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a b s t r a c t

The first fully nonlinearmean field theory of relativistic gravitationwas developed in 2004.
The theory makes the striking prediction that averaging or coarse graining a gravitational
field changes the apparent matter content of space–time. A review of the general theory
is presented, together with applications to black hole and cosmological space–times. The
results strongly suggest that at least part of the dark energymay be the net large scale effect
of small scale fluctuations around a mean homogeneous isotropic cosmology.
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1. Introduction

General relativity is a nonlinear theory and, hence, small scale phenomena may have a non-trivial average effect at large
scales. Since, at the same time, astrophysical and cosmological observations have only finite space and time resolutions, it
is in practice necessary [1] to develop a mean field theory of gravitation, i.e. an effective theory allowing a self-consistent
description of the observed gravitational field at a given scale or resolution, accounting for the average net effects of small
scale phenomena not accessible within a given observational setup.
Developing such an effective theory has long been a subject of active research [2–8]. The first general mean field theory

for Einstein gravitationwas obtained four years ago [9,10]. The theorymakes the striking prediction that averaging or coarse
graining a gravitational field changes the apparent matter content of space–time. In particular, the net ‘large scale’ effect
of the averaged-upon, ‘small scale’ gravitational degrees of freedom is to contribute an ‘apparent matter’ at large scale,
necessary to account for the coarse grained gravitational field. Thismattermay be charged if the gravitational field is coupled
to an electromagnetic field.
This contribution is organized as follows. We first introduce the general mean field theory. Then we address

perturbatively the important example of background gravitational waves around a simple homogeneous and isotropic,
spatially flat dust universe; our results show, at least for this very simple model, that there is a frequency and amplitude
range in which background waves, while being undetectable with current techniques, would generate an apparent large
scale matter of energy density comparable to the energy density of the dust.
Finally we present coarse grainings of both the Schwarzschild and the extreme Reisner–Nordström (RN) black holes. In

particular, the Schwarzschild black hole, which is a vacuum solution of the Einstein field equations, is shown to appear,
after coarse graining, as surrounded by an apparent matter whose equation of state strongly resembles the equation of state
commonly postulated for cosmological dark energy.We also investigate thermodynamical aspects, highlighting the fact that
the envisaged coarse graining transforms the extreme RN black hole, which has a vanishing temperature, into a black hole
of non-vanishing temperature.
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2. A mean field theory for general relativity

LetM be a fixed manifold and let Ω be an arbitrary probability space. Let g(ω) be an ω-dependent Lorentzian metric
defined on M; let also A(ω) be an ω-dependent electromagnetic 4-potential, with associated current j(ω). Each triplet
S(ω) = (M, g(ω), A(ω)) represents a physical space–time depending on the random parameter ω ∈ Ω . For example,
g(ω)may represent a gravitational wave of random phase and wavevector around a given reference space–time.
With each space–time S(ω) are associated the Einstein tensor E(ω) of the metric g(ω), and a stress–energy tensor T (ω)

satisfying the Einstein equation

E(ω) = 8πT (ω). (1)

We write

T (ω) = T(A(ω),g(ω)) + Tm(ω), (2)

where T(A(ω),g(ω)) represents the electromagnetic stress–energy tensor generated by A(ω) in g(ω), and Tm(ω) represents the
stress–energy tensor of other matter fields.
It has been shown in [9] that such a collection of space–times can be used to define a single, mean or coarse grained

space–time (M, ḡ, Ā) representing the average, ‘‘macroscopic’’ behavior of these random space–times. Themetric ḡ and the
potential Ā are the respective averages of the metrics g(ω) and of the potentials A(ω) over ω; thus, for all points P ofM,

ḡ(P) = 〈g(P, ω)〉 (3)

and

Ā(P) = 〈A(P, ω)〉, (4)

where the brackets on the right-hand side indicate an average over the probability spaceΩ . If we think of g(ω) as a reference
metric perturbed by small random contributions, then ḡ will represent the averagemetric, where the fluctuations have been
smoothed out but with the same macroscopic behavior.
The metric ḡ defines an Einstein tensor Ē for the coarse grained space–time. However, since the expression for the

Einstein tensor as a function of the metric is nonlinear, this Einstein tensor and the average stress–energy tensor will, in
general, not be related by the Einstein equation:

Ē 6= 8π〈T (ω)〉

so physical measurements attempting to relate the coarse grained space–time to its average matter content would yield a
violation of the Einstein equation. This would not happen in a Newtonian setting since, then, the relation between field and
matter is linear and thus is unchanged under averaging.
To enforce validity of the Einstein equation for the coarse grained space–time, it is thus necessary to introduce a new

term:

T appαβ = Ēαβ /8π − 〈(Tm)
α
β(ω)〉 − T(Ā,ḡ)

α

β
, (5)

so that the stress–energy tensor of the coarse grained space–time can be described as the sum of the stress–energy tensor of
the average quadripotential Ā, of the average stress–energy tensor 〈(Tm)(ω)〉 appearing in the averaged space–times, and of
this new term T app. This generally non-vanishing tensor field can be interpreted as the stress–energy tensor of an ‘apparent
matter’ in the coarse grained space–time. This apparent matter describes the cumulative nonlinear effects of the averaged-
out small scale fluctuations of the gravitational and electromagnetic fields on the large scale behavior of the coarse grained
gravitational field.
In particular, even the vanishing of T (ω) for allω does not necessarily imply the vanishing of T̄ . Themean stress–energy

tensor T̄ can therefore be non-vanishing in regions where the unaveraged stress–energy tensor actually vanishes.
The Maxwell equation relating the electromagnetic potential to the electromagnetic current also couples the

electromagnetic field and the gravitational field non-linearly; the mean current j̄ associated with Ā in ḡ does not therefore
coincide with the average 〈j(ω)〉. In particular, a region of space–time where j(ω) vanishes for all ω is generally endowed
with a non-vanishing mean current j̄.
Let us finally mention that the averaging scheme just presented is the only one which ensures that motion in the mean

field can actually be interpreted, at least locally, as the average of ‘real’ unaveraged motions. This important point is fully
developed in [10].

3. Waves around a homogeneous isotropic simple cosmology

The averaging procedure above has been applied to background gravitational waves [11] propagating around a
homogeneous isotropic, spatially flat dust universe. The main conclusion is that the large scale effect of these gravitational
waves is close to that of a matter field with positive energy and pressure, whose order of magnitude is roughly n2ε2 where
n is the relative frequency of the waves and ε their relative amplitude. In particular, in some regimes this energy would be
comparable to that of the dust, even for some currently undetectable gravitational waves.
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The reference metric and stress–energy tensor are those of the flat Friedmann–Lemaître–Robertson–Walker (FLRW)
universe, which, in conformal coordinates, read

g ref = a(η)2(dη2 − dx2 − dy2 − dz2) T 00 = ρ(η) T
0
i = T

j
i = 0 (6)

where a is the so-called expansion factor and ρ is the energy density. The Einstein equation delivers a(η) = Cη2 and
8πρ(η) = 3ȧ2/a4 = 12/C2η6, with C an arbitrary (positive) constant. The proper time is τ = Cη3/3 and the Hubble
‘constant’ is H = 1

a
da
dτ =

ȧ
a2
=
2C
η3
.

We will assume that the averaging scale is much larger than the wavelength of the gravitational waves; this means that
we can represent the waves as a statistical ensemble of Fourier series with random phase ω ∈ [0; 2π ].
So let us consider a gravitationalwave propagating around the homogeneous and isotropic FLRWbackground. By isotropy

we can assume that the wave propagates in the direction x. Such a gravitational wave is represented at first order by the
metric perturbation

g(1)22 = −ε(η)a(η)
2eiq(x−η)(1− i/qη) g(1)33 = −g

(1)
22 (7)

for the first polarization (the other polarization yields identical results and thus will not be discussed). Here the constant
q is the wavenumber in conformal coordinates, and the relative amplitude of the wave is given by ε(η) = ε0/η2 for some
constant ε0. The number of oscillations (periods) in that part of the universe accessible to an observer situated at time η is
nosc = qη.
Using the real part of the above, i.e.−ε(η) a(η)2(cos(q(x− η))+ 1

qη sin(q(x− η))), we can compute the apparent matter
associated with this gravitational wave and compare it to the energy density ρ(η) of the dust. Using (5) we get, at second
order in ε and for large nosc,

T app00 = ε(η)
2n2osc

1
48
ρ(η) (8)

T app11 = −ε(η)
2n2osc

1
48
ρ(η) (9)

T app10 = ε(η)
2n2osc

1
48
ρ(η). (10)

All other components are 0 and all of these relations hold up to O(ε3n2osc + ε
2).

Consider now a superposition of statistically independent gravitationalwaves of type (7). Suppose that thesewaves share
a common frequency and amplitude, but propagate along spatial directions which are distributed uniformly over the unit
sphere. The stress–energy tensor associated with the superposition of these waves can be easily deduced from the above
and its non-vanishing components read

T app00 = ε(η)
2n2osc

1
48
ρ(η) (11)

T app11 = T
app2
2 = T

app3
3 = −ε(η)

2n2osc
1
144

ρ(η) (12)

with all other components zero, up to the same order as before. The above expressions show that a background of high
frequencies (i.e. nosc � 1) gravitational waves behaves like radiation with positive pressure equal to a third of its energy
density. The energy density is (at this order) quadratic in the frequency and amplitude.
Thus, a background wave of relative amplitude ε ≈ 10−5 and oscillation number nosc ≈ 105 would generate an effective

large scale stress–energy in the universe comparable to the energy density of dust present in this model. Such a wave would
correspond today to a physical frequency of order 10−12 Hz and would elude direct observation [12].

4. Coarse graining of black hole space–times

Both the Schwarzschild and the extreme Reisner–Nordström space–times of totalmassM have been coarse grained using
the above procedure [13–16]. For the Schwarzschild (resp. extreme RN) black hole, the metric g(ω) is the Schwarzschild
(resp. extreme RN) metric spatially translated by ω (resp. iω) in spatial Kerr–Schild coordinates [17], with ω distributed
uniformly in the 3-ball Ba of radius a > 0. In both cases, exact expressions have been found for the mean metric ḡ for all
points with radial Kerr–Schild coordinate r greater than the coarse graining parameter a.
Both averaged space–times describe black holes with the following properties. The total mass of the space–times, as well

as the total charge of the extreme black hole, are preserved by the averaging. But energy andmass are spatially redistributed:
in particular the averaged Schwarzschild black hole is surrounded by an apparent matter with energy density ε equal to
the opposite of the radial pressure pr and the scalar curvature induced by this apparent matter is strictly negative. The
similarities with dark energy are striking.
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The temperatures of the black holes are also modified by the averaging. Quite remarkably, the extreme black hole of
vanishing temperature is modified into a finite temperature black hole. Indeed, the temperature of the black hole obtained
by averaging the extreme RN black hole reads, at first order in the coarse graining parameter a,

Θ(a,M) '
a

2
√
5π M2

. (13)

Thus, at least some classical black holes of finite temperature can be understood as statistical superpositions of other
purely classical (as opposed to quantum) gravitational fields.

5. Conclusion

We have reviewed the new mean field theory of relativistic gravitation and discussed some applications to black hole
physics and cosmology. There are two main conclusions. The first one concerns black hole thermodynamics. We have
proved that it is possible to build at least some finite temperature black holes as statistical ensembles of classical vanishing
temperature extreme black holes. This result is striking because black hole thermodynamics has until now been understood
only by building black holes as statistical ensembles of quantum objects.
The second conclusion concerns cosmology. We have proved that small scale background gravitational waves

propagating around an homogeneous and isotropic universe can contribute significantly to the large scale energy density.
For instance, waves with a present relative amplitude of approximately 10−5 and a dimensionless comoving wavenumber
(oscillation number) of 105 would elude current observation and would be sufficient to close the universe.
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