either get parts without repetition or, in the
worst case, isolate one part containing a subword u1 of u repeated on both sides
with some shift:

v’’’’’

v’’’’’

v’’’’

v’’’’

v’’’

v’’’

v’’

v’’

v’

v’

v

v
1u

1u

The contribution of the parts not containing u1 (there are at most four of
them, as constructed in [Oll1]) to the probability of the situation is of the form
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(2m)8eg−(1−θ)(|w1|+|w2|−2|u1|)/2 where e = ε + 6γα. So if ε and γα are small enough
(depending on θ), this is exponentially small in |w1|+ |w2| − 2 |u1|.

Now for the part containing u1. If the shift is bigger than g
√
e, then cutting

this figure into |u1| /g
√
e parts at some facing points allows to reason separately

on each figure; evaluating the probability of each part separately and multiplying,
the probability of this situation is less than (2m)2eg.(|u1|/g

√
e)−(1−θ)|u1|. When mul-

tiplied by the probability of the other parts above, this gives a probability which
is exponentially small in |w1|+ |w2|.

If the shift is smaller than g
√
e, then we are in the situation described by

Axiom 4 of [Oll1] (here we use torsion-freeness) and the probability of such an event
is at most (2m)2g

√
e−(1−θ)|u1| (the small sides of the figure are non-trivial since the

piece was supposed to be non-trivial). Once multiplied by the probability coming
from the other parts, the probability of the whole situation is again exponentially
small in |w1|+ |w2|.

This ends the proof. �

In the proof above, L/g can even be made arbitrarily small.

3 Altogether

The scheme of the proof is now the following: We start with an aspherical, hyper-
bolic group G0.

We are going to take successive random quotients of G0. In order to do so
we will crucially need a control on the gross cogrowth θ of all these quotients.
The simplest way to do so is to take G0 having property T. This ensures that
the gross cogrowth (w.r.t. a given generating set) of all infinite quotients of G0

is controlled by a Kazhdan constant for G0 w.r.t. this generating set. (Indeed,
gross cogrowth is linked to the spectral radius of the averaging operator of the left
regular representation of the group.)

A simple way to get a hyperbolic group of dimension 2 and with property T is
simply to take a random group, as described in [Z].

Adapting the techniques from [Oll3], it may even be possible to avoid property
T and to show directly that the gross cogrowth of the successive random quotients
are close to that of G0.

Now we can state

Theorem 4 (M. Gromov) – Let Vgj be a family of graphs which is good
for random quotients, in the sense above. There exists an infinite group G∞, an
integer j, a constant a > 0 and an infinite non-decreasing sequence gk of integers
such that for any k, there exists a map of graphs ϕk : Vgkj → G∞ such that for all
v, v′ ∈ Vgkj we have

a (dist(v, v′)− gk/4) 6 dist(ϕk(v), ϕk(v
′)) 6 dist(v, v′)
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(The distance in G∞ refers to some finite generating set.) To appreciate the
g/4, remember that g is the girth of Vgj. In particular, this implies that

lim
k

max
x∈G∞

∣

∣ϕ−1
k (x)

∣

∣

|Vgkj|
= 0

which is the assumption needed in [HLS] to provide counter-examples to the Baum-
Connes conjecture. Indeed, since ϕk is a (1/a, agk/4) quasi-isometry, any point of
ϕ−1
k (x) is at distance at most gk/4 from any other one. Then, using the control

on the balls in the definition above of good graphs for random quotients, we get
∣

∣ϕ−1
k (x)

∣

∣ 6 10(2gk/2j). But by assumption |Vgkj| > 2gk/j hence the claim since
gk → ∞. So if (as explained in Section 3.13 of [G]) the Vgj, for fixed j, are taken
to be a family of expanders (which we do not need here), the conditions in [HLS]
are fulfilled.

The quasi-isometry coefficient 1/4 (in gk/4) can even be made arbitrarily small.

Proof – Let G0 be an aspherical, non-elementary hyperbolic group with property
T (e.g. a random group as in [Z]), of rank 2.

Let θ0 be an upper bound for the gross cogrowth of infinite quotients of G0

(arising from a Kazhdan constant). Let λ = 1/12.
Let j be the j mentioned in Proposition 3 applied to θ0 and λ, and let a be the

A in the same proposition. Let g0 be large enough (depending on G0) to ensure
that this proposition can be applied to Vg0j.

Apply Proposition 3, then Theorem 1 to G0 and a random labelling of Vg0j. The
quotient G1 thus defined is a hyperbolic group enjoying the same properties as G0:
its gross cogrowth is at most θ0, it is aspherical (hence torsion-free), hyperbolic,
of rank 2.

Moreover, torsion-freeness implies that if it is elementary, it is either Z or {e}.
As a T -group it cannot be Z, and since some non-trivial graph embeds in its Cayley
graph it cannot be {e}.

Therefore, it is possible to repeat the argument with some g1 large enough (de-
pending of course on G1), but, most importantly, with the same j (which depends
only on θ0), to get a second group G2 enjoying the same properties, obtained by a
random quotient from the graph Vg1j.

By induction, one can obtain an infinite sequence of successive infinite groups
G0 → G1 → G2 → . . . The limit group G∞ is infinite as a limit of infinite groups
on the same finite set of generators.

Moreover, by the conclusions of Theorem 1, at each stage we get a natural map
ψk−1 : Vgk−1j → Gk which is an (a, agk−1/4) quasi-isometry (a depends only on θ0).
As the quotient maps Gk → Gk+1 have injectivity radius at least agk/4 (by still
another conclusion of Theorem 1), and as the diameter of Vgk−1j is at most 100gk−1,
as soon as gk > 400gk−1/a the image ψk−1(Vgk−1j) injects into all subsequent groups
Gk+1, Gk+2 . . . and hence into G∞. So the compound map ϕk−1 : Vgk−1j → G∞ are
indeed (a, agk−1/4) quasi-isometries. �

Thanks to Pierre Pansu for having insisted on me that I should study this
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construction of Gromov, and for comments on the manuscript. Thanks to Thomas
Delzant and Étienne Ghys for sharing their own understanding of the thing.
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