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Université Pierre et Marie Curie-Paris6, UMR 8112, ERGA-LERMA,

3 rue Galilée 94200 Ivry, France.

Yann Ollivier‡
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Abstract

The recently developed mean field theory of relativistic gravitation
predicts the emergence of an “apparent matter” field at large scales
describing the net effect of small-scale fluctuations on the large-scale
dynamics of the universe. It is found that this so-called back reaction
effect is much stronger for gravitational waves than for matter density
fluctuations. At large scales, gravitational waves behave like radiation
and, for them, the perturbative effect scales as the squared relative am-
plitude times squared frequency. In particular, a bath of gravitational
waves of relative amplitude 10−5 and frequency 10−12 Hz would not be
directly detectable by today’s technology but would generate an effec-
tive large-scale radiation of amplitude comparable to the unperturbed
matter density of the universe.

1 Introduction

Multiscale systems are characterized by intricate dynamics which couple
several different time or space scales. Nevertheless, in many instances it is
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possible to obtain an effective dynamics governing the evolution of a mul-
tiscale system on a larger scale by averaging the full exact dynamics on
smaller scales. Examples range from economics [1] to biophysics [2] and in-
clude turbulence [3] and quantum field theory at both vanishing and finite
temperature [4].

This article deals with relativistic gravitating systems. These are de-
scribed, at the classical level, by general relativity [5], and are multiscale
because Einstein’s theory is strongly non-linear. The largest gravitating
system is the universe and its large-scale description is the traditional ob-
ject of cosmology. It is now well established [6] that the universe is, on large
scale, expanding in an homogeneous and isotropic manner. Several authors
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] have recently argued that small-
scale fluctuations around this large-scale expansion may, by non-linearity,
contribute substantially to the large-scale energy repartition generating the
expansion. This article investigates the importance of this so-called “back
reaction” effect on dust universes perturbed by background gravitational
waves and small matter density fluctuations. Our main conclusion is that
matter density perturbations produce a negligible back reaction but that, on
the other hand, background gravitational waves may generate a large-scale
energy density comparable to the energy density of dust. Implications of
these results for physical cosmology, including the dark energy problem, are
also discussed.

2 Mean field theory

2.1 Notation

In this article, the metric has signature (+,−,−,−). We shall use mixed
components T ν

µ of the stress-energy tensor; with this signature, for a perfect
fluid at rest with density ρ and pressure p we have T 0

0 = ρ and T i
i = −p.

2.2 General framework

Averaging classical gravitational fields necessitates a mean field theory of
general relativity. Such a theory has been introduced in [7, 8]; we include
a brief overview here for completeness. Some applications to black hole
physics are presented in [18, 19, 20].

Let M be a fixed manifold, let Ω be an arbitrary probability space and
let g(ω) be a Lorentzian metric on M depending on the random parameter
ω. Each pair S(ω) = (M, g(ω)) represents a physical space-time depending
on the random parameter ω ∈ Ω. For example, g(ω) may represent a grav-
itational wave of random phase and wave vector around a given reference
space-time.
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With each space-time S(ω) are associated the Einstein tensor G(ω) of
the metric g(ω), and a stress-energy tensor T (ω), satisfying the Einstein
equation

G(ω) = 8πT (ω). (1)

As shown in [7], such a collection of space-times can be used to define
a single mean space-time (M, ḡ) representing the average, “macroscopic”
behavior of these random space-times. The metric ḡ is the average of the
metrics g(ω); thus, at every point P of M,

ḡ(P ) = 〈g(P, ω)〉 . (2)

where the brackets on the right-hand side denote an average over the ran-
dom parameter ω. If we think of g(ω) as a reference, “macroscopic” metric
perturbed by small random contributions then ḡ will represent the average
metric, where the fluctuations have been smoothed out but with the same
macroscopic behavior.

The metric ḡ defines an Einstein tensor Ḡ for the mean space-time.
However, since the expression for the Einstein tensor as a function of the
metric is non-linear, this Einstein tensor and the average stress-energy tensor
will, in general, not be related by the Einstein equation:

Ḡ 6= 8π 〈T (ω)〉 ,

so that physical measurements attempting to relate the mean space-time
to its average matter content would yield to a violation of the Einstein
equation. This would not happen in a Newtonian setting since, then, the
relation between field and matter is linear and thus is unchanged under
averaging.

To enforce validity of the Einstein equation for the mean space-time, it
is thus necessary to introduce a new term

T appν
µ = Ḡν

µ/8π −
〈

T ν
µ (ω)

〉

, (3)

so that the stress-energy tensor of the mean space-time can be described as
the sum of the average stress-energy tensor 〈T (ω)〉 appearing in the averaged
space-times, and of this new term T app. This generally non-vanishing tensor
field can be interpreted as the stress-energy tensor of an “apparent matter”
in the mean space-time. Apparent matter describes the cumulative non-
linear effects of the averaged-out small-scale fluctuations on the large-scale
behaviour of the mean gravitational field.

In particular, even the vanishing of T (ω) for all ω does not necessarily
imply the vanishing of T̄ . The mean stress-energy tensor T̄ can therefore be
non-vanishing in regions where the unaveraged stress-energy tensor actually
vanishes. We will see that this happens, for instance, with gravitational
waves.
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The justification and implications of this averaging procedure are dis-
cussed at length in [7, 8], together with an extension including non-quantum
electrodynamics. Note in particular that once the statistical ensemble of
metrics has been chosen, there is no gauge choice involved since the defini-
tion of apparent matter is manifestly covariant (however, the choice of the
ensemble may, in some cases, reflect the point of view of some particular ob-
server, akin to fixing a preferred referential for the observations). Another
important point is that this averaging scheme is the only one which ensures
that motion in the mean field can be interpreted, at least locally, as the
average of “real” unaveraged motions [8, 7].

2.3 Small amplitude fluctuations

We now investigate the case when the metrics gµν(ω) are all close to a
reference metric gref

µν . More precisely, we assume that there is a small
parameter ε such that, for any value of the random parameter ω,

gµν(ω) = gref
µν + εg(1)

µν(ω) + ε2g(2)
µν(ω) + O(ε3) (4)

and we will expand the theory above at second order in ε.
Of course, any arbitrary choice of g(1) and g(2) will define a solution of

the Einstein equation by setting the value of the stress-energy tensor to
T = G/8π, but these solutions are physically relevant only if the associated
stress-energy tensor has a physical interpretation. In the sequel we will focus
on choices of g(1) and g(2) arising from physically interesting stress-energy
tensors, such as gravitational waves or fluctuations of the density of matter.

We now derive a perturbative expression for T appν
µ. Denote by DG and

D2G, respectively, the functional derivative and the functional Hessian of
the Einstein tensor Gν

µ(gref) with respect to variations of the metric gref. So
by definition we have the expansion

Gν
µ(g(ω)) = Gν

µ(gref) + ε(DGν
µ)(g(1)(ω)) + ε2(DGν

µ)(g(2)(ω))

+
ε2

2
(D2Gν

µ)(g(1)(ω), g(1)(ω)) + O(ε3)
(5)

which yields

8π
〈

T ν
µ (ω)

〉

=
〈

Gν
µ(g(ω))

〉

= Gν
µ(gref) + ε

〈

(DGν
µ)(g(1)(ω))

〉

+ ε2
〈

(DGν
µ)(g(2)(ω))

〉

+
ε2

2

〈

(D2Gν
µ)(g(1)(ω), g(1)(ω))

〉

+ O(ε3)

(6)

It is important to note here that DG, being a functional derivative, is
by definition a linear operator in its arguments g(1) or g(2). One thus has

〈

(DGν
µ)(g(1)(ω))

〉

= (DGν
µ)

(〈

g(1)(ω)
〉)

(7)

4



and likewise for g(2). But this is not true of the Hessian D2G, which is a
quadratic (as opposed to linear) operator.

Meanwhile, the mean metric ḡ is given by

ḡµν = gref
µν + ε

〈

g(1)
µν(ω)

〉

+ ε2
〈

g(2)
µν(ω)

〉

+ O(ε3) (8)

so that the associated Einstein tensor is

Ḡν
µ = Gν

µ(ḡ) = Gν
µ(gref) + ε(DGν

µ)
(〈

g(1)(ω)
〉)

+ ε2(DGν
µ)

(〈

g(2)(ω)
〉)

+
ε2

2
(D2Gν

µ)
(〈

g(1)(ω)
〉

,
〈

g(1)(ω)
〉)

+ O(ε3)
(9)

From these results, by comparing Ḡν
µ to

〈

Gν
µ(g(ω))

〉

we can directly
compute the apparent stress-energy tensor:

T appν
µ =

ε2

16π

(

(D2Gν
µ)

(〈

g(1)(ω)
〉

,
〈

g(1)(ω)
〉)

−
〈

(D2Gν
µ)(g(1)(ω), g(1)(ω))

〉)

+O(ε3)

(10)
which is generally non-zero due to the quadratic nature of D2G.

It is to be noted that the effect is at second order in ε, which was to
be expected since at first order, gravitation is by definition linear. What
is more interesting is that g(2) does not appear in the result. This reflects
the fact that non-linearities acting on the second-order term g(2) will only
produce higher-order terms.

It often makes sense to define the fluctuations in terms of the sources
rather than the metric, i.e. to prescribe physically meaningful fluctuations
T (1) and T (2) of the stress-energy tensor and to look for g(1) and g(2) solving
the Einstein equation. That g(2) vanishes from the result means that, to
compute the effect, it is actually enough to solve the linearized Einstein
equation around gref.

A case of particular interest is when the fluctuations are “centered” i.e.
when the average of the fluctuations is zero at first order:

〈

g(1)(ω)
〉

= 0 (11)

in which case we simply get

T appν
µ = −

ε2

16π

〈

(D2Gν
µ)(g(1)(ω), g(1)(ω))

〉

(12)

at this order in ε.

3 Fluctuations around dust cosmologies

3.1 Basics

We now apply the above to the case of either gravitational waves or density
fluctuations around a homogeneous and isotropic, spatially flat dust universe
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(flat Friedmann–Lemâıtre–Robertson–Walker metric). The reference metric
and stress-energy tensor of such a space-time are, in conformal coordinates
[21]:

gref = a(η)2(dη2 − dx2 − dy2 − dz2) T 0
0 = ρ(η) T 0

i = T j
i = 0 (13)

where a is the so-called expansion factor and ρ is the energy density. The
Einstein equation delivers a(η) = Cη2 and 8πρ(η) = 3ȧ2/a4 = 12/C2η6,
where C is an arbitrary (positive) constant. Proper time is τ = Cη3/3 and

the Hubble “constant” is H =
1

a

da

dτ
=

ȧ

a2
=

2C

η3
.

The perturbations g(1) considered in this article will be of two types:
gravitational waves and matter density fluctuations. They can be written as
sums or integrals of spatial Fourier modes (this makes sense since gref is spa-
tially flat). Each term in such a series is of the form F (η) exp (i(q.r + ωq))
where F (η) is some tensor, q is a three-dimensional wave vector, and ωq is a
phase associated with mode q. Averaging a given mode q on spatial scales
much larger than the wave-length 1/ |q| is equivalent to averaging this mode
over the phase ωq ∈ [0; 2π]. We therefore choose the set of all phases (ωq)
as our random parameter, and perform all averagings over these phases. By
a simple superposition argument, which we omit, one can easily check that
if several Fourier modes are present but statistically independent, then the
averaging can be performed separately for each mode (at least at second
order). Hence, in the sequel, we will use a single Fourier mode.

3.2 Gravitational waves

Consider a single gravitational wave propagating along the above back-
ground [22]. This wave admits two polarizations [21]; since the background
is isotropic, there is no loss of generality in assuming the wave propagates
along, say the x-axis. The first-order metric perturbation then reads, for
the first polarization:

g(1)
22(ω) = −a(η)2ei(q(x−η)+ω)(1 − i/qη)/η2 g(1)

33 = −g(1)
22 (14)

with the other components equal to 0. Here q is the wave number in con-
formal coordinates, and ω ∈ [0; 2π].

The statistical averaging corresponds to a uniform averaging over ω ∈
[0; 2π]; this models situations in which the system is observed at a resolution
much larger than the perturbation wavelength 1/q.

The quantity nosc = qη measures the typical number of oscillations (pe-
riods) in that part of the universe accessible to an observer situated at time
η. The relative amplitude of the perturbation εg(1) at time η, compared to
gref, is ε̃(η) = ε/η2. We will express the results in terms of those quantities.

The stress-energy tensor of apparent matter is then given by (12). In
practice the Hessian term D2Gν

µ in (12) is readily obtained as the ε2 term
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in a Taylor expansion of the Einstein tensor of the metric gref + εg(1), which
can be computed using any symbolic computation software.

Using the real part of the metric above, i.e. −a(η)2(cos(q(x − η) + ω) +
1
qη

sin(q(x − η) + ω))/η2, we get, at second order in ε :

T app0
0 = ε̃(η)2n2

osc

1 − 14/n2
osc − 39/2n4

osc

48
ρ(η) (15)

T app1
1 = −ε̃(η)2n2

osc

1 − 2/n2
osc − 27/2n4

osc

48
ρ(η) (16)

T app2
2 = T app3

3 = ε̃(η)2n2
osc

1/n2
osc + 9/2n4

osc

48
ρ(η) (17)

T app1
0 = ε̃(η)2n2

osc

1

48
ρ(η). (18)

All other components are 0 and all these relations hold up to O(ε3n2
osc +ε2).

If instead of a single wave, we consider a superposition of statistically in-
dependent gravitational waves sharing a common frequency and amplitude,
but propagating along random spatial directions, we get a spatially isotropic
version of (15–18), namely

T app0
0 = ε̃(η)2n2

osc

1 − 14/n2
osc − 39/2n4

osc

48
ρ(η) (19)

T app1
1 = T app2

2 = T app3
3 = −ε̃(η)2n2

osc

1/3 − 4/3n2
osc − 45/6n4

osc

48
ρ(η) (20)

These expressions show that a background of gravitational waves of high
frequency (nosc ≫ 1) behaves like an ordinary stress-energy tensor for radi-
ation, with positive pressure equal to a third of its energy density (at this
order in ε̃(η)2n2

osc).
The first-order metric perturbation for the other polarization is given by

g(1)
23(ω) = (C2η4)ei(q(x−η)+ω)(1 − i/qη)/η2 (21)

The stress-energy tensor of the apparent matter associated with this polar-
ization is identical to (19) and (20) and does not warrant separate discussion.

Orders of magnitude. The important factor in (19) and (20) is ε̃(η)2n2
osc.

The energy density and pressure of apparent matter are (at this order)
quadratic, not only in the amplitude ε̃(η) of the perturbation, but also in
its “frequency” nosc. Thus, ε̃(η) ≪ 1 does not necessarily translate into
negligible energy density and pressure of apparent matter: the smallness of
ε̃(η) can be compensated by a sufficiently high frequency nosc. For example,
gravitational waves of relative amplitude ε̃(η) ≈ 10−5 and oscillation number
nosc ≈ 105 would generate an effective apparent large-scale stress-energy

7



comparable to the energy density of the dust present in this model. Note
that such a wave would have today a physical frequency of order 10−12 Hz
(corresponding to a wavelength of 1/nosc times the radius of the observable
Universe). The presence of a wave with such characteristics would not be
contradicted by current evidence: it would elude direct observation [23]
and, as far as indirect constraints are concerned, the best upper bounds
[24, 25, 26, 27, 28] around this frequency are ΩGW h2

100 ≤ 0.1 and ΩGW h2
100 ≤

0.5, which are quite compatible with a T app of order unity.
This example is merely an illustration of the possible order of magnitude

of the apparent matter effects from a theoretical viewpoint: in particular,
we do not claim that gravitational waves with these exact frequency and
amplitude actually exist in the Universe (though, given the wavelike nature
of the Einstein equation, from a purely mathematical point of view it is
the absence of gravitational waves, rather than their presence, that needs
a justification). But, at least, this example clearly shows that the effect of
such fluctuations on the Universe must definitely not be neglected unless
really compelling arguments rule them out.

3.3 Fluctuations in the density of matter

The first-order expressions for the metric and stress-energy tensors corre-
sponding to a matter density fluctuation around a spatially flat, homoge-
neous and isotropic universe are well-known and given in [21]. These ex-
pressions can be used to compute the stress-energy of apparent matter from
the formula (12).

We discuss here the simplest such perturbation; other types of density
fluctuations are presented in the Appendix. The perturbation is of the form

g(1)
00 = 0 g(1)

11(ω) = a(η)2η2 cos(qx + ω)

g(1)
22(ω) = g(1)

33(ω) = −a(η)2
10

q2
cos(qx + ω),

(22)

corresponding to the following first-order stress-energy tensor perturbation

T (1)0
0(ω) = ρ

η2

2
cos(qx + ω) T (1)j

i = T (1)j
0 = 0. (23)

This stress-energy tensor describes a co-moving, shear-free spatial density
fluctuation. Note that the relative amplitude of the perturbation increases
with time, which traces the aggregating effect of gravitation.

The quantity ε̃(η) = εη2 measures the effective relative magnitude of the
perturbation εg(1) with respect to gref. The quantity nosc = qη represents
the number of oscillations (periods) in that part of the universe accessible
to an observer situated at time η; typically nosc ≫ 1.

As above, the averaging is over ω ∈ [0; 2π], and the stress-energy tensor
of apparent matter can be obtained from (12) by direct computation. This
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gives

T app0
0 = −ε̃(η)2

1 − 75/n2
osc

16π
ρ(η) (24)

T app1
1 = ε̃(η)2

25

16πn2
osc

ρ(η) (25)

T app2
2 = T app3

3 = ε̃(η)2
7 + 50/n2

osc

32π
ρ(η) (26)

and all the other terms are 0 at this order in ε.
The apparent matter associated with these fluctuations is thus charac-

terized, at this order, by a negative energy density and a negative pres-
sure. Loosely speaking, the negative energy could be interpreted in a semi-
Newtonian setting as the gravitational energy of the fluctuations and the
negative pressure represents the collapsing effects of gravitation.

There is an important difference with respect to the gravitational wave
case above, namely that the effect simply scales like the square of the ef-
fective amplitude of the perturbation, with no n2

osc factor (compare with
(19–20)). Thus, the net large-scale effect of high-frequency gravitational
waves is much more important than the net large-scale effect of matter den-
sity fluctuations of comparable wavelength, at least at this order in ε.

4 Conclusion

We have investigated how small-scale fluctuations influence the homoge-
neous and isotropic large-scale expansion of cosmological models. We have
restricted the discussion to dust models and studied fluctuations in matter
density as well as gravitational waves. Our perturbative results indicate
that the so-called back reaction effect is dominated by gravitational waves,
rather than matter density fluctuations. The relative importance of the ef-
fective large-scale stress-energy generated by gravitational waves scales as
the squared product of their amplitude by their frequency. Thus, even small
amplitude waves can generate an important effect provided their frequencies
are high enough. For example, it is found that waves of current amplitude
∼ 10−5 and current physical frequency 10−12 Hz, which are not detectable
with today’s technology, would generate a large-scale stress-energy compa-
rable to the dust energy.

The equation of state of the large-scale stress-energy generated by an
isotropic background of gravitational waves is simply the equation of state
of radiation with postive energy density and pressure. On the other hand,
the matter density fluctuations we studied lead to negative energy density
and pressure.

The results presented here prove that small-scale fluctuations can in-
fluence drastically the large-scale expansion of the universe and that back
reaction cannot be a priori neglected in cosmology. One can then wonder if
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at least part of the cosmological dark energy cannot be interpreted as a large-
scale signature of such small-scale fluctuations. The material presented in
this article is not yet sufficient to reach a definitive conclusion in this matter.
Let us nevertheless remark that the extremely simple cosmological models
considered in this manuscript are already rich enough to generate apparent
matters with very different equations of state, and that equations of state
strongly ressembling that of the cosmological dark energy has been found
by averaging a Schwarzschild black hole [18]. This work thus needs to be
extended in several directions before a clear-cut conclusion can be reached.
First, computations should be carried out on more general models than flat
dust cosmologies. Second, the non-perturbative regime should be addressed,
for example by numerical simulations. Third, different types of fluctuations
should be combined and allowed to interfere with each other.

Acknowledgments. Thanks to Denis Serre for help with the curved-space
gravitational wave equation.

Appendix: More on dust density fluctuations

First-order perturbations of a Friedmann–Lemâıtre–Robertson–Walker met-
ric are described in [21] and are of various types. One of them is the gravi-
tational wave considered in Section 3.2. For dust cosmologies, the next one
reads:

g(1)
00 = 0 g(1)

11 = −a(η)2β(η) cos(qx + ω)

g(1)
22 = g(1)

33 = −a(η)2γ(η) cos(qx + ω)/q2;
(27)

associated with first-order fluctuations of matter

T (1)0
0 =

cos(qx + ω)

8πa3

(

aγ + 2ȧγ̇/q2 + ȧβ̇
)

T (1)1
0 =

γ̇ sin(qx + ω)

8πqa2
, (28)

the other components being 0. Here according to [21], the functions β(η)
and γ(η) must satisfy

γ̈ + 2
ȧ

a
γ̇ = 0 β̈ + 2

ȧ

a
β̇ + γ = 0 (29)

(The case given in the text is the simplest solution β = −η2, γ = 10.)
Our expression (12) for apparent matter yields

T app0
0 =

ε2

64πa2

(

3γ2/q2 + 2βγ − γ̇2/q4 − 2β̇γ̇/q2 + 4
ȧ

a
ββ̇ + 8

ȧ

a
γγ̇/q4

)

(30)

T app1
1 =

ε2

64πa2

(

γ2/q2 + γ̇2/q4
)

(31)
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T app2
2 = T app3

3 =
ε2

64πa2

(

γ2/q2 − βγ + β̇2 + γ̇2/q4 − β̇γ̇/q2
)

(32)

and the other components are 0 or O(ε3).
In the regime we are interested in, q ≫ 1, this reduces to

T app0
0 =

ε2

32πa2

(

βγ + 2
ȧ

a
ββ̇

)

(33)

T app1
1 = 0 (34)

T app2
2 = T app3

3 =
ε2

64πa2

(

β̇2 − βγ
)

(35)

Since β and γ satisfy the second-order differential system (29), we can
prescribe β, β̇, γ and γ̇ arbitrarily at one point in time. In particular, this
leads to arbitrary signs for the energy and pressure of apparent matter.
However, for large η, the system (29) implies that γ will tend to a constant
and β will grow in time like η2: this is the most interesting case, discussed
in Section 3.3.

The last type of perturbation mentioned in [21] corresponds to a pure
sheer perturbation; it takes the form

g(1)
12 = g(1)

21 = −a(η)2β(η) cos(qx + ω)/q (36)

corresponding to first-order stress-energy perturbation

T (1)2
0 = −T (1)0

2 =
β̇ sin(qx)

2a2
(37)

where β satisfies β̈ + 2 ȧ
a
β̇ = 0 i.e. β = C1/η3 in our case (the integration

constant is a gauge choice).
For apparent matter this yields

T app0
0 =

ε2

64πa2q2

(

β̇2 + 8
ȧ

a
ββ̇

)

(38)

T app1
1 = T app2

2 =
ε2β̇2

64πa2q2
T app3

3 =
3ε2β̇2

64πa2q2
(39)

So, not only do sheer perturbations decrease with time like 1/η3, but the
apparent matter effect is small at high frequencies.
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