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Abstract

In multi-goal reinforcement learning (RL) settings, the reward for each goal is
sparse, and located in a small neighborhood of the goal. In large dimension, the
probability of reaching a reward vanishes and the agent receives little learning
signal. Methods such as Hindsight Experience Replay (HER) tackle this issue
by also learning from realized but unplanned-for goals. But HER is known to
introduce bias (Plappert et al., 2018), and can converge to low-return policies by
overestimating chancy outcomes. First, we vindicate HER by proving that it is
actually unbiased in deterministic environments, such as many optimal control
settings. Next, for stochastic environments in continuous spaces, we tackle sparse
rewards by directly taking the infinitely sparse reward limit. We fully formalize
the problem of multi-goal RL with infinitely sparse Dirac rewards at each goal.
We introduce unbiased deep 𝑄-learning and actor-critic algorithms that can handle
such infinitely sparse rewards, and test them in toy environments.

Most standard reinforcement learning (RL) methods fail when faced with very sparse reward signals.
Multi-task reinforcement learning attempts to solve this problem by presenting agents with a diverse
set of tasks and learn a task-dependent policy in the hope that the agent could leverage knowledge
from some tasks on others (Jaderberg et al., 2016; Hausman et al., 2018; Nagabandi et al., 2019).
Multi-goal reinforcement learning is a sub-field of multi-task RL, where the different tasks consist in
reaching particular goals in the environment.

Universal Value Function Approximators (UVFA) (Schaul et al., 2015) extend the classical Q-
learning and Temporal Difference (TD) algorithms to the multi-goal setting. It learns the goal-
conditioned value-function 𝑉 𝜋(𝑠, 𝑔) or𝑄-function𝑄*(𝑠, 𝑎, 𝑔) for every state-goal pair, with function
approximation, via a TD algorithm. Still, no learning occurs until a reward is observed, and UVFA
fails in many high dimensional environments, when the probability of reaching the target goal is low
and the agent almost never gets any learning signal.

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) is a possible solution to this issue.
It leverages information between goals via the following principle: trajectories aiming at a goal 𝑔 but
reaching a goal 𝑔′ can be used for learning exactly as if the trajectory had been aiming at 𝑔′ from start.
This strategy has proved successful in practice, but is known to be biased (Manela & Biess, 2021;
Lanka & Wu, 2018). In their request for research for robotic multi-goal environments, Plappert et al.
(2018) list the necessity for an unbiased version of HER, as such bias can lead to low-return policies.

Our contributions are:

∙ We show that in deterministic environments, HER is actually unbiased (Theorem 2). This
case covers many standard control or robotic environments, in which HER is known to
perform well. This result strengthens HER theoretically.

∙ We show that sparse rewards in a multi-goal setting can be handled, counter-intuitively, by
dealing directly with the infinitely sparse reward limit: then the sparse reward contribution
can be computed algebraically instead of sampled. The resulting Q-learning and actor-critic
algorithms are unbiased even in the stochastic case and handle multi-goal RL without having
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to observe sparse rewards, although their variance is higher than HER. For this, we fully
formalize the problem of multi-goal RL with infinitely sparse rewards.

1 Multi-Goal Reinforcement Learning and Vanishing Rewards

Definition. We define a multi-goal RL environment as a variant of a Markov decision process
(MDP) including a goal space. The MDP is defined by a state-space 𝒮 , an action space 𝒜 (discrete or
continuous), a discount factor 𝛾, and a transition probability measure 𝑃 (d𝑠′|𝑠, 𝑎) which describes
the probability that the next state is 𝑠′ after taking action 𝑎 in state 𝑠; for stochastic continuous
environments, this is generally a continuous probability distribution over 𝑠′, hence the notation d𝑠′

which represents the probability to be in an infinitesimal set d𝑠′ around 𝑠′.

The goal space is a set 𝒢 together with a function 𝜙 : 𝒮 → 𝒢 defining for every state 𝑠 a corresponding
goal 𝑔 = 𝜙(𝑠), which is the goal achieved by state 𝑠. The objective of the agent is to reach a goal 𝑔.
This is usually formalized by defining a reward function 𝑅𝜀(𝑠, 𝑔) as 1 when a given distance between
the achieved goal 𝜙(𝑠) and the target 𝑔 is lower than a fixed value 𝜀: 𝑅𝜀(𝑠, 𝑔) := 1‖𝜙(𝑠)−𝑔‖6𝜀 for
a fixed norm ‖.‖ on 𝒢. Thus, each goal 𝑔 ∈ 𝒢 defines an ordinary MDP with reward 𝑅(𝑠, 𝑔), and
𝑄 and value functions 𝑄*

𝜀(𝑠, 𝑎, 𝑔), 𝑉 𝜋𝜀 (𝑠, 𝑔). A goal-conditioned policy 𝜋(𝑎|𝑠, 𝑔) is a probability
distribution over the action space 𝒜 for every (𝑠, 𝑔) ∈ 𝒮 × 𝒢.

We assume that, for a multi-goal policy 𝜋(𝑎|𝑠, 𝑔), we are able to sample trajectories in the environment
by sampling a goal 𝑔 ∼ 𝜌𝒢(d𝑔), a starting state 𝑠0 ∼ 𝜌0(d𝑠0|𝑔), and then by sampling at step 𝑡 the
action 𝑎𝑡 ∼ 𝜋(𝑎|𝑠𝑡, 𝑔) and the next state 𝑠𝑡+1 ∼ 𝑃 (d𝑠′|𝑠𝑡, 𝑎𝑡). We use the notation 𝑃𝜋(d𝑠′|𝑠, 𝑔) :=∫︀
𝑎
𝜋(𝑎|𝑠, 𝑔)𝑃 (d𝑠′|𝑠, 𝑎).

Universal Value Function Approximations. UVFA (Schaul et al., 2015) allow for learning the
value function 𝑉 𝜋𝜀 (𝑠, 𝑔) = E𝑎𝑡∼𝜋(.|𝑠𝑡,𝑔),𝑠𝑡+1∼𝑃 (.|𝑠𝑡,𝑎𝑡)

[︁∑︀
𝑡>0 𝛾

𝑡𝑅𝜀(𝑠𝑡, 𝑔)|𝑠0 = 𝑠
]︁

and the optimal
𝑄-function 𝑄*

𝜀(𝑠, 𝑎, 𝑔). Formally, 𝑄-learning with UVFA can be defined as standard 𝑄-learning
on the augmented state space 𝒮 := 𝒮 × 𝒢, with the transition distribution 𝑃 defined as follows: if
action 𝑎 is performed in state (𝑠, 𝑔), the next state 𝑠′ is (𝑠′, 𝑔) with 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎). The augmented
environment is not a multi-goal environment, and the policy 𝜋(𝑎|𝑠, 𝑔) = 𝜋(𝑎|𝑠) becomes a standard
non-goal-dependent policy in 𝒮. The UVFA Q-learning update corresponds to standard parametric
𝑄-learning on the augmented environment.

In practice, we consider a parametric function 𝑄𝜃(𝑠, 𝑔), and we want to learn 𝜃 such that 𝑄𝜃(𝑠, 𝑔)
approximates𝑄*

𝜀(𝑠, 𝑔). If 𝜃 is our current estimate and𝑄tar a target𝑄-function the Q-learning UVFA
stochastic update ̂︀𝛿𝜃UVFA is defined as follows. We consider an exploration policy 𝜋expl(𝑎|𝑠, 𝑔).
When a transition (𝑠, 𝑎, 𝑠′, 𝑔) is observed, with 𝑎 ∼ 𝜋expl(.|𝑠, 𝑔) and 𝑠′ ∼ 𝑃 (.|𝑠, 𝑔), ̂︀𝛿𝜃UVFA is:

̂︀𝛿𝜃UVFA(𝑠, 𝑎, 𝑠′, 𝑔) := −1

2
𝜕𝜃

(︂
𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅𝜀(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄tar(𝑠

′, 𝑎′, 𝑔)

)︂2

(1)

Then, we update 𝜃 with 𝜃 ← 𝜃 + 𝜂 ̂︀𝛿𝜃UVFA, where 𝜂 is the learning rate. The update ̂︀𝛿𝜃UVFA is an
unbiased estimate of 1/2𝜕𝜃‖𝑄𝜃−𝑇 ·𝑄tar‖2 where 𝑇 is the optimal Bellman operator, 𝑇 ·𝑄(𝑠, 𝑎, 𝑔) =
𝑅𝜀(𝑠, 𝑔) + 𝛾E𝑠′∼𝑃 (.|𝑠,𝑎) [sup𝑎′ 𝑄(𝑠′, 𝑎′, 𝑔)], whose unique fixed point is 𝑄*

𝜀 . In particular, in the
tabular setting, this guarantees that a function 𝑄∞ is a fixed point of UVFA if and only if 𝑇 ·𝑄∞ =
𝑄∞, which means 𝑄∞ = 𝑄*

𝜀 .

UVFA and vanishing rewards. A major problem with multi-goal setups is the low probability
with which each specific goal 𝑔 is achieved, since rewards are observed only in a ball of radius 𝜀
around the goal. In a continuous noisy environment of dimension 𝑛, reaching a goal up to precision
𝜀 becomes almost surely impossible when 𝜀 → 0. With noise in dimension 𝑛, the probability to
exactly reach a predefined goal 𝑔 scales like 𝑂(𝜀𝑛). In particular, the 𝑄 and value functions vanish
like 𝑂(𝜀𝑛) when 𝜀 is small. The situation is different in continuous deterministic environments. If it
is possible to reach a goal exactly by selecting the right action, then the optimal 𝑄-function 𝑄*

𝜀 does
not vanish, even if 𝜀 = 0.

With the UVFA update, the probability to observe a reward 1‖𝜙(𝑠)−𝑔‖6𝜀 vanishes like 𝑂(𝜀𝑛) for
continuous exploration policies. So even if 𝑄*

𝜀 itself does not vanish, the learning algorithm for
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𝑄*
𝜀 may vanish. In practice, in an environment of dimension 𝑛 = 6, UVFA is not able to learn

anymore (experiment in Fig. 1). This vanishing issue cannot be solved solely by an exploration
strategy: the issue is not the lack of diversity in visited states but rather the state space is too large
to be visited by an exploration trajectory (Andrychowicz et al., 2017). Solving the issue of sparse
rewards requires gathering some information even from failing trajectories which do not reach their
initial goal, namely, leveraging the structure of multi-goal environments by using that every state
achieves some goal. This the case in HER but not UVFA.

In this work we study algorithms which leverage the multi-goal structure and do not vanish even
in the limit 𝜀 → 0. We will focus on unbiased algorithms, which ensure that the true 𝑄 or value
function is indeed a fixed point, by stochastic gradient arguments. UVFA is unbiased but vanishes
when 𝜀 → 0. HER does not vanish, but is known to be biased. In Section 2 we prove that HER
is unbiased in deterministic environments. Sections 3.2 and 3.4 present non-vanishing, unbiased
algorithms for stochastic environments; however, they are less efficient than HER in deterministic
environments.

2 Hindsight Experience Replay in Stochastic or Deterministic Environments

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) is a way to solve the issue of
sparse rewards for multi-goal environments by leveraging the mutual information between goals.
The principle is the following: trajectories aiming at a goal 𝑔 but reaching a goal 𝑔′ can be used for
learning exactly as if the trajectory had been aiming for 𝑔′ from start. Formally, when observing a
trajectory 𝜏 = (𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...), HER samples two random integers 0 6 𝐾 6 𝐿, and performs
a 𝑄-learning update at step 𝑠𝐾 , but for a re-sampled goal 𝑔′ that is, with some probability, either
𝑔′ = 𝑔 or 𝑔′ = 𝜙(𝑠𝐿), the goal achieved by the 𝐿-th state in the trajectory: ̂︀𝛿𝜃HER(𝜏,𝐾,𝐿) :=
1
2𝜕𝜃 (𝑄𝜃(𝑠𝐾 , 𝑎𝐾 , 𝑔

′)−𝑅𝜀(𝑠𝐾 , 𝑔′)− 𝛾 sup𝑎′ 𝑄tar(𝑠𝐾+1, 𝑎
′, 𝑔′))

2. In particular, the HER update
does not vanish even for 𝜀 = 0: with nonzero probability, 𝐾 = 𝐿 and 𝑔′ = 𝜙(𝑠𝐿), so that
𝑅𝜀(𝑠𝐾 , 𝑔

′) = 1.

Bias of HER in stochastic environments. HER is known to be biased in a general setting (Manela
& Biess, 2021; Lanka & Wu, 2018; Plappert et al., 2018), and this bias corresponds to a well-known
psychological bias (Fischhoff, 1975). Here is a simple way to design counter-examples environments
which exhibit this HER bias. Consider a finite multi goal environment and add a single action 𝑎*
which, from any state 𝑠, sends the agent to a uniform random state 𝑠′ and then freezes it, which means
the agent will always stay at 𝑠′.

Both in theory and practice, HER will learn to always select the action 𝑎* (third plot in Fig. 1). The
intuition is the following: when the agent acts with 𝑎* and reaches a random state 𝑠′, HER reinforces
𝑎* as a good way to reach 𝑠′ from 𝑠, while this was purely random. Formally, the following statement
(proof in Appendix B.2) shows that HER will overestimate the value of action 𝑎*. We say that 𝑄∞ is
a fixed point of HER if E𝜏,𝐾,𝐿

[︁ ̂︀𝛿𝜃HER(𝜏,𝐾,𝐿)
]︁

= 0 when 𝑄𝜃 = 𝑄tar = 𝑄∞.

THEOREM 1. Letℳ be any finite multi-goal environment, and ℳ̃ the modified environment with
the freeze action 𝑎*. Then ℳ̃ is a counter-example to HER, which is biased in this environment.
Namely, if 𝑄∞ is a fixed point of HER for ℳ̃, then for every unfrozen state 𝑠 and goal 𝑔, 𝑄∞ will
overestimate the value of 𝑎*: 𝑄∞(𝑠, 𝑎*, 𝑔) > 𝑄*(𝑠, 𝑎*, 𝑔) where 𝑄* is the true value function.

Generally, HER is overestimating chancy outcomes, by estimating that any action (even random)
that led to some goal was a good way to reach that goal. This is clear in the example of the freeze-
after-random-jump actions in Theorem 1. Thus, HER has no reason to learn reliably in a stochastic
environment. Other hindsight methods such as (Rauber et al., 2019) experience a similar bias.

HER is unbiased in deterministic environments. Despite its bias, HER is efficient in practice,
especially in continuous control environments. We vindicate HER theoretically by showing that HER
is unbiased in deterministic environments. We say that an environment is deterministic is the next
state 𝑠𝑡+1 is uniquely determined by the current state 𝑠𝑡 and an action 𝑎𝑡. This covers many usual
environments such as robotic environments.
THEOREM 2. In a deterministic multi-goal environment such that every target state is reachable from
any starting state, HER is an unbiased Q-learning method. Namely, there is a Euclidean norm ‖.‖HER
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such that if 𝑄𝜃 is the current estimate of 𝑄*, the HER update 𝛿𝜃HER is an unbiased stochastic estimate
of the gradient step between𝑄𝜃 and the target function 𝑇𝑄tar: E

[︁ ̂︀𝛿𝜃HER

]︁
= 1/2𝜕𝜃‖𝑄𝜃−𝑇𝑄tar‖2HER.

In particular, the true 𝑄-function 𝑄* is a fixed point of HER in expectation: if 𝑄𝜃 and 𝑄tar are equal
to 𝑄* then E

[︁ ̂︀𝛿𝜃HER

]︁
= 0.

The proof and a more detailed statement are given in Appendix B.1. This result vindicates HER for
deterministic environments: HER leverages the structure of multi-goal environments, is not vanishing
when the rewards are sparse, and is mathematically well-grounded.

3 Multi-Goal RL via Infinitely Sparse Rewards

3.1 Taking the Infinitely Sparse Reward Limit

In Section 2, we saw that while HER is well-founded in deterministic environments, it is biased in
the stochastic case and can learn low-return policies (Figure 1). We now introduce unbiased methods
for multi-goal RL in the general setting, including stochastic environments.

In continuous state spaces, the reward is usually defined as 𝑅𝜀(𝑠, 𝑔) = 1‖𝜙(𝑠)−𝑔‖6𝜀. When 𝜀→ 0,
the probability of reaching the reward with a stochastic policy goes to 0, and for any stochastic policy,
the value function 𝑉 𝜋𝜀 (𝑠, 𝑔) converges to 0 as well. To avoid this vanishing issue, we need a scaling
factor, and consider the reward 1

𝜆(𝜀)𝑅𝜀(𝑠, 𝑔), with 𝜆(𝜀) the volume of the ball of size 𝜀 in goal space.
When 𝜀→ 0, this rescaled reward converges to the Dirac reward:

𝑅(𝑠,d𝑔) := 𝛿𝜙(𝑠)(d𝑔), (2)

where 𝛿𝑥 is the Dirac measure at 𝑥. Intuitively, the Dirac reward 𝑅(𝑠,d𝑔) is infinite if the goal is
reached (𝜙(𝑠) = 𝑔) and 0 elsewhere. Formally, the reward is not a function but a measure on the goal
space 𝒢 parametrized by the state 𝑠.

However, even after such a scaling, the UVFA update still vanishes with high probability for small 𝜀
(this just scales things by 1/𝜆(𝜀)). We will build algorithms that work directly in the limit 𝜀 = 0:
replacing the sparse reward 𝑅𝜀(𝑠, 𝑔) by the infinitely sparse reward 𝑅(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) will allow
us to leverage the Dirac structure to remove the vanishing rewards issue.

Computing the exact contribution of sparse rewards. We now explain how to leverage the multi-
goal sparse reward structure. The key idea is that, with 𝜀 = 0, the contribution of the reward term
in the Bellman equation can be computed exactly in expectation. Infinitely sparse rewards can be
treated algebraically. This derivation is informal; the formal proof is in Appendix C.2.

Let us start with the expectation of the UVFA update (1) with 𝜀 > 0 and rewards rescaled by 1/𝜆(𝜀):

𝛿𝜃UVFA = E𝑠,𝑎,𝑠′,𝑔
[︁ ̂︀𝛿𝜃UVFA(𝑠, 𝑎, 𝑠′, 𝑔)

]︁
= −1

2
𝜕𝜃E𝑠,𝑎,𝑔,𝑠′

[︃(︂
𝑄𝜃(𝑠, 𝑎, 𝑔)− 1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)− 𝛾max

𝑎′
𝑄tar(𝑠

′, 𝑎′, 𝑔)

)︂2
]︃

= E𝑠,𝑎,𝑔
[︂
𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)

1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)

]︂
− E𝑠,𝑎,𝑔,𝑠′

[︁
𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)

(︁
𝑄𝜃(𝑠, 𝑎, 𝑔)− 𝛾max

𝑎′
𝑄tar(𝑠

′, 𝑎′, 𝑔)
)︁]︁
.

This update cannot be used for small 𝜀, because 𝑅𝜀(𝑠, 𝑔) is 0 most of the time, even though the
expectation is nonzero and a huge 1/𝜆(𝜀) reward is observed with low probability.

But when 𝜀→ 0, the rescaled reward 1
𝜆(𝜀)𝑅𝜀(𝑠, 𝑔) converges to the Dirac reward 𝛿𝜙(𝑠). Therefore,

we can rewrite this first term as
1

𝜆(𝜀)
E𝑠,𝑎,𝑔 [𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)𝑅𝜀(𝑠, 𝑔)]→𝜀→0 E𝑠,𝑎,𝑔

[︀
𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)𝛿𝜙(𝑠)(d𝑔)

]︀
= E𝑠,𝑎 [𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝜙(𝑠))] .

In this expression, sparse reward issues are avoided, just by taking the goal 𝑔 = 𝜙(𝑠) associated with
the currently visited state 𝑠. Instead of waiting to reach a goal to update the 𝑄-function, this updates
the 𝑄-function for the currently realized goal.
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The resulting algorithm, 𝛿-DQN, is described in Theorem 4 and Algorithm 1. The proper mathematical
treatment (below and in the Appendix) of the Dirac limit shows that this actually estimates, not 𝑄
itself, but the density 𝑞(𝑠, 𝑎, 𝑔) of the distribution of realized goals with respect to the goal sampling
distribution 𝜌𝒢(d𝑔) of the environment. This density 𝑞 can be used to rank actions (indeed, the
scaling by 𝜌𝒢 between 𝑞 and 𝑄 only depends on the goal 𝑔, so for a fixed goal, states and actions
are ranked the same way). In general, working with probability densities is the only way that makes
sense in the presence of noise, as the probability to exactly reach a goal will be 0.

A similar treatment holds for policy gradient (Sections 3.3–3.4).

3.2 Unbiased Multi-Goal Q-learning with Infinitely Sparse Rewards

Our goal here is to formally define multi-goal 𝑄-learning with infinitely sparse rewards. In general,
the probability of reaching any goal exactly is 0: instead we will learn the probability distribution of
the goals reached by a policy, and compute the probability to reach each infinitesimal element d𝑔 in
goal space. This is done by treating everything as measures over 𝒢: the reward 𝛿𝜙(𝑠)(d𝑔) is a measure,
and the value functions 𝑉 𝜋(𝑠,d𝑔) or optimal action-value function 𝑄*(𝑠, 𝑎,d𝑔) are measures on 𝒢
as well. In the following, we define these objects in detail, and show how to learn them in practice.

First, we define an optimal Bellman operator 𝑇 on action-value measures, and the optimal action-
value measure 𝑄*(𝑠, 𝑎,d𝑔). Then, we derive 𝛿-DQN, a deep Q-learning algorithm with infinitely
sparse rewards for multi-goal RL.

Optimal Bellman equation and optimal Q-function. We first define 𝑄*(𝑠, 𝑎,d𝑔), the optimal
action-value measure, the mathematical object corresponding to the usual optimal 𝑄-function 𝑄*

but infinitely sparse rewards. The following theorem defines the optimal Bellman operator for
action-value measures, and 𝑄*(𝑠, 𝑎,d𝑔) as its fixed point. It is formallly stated in Appendix C.1.

DEFINITION-THEOREM 3. Let 𝑄(𝑠, 𝑎,d𝑔) a measure on 𝒢 parametrized by 𝑠, 𝑎 ∈ 𝒮 × 𝒜. We
define the optimal Bellman operator 𝑇 which sends 𝑄 to 𝑇 ·𝑄 with

(𝑇 ·𝑄)(𝑠, 𝑎,d𝑔) := 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) sup
𝑎′
𝑄(𝑠′, 𝑎′,d𝑔) (3)

where 𝛿𝜙(𝑠) is the Dirac measure at 𝜙(𝑠) ∈ 𝒢. We define the optimal action-value measure 𝑄*

as follows. Set 𝑄0(𝑠, 𝑎,d𝑔) := 0, and 𝑄𝑛+1 := 𝑇𝑄𝑛. Then 𝑄𝑛(𝑠, 𝑎,d𝑔) converges to some
𝑄*(𝑠, 𝑎,d𝑔). Moreover, this 𝑄*(𝑠, 𝑎,d𝑔) solves the fixed point equation 𝑇𝑄* = 𝑄*.

𝑄-learning with function approximations, with infinitely sparse rewards. From the fixed point
equation for𝑄*, we would like to learn a model of𝑄*(𝑠, 𝑎,d𝑔) with function approximation. We will
represent measures over goals via their density with respect to the goal sampling function 𝜌𝒢 of the en-
vironment. Namely, we will approximate 𝑄*(𝑠, 𝑎,d𝑔) by a model 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔)
where 𝑞𝜃(𝑠, 𝑎, 𝑔) is an ordinary function, and learn 𝑞𝜃. Hence, 𝑞𝜃 may be approximated by any
parametric model, such as a neural network.

The following theorem properly defines an unbiased stochastic 𝛿-DQN update with infinitely sparse
rewards for the density 𝑞𝜃(𝑠, 𝑎, 𝑔):

THEOREM 4. Let 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) be a current estimate of 𝑄*(𝑠, 𝑎,d𝑔). Let
likewise 𝑄tar(𝑠, 𝑎,d𝑔) = 𝑞tar(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) be a target 𝑄-function, and consider the following
update to bring 𝑄𝜃 closer to 𝑇𝑄tar with 𝑇 the optimal Bellman operator.

Let (𝑠, 𝑎, 𝑠′) be a sample of the environment such that 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) and 𝑔 ∼ 𝜌𝒢 is sampled
independently. Let ̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠′, 𝑔) be

̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠′, 𝑔) := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠)) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)
(︁
𝛾max

𝑎′
𝑞tar(𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)
)︁

(4)

Then ̂︀𝛿𝜃𝛿-DQN is an unbiased estimate of the Bellman error: E
[︁ ̂︀𝛿𝜃𝛿-DQN

]︁
= 1

2𝜕𝜃‖𝑄𝜃 − 𝑇𝑄tar‖2,
where the Euclidean norm ‖·‖ on measures is defined in Theorem 11 (Appendix C.2).

In particular, the true optimal state-action measure 𝑄* is a fixed point of this update: if 𝑄𝜃 = 𝑄tar =

𝑄* then E
[︁ ̂︀𝛿𝜃𝛿-DQN

]︁
= 0.
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Algorithm 1 𝛿-DQN

Input: Randomly initialized model 𝑞𝜃(𝑠, 𝑎, 𝑔); 𝜙; exploration policy 𝜋expl(𝑎|𝑠, 𝑔); goal function
𝜙; memory buffer TransitionMemory, 𝑇 the maximum trajectory length
repeat

for 𝐾 trajectories do
Get a goal 𝑔 and an initial state 𝑠0
for 0 6 𝑡 6 𝑇 steps do do

Sample 𝑎𝑡 ∼ 𝜋expl(.|𝑠𝑡, 𝑔), execute 𝑎𝑡 and observe 𝑠𝑡+1

Store in the transition memory the transition TransitionMemory← (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)
end for
for 𝐿 gradient steps do

Sample (𝑠, 𝑎, 𝑠′) ∼ TransitionMemory and 𝑔 ∼ 𝜌𝒢̂︀𝛿𝜃𝛿-DQN := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠)) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔) (𝛾max𝑎′ 𝑞𝜃(𝑠
′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)).

Stochastic gradient step: 𝜃 ← 𝜃 + 𝜂 ̂︀𝛿𝜃𝛿-DQN.
end for

end for
until end of learning

This update leads to 𝛿-DQN (Algorithm 1, which corresponds to standard DQN with infinitely sparse
rewards. For continuous actions, 𝛿-DQN can be modified similarly to DDPG (Lillicrap et al., 2016).

Example: the tabular case. The tabular case highlights the difference between UVFA and 𝛿-DQN.
When a transition (𝑠, 𝑎, 𝑠′, 𝑔) is observed, the UVFA update is:

𝑄(𝑠, 𝑎, 𝑔)← 𝑄(𝑠, 𝑎, 𝑔) + 𝜂
(︁
1𝜙(𝑠)=𝑔 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔)−𝑄(𝑠, 𝑎, 𝑔)

)︁
(5)

where 𝜂 is the learning rate. The only modified value is 𝑄(𝑠, 𝑎, 𝑔).

With 𝛿-DQN, we learn the density 𝑞 of 𝑄(𝑠, 𝑎,d𝑔) with respect to 𝜌𝒢 . Assume that 𝜌𝒢(𝑔) is the
uniform measure over the finite goal space 𝒢. Then we learn 𝑞(𝑠, 𝑎, 𝑔) = |𝒢| × 𝑄(𝑠, 𝑎, 𝑔). For a
tabular model, the 𝛿-DQN update in Equation (87) is

𝑞(𝑠, 𝑎, 𝜙(𝑠))← 𝑞(𝑠, 𝑎, 𝜙(𝑠)) + 𝜂 (6)

𝑞(𝑠, 𝑎, 𝑔)← 𝑞(𝑠, 𝑎, 𝑔) + 𝜂
(︁
𝛾max

𝑎′
𝑞(𝑠′, 𝑎′, 𝑔)− 𝑞(𝑠, 𝑎, 𝑔)

)︁
. (7)

Here two values are updated: in addition to (𝑠, 𝑎, 𝑔), the trajectory visiting 𝑠 is also used to update
the value for the goal 𝜙(𝑠). The first part always increases 𝑞 at the goal 𝜙(𝑠) achieved by 𝑠; the
second part at (𝑠, 𝑎, 𝑔) has no reward contribution, and decreases 𝑞 at (𝑠, 𝑎, 𝑔) by a factor (1 − 𝜂)
while propagating the value from 𝑠′. In expectation, the decrease at (𝑠, 𝑎, 𝑔) compensates the increase
at (𝑠, 𝑎, 𝜙(𝑠)): this compensation is exact when 𝑞 is the exact solution.

As a comparison, the tabular HER update works as follows: when observing a trajectory
(𝑔, 𝑠0, 𝑎0, 𝑠1, ...), a transition (𝑠, 𝑎, 𝑠′, 𝑔) = (𝑠𝐾 , 𝑎𝐾 , 𝑠𝐾+1, 𝑔) for some 𝐾 > 0 is selected; then
HER samples 𝐿 > 𝐾, defines 𝑔′ := 𝜙(𝑠𝐿) as the re-sampled goal, then applies the UVFA update (5)
but with (𝑠, 𝑎, 𝑠′, 𝑔′) instead of (𝑠, 𝑎, 𝑠′, 𝑔). When 𝐿 = 𝐾, the goal sampled by HER is 𝑔′ = 𝜙(𝑠):
this is somewhat similar to 𝛿-DQN, except 𝛿-DQN resamples an independant goal instead of 𝑔′ for
the second term instead. Despite this similarity, HER is biased in stochastic environments and can
converge to a low-return policy, while 𝛿-DQN is unbiased.

3.3 Unbiased Policy Evaluation with Infinitely Sparse Rewards

Similarly to 𝛿-DQN, there exists an actor-critic algorithm for multi-goal environments with infinitely
sparse rewards. We start with policy evaluation, then derive the policy gradient algorithm.

Learning the value function 𝑉 𝜋(𝑠,d𝑔) directly without bias poses technical issues due to the double
dependency of 𝑉 𝜋(𝑠,d𝑔) on 𝑔 (first via the location of the reward, second, via the goal-dependent
policy 𝜋(.|., 𝑔)). This is discussed in Appendix D.2.
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Instead, we learn a richer object, 𝑀𝜋(𝑠, 𝑔, d𝑔′), the value function of 𝑠 if the reward is a Dirac at 𝑔′
but the agent follows the policy 𝜋(𝑎|𝑠, 𝑔) for goal 𝑔. This is defined as the measure over goals

𝑀𝜋(𝑠, 𝑔, d𝑔′) := E𝑎𝑡∼𝜋(.|𝑠𝑡,𝑔),𝑠𝑡+1∼𝑃 (.|𝑠𝑡,𝑎𝑡)

⎡⎣∑︁
𝑡>0

𝛾𝑡𝛿𝜙(𝑠𝑡)(d𝑔
′)|𝑠0 = 𝑠

⎤⎦ (8)

𝑀𝜋(𝑠, 𝑔, d𝑔′) represents the successor goal measure, and is related to the successor state mea-
sure (Blier et al., 2021). Compared to 𝑉 𝜋(𝑠,d𝑔), 𝑀𝜋(𝑠, 𝑔, d𝑔′) splits the two effects of the goal 𝑔 in
two variables 𝑔 and 𝑔′. 𝑉 𝜋(𝑠,d𝑔) can be derived from 𝑀𝜋(𝑠, 𝑔, d𝑔′) as 𝑉 𝜋(𝑠,d𝑔) = 𝑀𝜋(𝑠, 𝑔, d𝑔)
(see Appendix E.2). 𝑀𝜋 is a fixed point of the Bellman operator 𝑇𝜋 defined as:

(𝑇𝜋 ·𝑀)(𝑠, 𝑔, d𝑔′) := 𝛿𝜙(𝑠)(d𝑔
′) + 𝛾E𝑎∼𝜋(𝑎|𝑠,𝑔),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) [𝑀(𝑠′, 𝑔, d𝑔′)] (9)

A rigorous proof of the existence of 𝑀𝜋 as well as its fixed point Bellman equation is given in
Theorem 13 in the supplementary. Similarly to the 𝛿-DQN update obtained in Theorem 4, we can now
derive an unbiased 𝛿-TD update for 𝑀𝜋 , leveraging the structure of the Dirac reward and removing
the issue of vanishing rewards. As for 𝑄*(𝑠, 𝑎,d𝑔), because 𝑀𝜋(𝑠, 𝑔, d𝑔′) is a measure, we learn a
model 𝑚𝜃(𝑠, 𝑔, 𝑔

′) of its density with respect to 𝜌𝒢 , namely, 𝑀𝜃(𝑠, 𝑔, d𝑔
′) = 𝑚𝜃(𝑠, 𝑔, 𝑔

′)𝜌𝒢(d𝑔′).
THEOREM 5. Let 𝑀𝜃(𝑠, 𝑔, d𝑔

′) = 𝑚𝜃(𝑠, 𝑔, 𝑔
′)𝜌𝒢(d𝑔′) be a current estimate of 𝑀𝜋(𝑠, 𝑔, d𝑔′). Let

likewise 𝑀tar(𝑠, 𝑔, d𝑔
′) = 𝑚tar(𝑠, 𝑔, 𝑔

′)𝜌(d𝑔′) be a target 𝑀 , and consider the following update to
bring 𝑄𝜃 closer to 𝑇𝜋𝑄tar with 𝑇𝜋 the Bellman operator.

Let (𝑠, 𝑎, 𝑠′, 𝑔, 𝑔′) be samples of the environment such that 𝑎 ∼ 𝜋(𝑎|𝑠, 𝑔), 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) and
𝑔′ ∼ 𝜌𝒢 is a goal sampled independently. Let ̂︀𝛿𝜃𝛿-TD bê︀𝛿𝜃𝛿-TD(𝑠, 𝑎, 𝑠′, 𝑔, 𝑔′) := 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝜙(𝑠)) + 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝑔

′) (𝛾𝑚tar(𝑠
′, 𝑔, 𝑔′)−𝑚𝜃(𝑠, 𝑔, 𝑔

′)) (10)

Then ̂︀𝛿𝜃𝛿-TD is an unbiased estimate of the Bellman error: E𝑠,𝑎,𝑠′,𝑔,𝑔′
[︁ ̂︀𝛿𝜃𝛿-TD(𝑠, 𝑎, 𝑠′, 𝑔, 𝑔′)

]︁
=

1
2𝜕𝜃‖𝑀𝜃 − 𝑇𝜋𝑀tar‖2, where the norm ‖·‖ on measures is defined in Theorem 13 (Appendix D.2).

In particular, the true successor goal measure 𝑀𝜋(𝑠, 𝑔, d𝑔′) is a fixed point of this udpate: if
𝑀𝜃 = 𝑀tar = 𝑀𝜋 , then E

[︁ ̂︀𝛿𝜃𝛿-TD

]︁
= 0.

Similarly to update ̂︀𝛿𝜃𝛿-DQN, the update ̂︀𝛿𝜃𝛿-TD has two parts: the first part 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝜙(𝑠)) repre-
sents the reward update for the goal achieved in the current state 𝑠, and removes the vanishing reward
issue. The second part propagates the rewards along transitions.

We can also define a horizon-𝑛 𝛿-TD(𝑛) update if we have access to longer sub-trajectories 𝜏 =
(𝑔, 𝑠0, 𝑎0, 𝑠1, ...). The update at a state 𝑠𝑘 in the trajectory is (Appendix, Theorem 13)

̂︀𝛿𝜃𝛿-TD(𝑛)(𝜏, 𝑘, 𝑔
′) :=

𝑛−1∑︁
𝑙=0

𝛾𝑙𝜕𝜃𝑚𝜃(𝑠𝑘, 𝑔, 𝜙(𝑠𝑘+𝑙))+𝜕𝜃𝑚𝜃(𝑠𝑘, 𝑔, 𝑔
′) (𝛾𝑛𝑚𝜃(𝑠𝑘+𝑛, 𝑔, 𝑔

′)−𝑚𝜃(𝑠𝑘, 𝑔, 𝑔
′))

(11)
where 𝑔′ ∼ 𝜌𝒢 is sampled independently. The first part increases the value estimate at state 𝑠𝑘 for
every of the 𝑛 goals 𝜙(𝑠𝑘), ..., 𝜙(𝑠𝑘+𝑛−1) achieved in the next 𝑛 steps: this corresponds to the 𝑛-step
return with Dirac rewards. The second part propagates the value along transitions. This is similar to
HER in that future goals achieved along the trajectory are explicitly used, and could thus improve
sample efficiency. However, computational complexity is an issue. In non-multi-goal environments,
algorithms such as PPO (Schulman et al., 2017) compute the TD(𝑛) update at every step of the
trajectory. This is computable with 𝑂(𝑛) forward passes through the value model 𝑣𝜃, because it only
requires to compute 𝑣𝜃(𝑠0), . . . , 𝑣𝜃(𝑠𝑛). Here we have to compute 𝑚𝜃(𝑠𝑘, 𝑔, 𝜙(𝑠𝑘+𝑙)) for every 𝑘
and 𝑙, leading to an 𝑂(𝑛2) complexity (though this could potentially be sub-sampled as in HER).
This makes it slow in practice, and 𝛿-TD(𝑛) was not tested experimentally here.

3.4 Multi-Goal Policy Gradient

We now derive the actor-critic algorithm. The classical approach with reward 𝑅𝜀 for
𝜀 > 0 considers the expected return 𝐽𝜀(𝜋) = E𝑔∼𝑝𝒢 ,𝑠0∼𝑝0(.|𝑔)

[︁∑︀
𝑡>0 𝛾

𝑡𝑅𝜀(𝑠𝑡, 𝑔)|𝑠0 = 𝑠
]︁

=
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Algorithm 2 One-step 𝛿-Actor-Critic

Input: Model 𝑚𝜃𝑀 (𝑠, 𝑔); policy 𝜋𝜃; goal function 𝜙; 𝑇 the maximum trajectory length
Get a goal 𝑔 and an initial state 𝑠0 from the environment
for 0 6 𝑡 6 𝑇 steps do

Sample 𝑎𝑡 ∼ 𝜋(𝑎|𝑠𝑡, 𝑔)
Execute action 𝑎𝑡 and observe the next state 𝑠𝑡+1

Sample an independent goal 𝑔′ ∼ 𝜌𝒢(d𝑔′)̂︀𝛿𝜃𝛿-TD := 𝜕𝜃𝑚𝜃𝑀 (𝑠𝑡, 𝑔, 𝜙(𝑠𝑡)) + 𝜕𝜃𝑚𝜃𝑀 (𝑠𝑡, 𝑔, 𝑔
′) (𝛾𝑚𝜃𝑀 (𝑠𝑡+1, 𝑔, 𝑔

′)−𝑚𝜃𝑀 (𝑠𝑡, 𝑔, 𝑔
′))̂︀𝛿𝜃𝛿-AC = 𝛾𝑡 × 𝜕𝜃 log 𝜋𝜃𝜋 (𝑎𝑡|𝑠𝑡, 𝑔) (𝛾𝑚(𝑠𝑡+1, 𝑔, 𝑔)−𝑚(𝑠𝑡, 𝑔, 𝑔))

𝜃𝑀 ← 𝜃𝑀 + 𝜂𝑀 ̂︀𝛿𝜃𝛿-TD

𝜃𝜋 ← 𝜃𝜋 + 𝜂𝜋 ̂︀𝛿𝜃𝛿-AC

end for

∫︀
𝑠0,𝑔

𝑉 𝜋𝜀 (𝑠, 𝑔) 𝜌𝒢(d𝑔)𝜌0(d𝑠0|𝑔) with a sampled goal 𝑔 ∼ 𝜌𝒢(d𝑔) and sampled initial state 𝑠0 ∼
𝜌0(d𝑠0|𝑔), and subsequent actions sampled from the policy for 𝑔. As in 𝛿-DQN, we want to derive
an algorithm solving the vanishing reward issue directly for 𝜀 = 0. We first show that the limit makes
sense, then derive the corresponding update in (13) below.
THEOREM 6. Under continuity assumptions (Assumption 1 in the Appendix), there is a function
𝐽(𝜋) such that, for every parametric policy 𝜋𝜃(𝑎|𝑠, 𝑔):

1

𝜆(𝜀)
𝐽𝜀(𝜋𝜃)→𝜀→0 𝐽(𝜋𝜃) and

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃)→𝜀→0 𝜕𝜃𝐽(𝜋𝜃) (12)

where 𝜆(𝜀) is the volume of a ball of size 𝜀 in goal space. We call 𝐽(𝜋) the expected return with
infinitely sparse rewards. Moreover, 𝐽(𝜋) :=

∫︀
𝑠0,𝑔

𝑉 𝜋(𝑠0,d𝑔) 𝑝𝒢(𝑔) 𝜌0(d𝑠0|𝑔) where 𝑝𝒢(𝑔) is the
density of 𝜌𝒢(d𝑔) with respect to Lebesgue measure on goals.

We now derive an estimate of 𝜕𝜃𝐽(𝜋𝜃) for a parametric policy 𝜋𝜃(𝑎|𝑠, 𝑔). We assume access to tran-
sition samples (𝑠, 𝑎, 𝑠′, 𝑔) such that 𝑎 ∼ 𝜋(.|𝑠, 𝑔), 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎) and 𝑠 is sampled from the goal-
dependant discounted visitation frequencies 𝜈𝜋(d𝑠|𝑔) = (1− 𝛾)

∑︀
𝑡>0 𝛾

𝑡𝜌0(d𝑠0|𝑔)(𝑃𝜋)𝑡(d𝑠|𝑠0, 𝑔):
namely, states 𝑠 on a trajectory sampled from 𝜋 with goal 𝑔.

We can define the actor critic update with infinitely sparse rewards by using the model 𝑚(𝑠, 𝑔, 𝑔) as
an estimate of the values, and applying the ordinary policy gradient theorem (Sutton & Barto, 2018)
on the extended space 𝒮 × 𝒢 to include the goals (see Appendix E.4). This leads tô︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔) := 𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔) (𝛾𝑚𝜃𝑀 (𝑠′, 𝑔, 𝑔)−𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔)) (13)

where 𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔′) is the model of the value density learned in Section 3.3. This is justified by the
following statement, which is an informal version of Theorem 20 in Appendix E.4: namely, if the
value function model 𝑚𝜃𝑀 is correct, then this actor-critic update is an unbiased estimate of 𝜕𝜃𝐽(𝜋𝜃).
INFORMAL THEOREM 7. If 𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔)𝜆(d𝑔) approximates 𝑉 𝜋(𝑠,d𝑔) as a measure, then
E𝑠,𝑎,𝑠′,𝑔

[︁ ̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)
]︁

approximates 𝜕𝜃𝐽(𝜋𝜃).

This update, together with the one for 𝑚 in Theorem 5, make up the 𝛿-Actor-Critic algorithm
(Algorithm 2). We can similarly define a PPO algorithm (Appendix A), used in the experiments.

4 Experiments

The Torus environment. We first define the Torus(𝑛) environment, which is a continuous version
of the flipping coin environment introduced in (Andrychowicz et al., 2017). The state space is the
𝑛-th dimensional torus, represented as 𝒮 = [0, 1)𝑛, and can be obtained from the 𝑛-dimensional
hypercube by gluing the opposite faces together. The action space is 𝒜 = {1, . . . , 𝑛} × {−𝛼, 𝛼} and
action 𝑎 = (𝑖, 𝑢) in state 𝑠 moves the position on the axis 𝑖 of a quantity 𝑢, then the environment
adds a Gaussian noise. Formally 𝑠′ ∼

(︀
(𝑠+ 𝑢.𝑒𝑖 +𝒩 (0, 𝜎2)) mod 1

)︀
, where (𝑒𝑗)16𝑗6𝑛 is the

canonical basis (𝑒𝑖)𝑘 = 1𝑖=𝑘. We consider the environment in dimensions 𝑛 = 4 and 𝑛 = 6. We

8



Figure 1: We compare UVFA, HER, 𝛿-DQN in toy environments. We observe different regimes:
with a highly stochastic environment (Torus with freeze action), HER is unable to learn because of
its bias, whereas UVFA and 𝛿-DQN are. When the state dimension becomes too large (Torus(6)),
UVFA is unable to learn because of the vanishing reward issue. In environments in which HER is
able to learn, it is the most efficient method, and 𝛿-DQN is always performing better than UVFA.

also consider the modified environment with the freeze action described in Section 2. For every
environment, we observe trajectories of length 200, and the reported metric is the rescaled negative L1
distance to the goal at the end of trajectory − 1

𝑛‖𝑠− 𝑔‖1. The experimental details are in Appendix A.

We compare UVFA, HER, 𝛿-DQN, and 𝛿-PPO (defined in Appendix A based on 𝛿-AC). Each
algorithm fails in some environment: additional experiments in the Appendix show that 𝛿-DQN and
𝛿-PPO are both failing to learn when the dimension of the torus increases, while HER is still able to
learn. This is discussed in Section 5. While UVFA, HER and 𝛿-DQN are similar algorithms and can
be compared as actor-critic methods handle the trajectory samples in a different way from 𝑄-learning
methods. Still, we observe that 𝛿-PPO learns successfully in the same environments as 𝛿-DQN, and
also failing when 𝛿-DQN does.

The FetchReach environment. The FetchReach environment (Plappert et al., 2018) is a robotic
arm environment in which the objective is for the extremity of the arm to reach a given 3D position.
The environment is deterministic, so HER is expected to perform well. Here, all methods learn
successfully. We also experimented 𝛿-DQN and 𝛿-PPO on more complex environments of the same
robotic suite, such as FetchPush, but both methods fail in this setting, while HER was successful.

5 Limitations and Future Work

The algorithms using infinitely sparse rewards always perform better than UVFA, and perform better
than HER in environments designed to exhibit the HER bias issue. But they do not perform as well
as HER in some standard environments, and are unable to learn at all in more complex environments
such as FetchPush. We discuss two technical limitations of 𝛿-DQN and 𝛿-Actor-Critic.

The first issue is the function approximation. Learning the models 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌(d𝑔) of
𝑄* and 𝑀𝜋

𝜃 (𝑠, 𝑔1,d𝑔2) = 𝑚𝜃(𝑠, 𝑔1, 𝑔2)𝜌(d𝑔2) of 𝑀𝜋 requires approximating a Dirac distribution
(when 𝑔2 = 𝜙(𝑠)) with a continuous density. The theorems justify this, but in practice the functions
𝑚𝜃 and 𝑞𝜃 have to reach multiple orders of magnitude (high values close to the goal, low everywhere
else), and the values need to be accurate in these two regimes. Representing multiple orders of
magnitude in neural networks may require a well-suited family of parametric functions.

A second issue is variance. The Dirac rewards remove the infinite variance of vanishing rewards in
UVFA when 𝜀→ 0. But the variance of the remaining term can be high. Consider the tabular case
(6)–(7): 𝛿-DQN learns significantly faster than UVFA on the diagonal 𝑄(𝑠, 𝑎, 𝑔) when 𝑔 = 𝑠, thanks
to the Diracs. But this does not change the way the reward is propagated to other states, due to the
independent sampling of 𝑔 in (7). Selecting goals 𝑔 more correlated to the state 𝑠 as in HER could
also be helpful, but this is not obvious to do without re-introducing HER-style bias.

6 Conclusion

We have proved that there exist unbiased goal-oriented RL algorithms which do not vanish when
rewards become sparse: it is possible to deal with sparse rewards in RL directly via the infinitely
sparse reward limit, although this does not solve all variance issues. We have also proved that another
multi-goal method, HER, is unbiased and has the correct fixed point in all deterministic environments.

9



Acknowledgments

We would like to thank Ahmed Touati for his technical help, and Corentin Tallec, Alessandro Lazaric,
Nicolas Usunier and Jonathan Laurent for their helpful comments and advice.

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,

Abbeel, O. P., and Zaremba, W. Hindsight experience replay. In Advances in neural information
processing systems, pp. 5048–5058, 2017.

Blier, L., Tallec, C., and Ollivier, Y. Learning successor states and goal-dependent values: A
mathematical viewpoint. ArXiv, abs/2101.07123, 2021.

Bogachev, V. I. Measure theory, volume 1. Springer Science & Business Media, 2007.

Fischhoff, B. Hindsight is not equal to foresight: The effect of outcome knowledge on judgment
under uncertainty. Journal of Experimental Psychology: Human perception and performance, 1
(3):288, 1975.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M. Learning an embedding
space for transferable robot skills. In International Conference on Learning Representations, 2018.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and Kavukcuoglu, K.
Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

Lanka, S. and Wu, T. Archer: Aggressive rewards to counter bias in hindsight experience replay.
ArXiv, abs/1809.02070, 2018.

Lillicrap, T., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
Continuous control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

Manela, B. and Biess, A. Bias-reduced hindsight experience replay with virtual goal prioritization.
Neurocomputing, 451:305–315, 2021.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R., Abbeel, P., Levine, S., and Finn, C. Learning to adapt
in dynamic, real-world environments through meta-reinforcement learning. arXiv: Learning, 2019.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin,
J., Chociej, M., Welinder, P., et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

Rauber, P., Mutz, F. W., and Schmidhuber, J. Hindsight policy gradients. ArXiv, abs/1711.06006,
2019.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal value function approximators. In Bach,
F. and Blei, D. (eds.), Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pp. 1312–1320, Lille, France, 07–09
Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/schaul15.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization
algorithms. ArXiv, abs/1707.06347, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018. 2nd
edition.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H. V., Lanctot, M., and Freitas, N. D. Dueling network
architectures for deep reinforcement learning. ArXiv, abs/1511.06581, 2016.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

10

http://proceedings.mlr.press/v37/schaul15.html


(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

11



Notation Definition

𝒮 State space
𝒜 Action space
𝛾 Discount factor, 0 6 𝛾 < 1
𝑃 (d𝑠′|𝑠, 𝑎) Transition probability measure, over 𝒮 , for every 𝑠, 𝑎 ∈ 𝒮 ×𝒜.
𝒢 Goal space
𝑛 Dimension of the goal space
𝜙 Goal function 𝜙 : 𝒮 → 𝒢. The goal 𝜙(𝑠) is the goal achieved in 𝑠.
𝜌𝒢(d𝑔) Goal sampling distribution.
𝑝𝒢(𝑔) If it exists, the density of 𝜌𝒢 with respect to 𝜆.
𝜌0(d𝑠0|𝑔) Initial state sampling distribution
𝑝0(𝑠0|𝑔) If it exists, the density of 𝜌0 with respect to 𝜆.
𝜆(d.) Lebesgue measure
𝜀 Threshold for the sparse reward. 𝜀 > 0
1𝐴(𝑥) Function equal to 1 if 𝑥 ∈ 𝐴, and 0 is 𝑥 /∈ 𝐴.
𝑅𝜀(𝑠, 𝑔) Sparse reward around goal 𝑔: 𝑅𝜀(𝑠, 𝑔) = 1‖𝜙(𝑠)−𝑔‖6𝜀(𝑠))
𝜆(𝜀) Volume of a sphere of radius 𝜀: 𝜆(𝜀) = 𝜆({𝑥 s.t. ‖𝑥‖ 6 𝜀})
𝜋 Goal dependent policy. If 𝒜 is discrete, 𝜋(𝑎|𝑠, 𝑔) is the probability of selecting

action 𝑎. If 𝒜 is continuous, it is the density of selecting 𝑎 with respect to
Lebesgue measure.

𝑃𝜋(d𝑠′|𝑠, 𝑔) Transition probability measure for policy 𝜋:
𝑃𝜋(d𝑠′|𝑠, 𝑔) =

∫︀
𝑎
𝜋(𝑎|𝑠, 𝑔)𝑃 (d𝑠′|𝑠, 𝑎).

𝜏 Trajectory: 𝜏 = (𝑔, 𝑠0, 𝑎0, 𝑠1, ...), with 𝑔 ∼ 𝜌𝒢 , 𝑠0 ∼ 𝜌0(.|𝑔),
𝑎𝑡 ∼ 𝜋(.|𝑠𝑡, 𝑔), 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡).

𝑉 𝜋𝜀 (𝑠, 𝑔) Value function for reward 𝜀:
𝑉 𝜋𝜀 (𝑠, 𝑔) = E𝑠𝑡+1∼𝑃𝜋(.|𝑠𝑡,𝑔)

[︁∑︀
𝑡>0 𝛾

𝑡𝑅𝜀(𝑠𝑡, 𝑔)|𝑠0 = 𝑠
]︁

𝑄𝜋𝜀 (𝑠, 𝑎, 𝑔) Action-value function for reward 𝜀:
𝑄𝜋𝜀 (𝑠, 𝑎, 𝑔) = E𝑎𝑡∼𝜋(.|𝑠𝑡,𝑔),𝑠𝑡+1∼𝑃 (.|𝑠𝑡,𝑎𝑡)

[︁∑︀
𝑡>0 𝛾

𝑡𝑅𝜀(𝑠𝑡, 𝑔)|𝑠0 = 𝑠, 𝑎0 = 𝑎
]︁

𝜋* Optimal policy
𝑄*
𝜀(𝑠, 𝑎, 𝑔) Optimal action-value function for reward 𝑅𝜀: 𝑄* = 𝑄𝜋

*
.

𝒮, 𝑃 Augmented MDP: 𝒮 = 𝒮 × 𝒢 and for every 𝑠 = (𝑠, 𝑔), action 𝑎, next state 𝑠 is
sampled as 𝑠 = (𝑠′, 𝑔) where 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎).

𝑄𝜃, 𝑉𝜃 Models of 𝑄*, 𝑉 𝜋 parametrized by 𝜃.
𝑄tar, 𝑉tar Target values
𝑄∞ Fixed point of an algorithm
𝜋expl Exploration policy
𝑇 Optimal Bellman operator, defined for function 𝑄(𝑠, 𝑎, 𝑔) or measures

𝑄(𝑠, 𝑎,d𝑔)
∙ Functions: (𝑇 ·𝑄)(𝑠, 𝑎, 𝑔) = 𝑅𝜀(𝑠, 𝑔) + 𝛾E𝑠′∼𝑃 (.|𝑠,𝑎) [sup𝑎′ 𝑄(𝑠′, 𝑎′, 𝑔)].
∙Measures: (𝑇 ·𝑄)(𝑠, 𝑎,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃 (.|𝑠,𝑎) [sup𝑎′ 𝑄(𝑠′, 𝑎′,d𝑔)].̂︀𝛿𝜃UVFA(𝑠, 𝑎, 𝑠′, 𝑔) Stochastic Universal Value Function Approximators update for 𝑄-learning

Hindsight Experience Replay
𝐾 Step 𝑠𝐾 of the update for a trajectory 𝜏 = (𝑔, 𝑠0, 𝑎0, 𝑠1, ...)
𝑔′ Re-sampled goal by HER
𝐿 Step of the resampling goal: 𝑔′ = 𝜙(𝑠𝐿).̂︀𝛿𝜃HER(𝜏,𝐾,𝐿) HER stochastic update
‖.‖HER Norm such that ̂︀𝛿𝜃HER(𝜏,𝐾,𝐿) is an unbiased estimate of Bellman error
𝑎* freeze-after-random-jump additional action

Continuing on next
page...
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Notation Definition

Infinitely Sparse Rewards
𝛿𝑥(d𝑥′) Dirac measure located in 𝑔
𝑅(𝑠,d𝑔) Infinitely spare Dirac reward: 𝑅(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔).
𝑄*(𝑠, 𝑎,d𝑔) Optimal action-value measure
𝑀𝜋(𝑠, 𝑔, d𝑔′) Successor goal measure:

𝑀𝜋(𝑠, 𝑔, d𝑔′) = E𝑎𝑡∼𝜋(.|𝑠𝑡,𝑔),𝑠𝑡+1∼𝑃 (.|𝑠𝑡,𝑎𝑡)

[︁∑︀
𝑡>0 𝛾

𝑡𝛿𝜙(𝑠𝑡)(d𝑔
′)|𝑠0 = 𝑠

]︁
𝑉 𝜋(𝑠,d𝑔) Value measure: 𝑉 𝜋(𝑠,d𝑔) = 𝑀𝜋(𝑠, 𝑔, d𝑔)
𝑞𝜃(𝑠, 𝑎, 𝑔) Model of the density of 𝑄*(𝑠, 𝑎,d𝑔) with respect to 𝜌𝒢 parametrized by 𝜃
𝑄𝜃(𝑠, 𝑎,d𝑔) Model of 𝑄*(𝑠, 𝑎,d𝑔) defined via its density: 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔)
𝑞tar Target valueŝ︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠′, 𝑔) Stochastic update of 𝑞𝜃(𝑠, 𝑎, 𝑔) for 𝛿-DQN
𝜂 Learning rate
𝑇𝜋 Bellman operator:

(𝑇𝜋 ·𝑀)(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + 𝛾E𝑠′∼𝑃𝜋(.|𝑠,𝑔) [𝑀𝜋(𝑠′, 𝑔, d𝑔′)].

𝑚𝜃(𝑠, 𝑔, 𝑔
′) Model of the density of 𝑀𝜋(𝑠, 𝑔, d𝑔′) with respect to 𝜌𝒢(d𝑔′) parametrized by 𝜃

𝑀𝜃(𝑠, 𝑔, d𝑔
′) Model of 𝑀𝜋(𝑠, 𝑔, d𝑔′) defined via its density:

𝑀𝜃(𝑠, 𝑔, d𝑔
′) = 𝑚𝜃(𝑠, 𝑔, 𝑔

′)𝜌𝒢(d𝑔)̂︀𝛿𝜃𝛿-TD(𝑠, 𝑎, 𝑠′, 𝑔, 𝑔′) Stochastic update of 𝑚𝜃(𝑠, 𝑔, 𝑔
′) for 𝛿-TD̂︀𝛿𝜃𝛿-TD(𝑛)(𝜏, 𝑘, 𝑔

′) Stochastic update of 𝑚𝜃(𝑠, 𝑔, 𝑔
′) for 𝛿-TD(𝑛)

𝐽𝜀(𝜋) Expected return 𝐽𝜀(𝜋) = E𝑔∼𝜌𝒢 ,𝑠0∼𝜌0(.|𝑔)
[︁∑︀

𝑡>0 𝛾
𝑡𝑅𝜀(𝑠𝑡, 𝑔)|𝑠0 = 𝑠

]︁
𝐽(𝜋) Expected return with infinitely sparse rewards
𝜈𝜋(d𝑠|𝑔, 𝑠0) Discounted visitation frequencies:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)
∑︀
𝑡>0 𝛾

𝑡(𝑃𝜋)𝑡(d𝑠|𝑠0, 𝑔)
𝜃𝑀 In policy gradient, parameter of the critic 𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔′)̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔) Stochastic update for 𝛿-AC

Table 1: Notation in the main text

A Experiments Details

In this section, we present the experiment details of Section 4. Every experiment was performed on a
single GPU.

The Torus(n) environment The state space of the Torus(𝑛) environment is the 𝑛-th dimensional
torus, 𝒮 = [0, 1)𝑛, and can be obtained from the 𝑛-dimensional hypercube by gluing the opposite
faces together. If the current state is 𝑠 = (𝑠1, ..., 𝑠𝑛), we define the observation of the agent
as (cos(2𝜋𝑠1), ..., cos(2𝜋𝑠𝑛), sin(2𝜋𝑠1), ..., sin(2𝜋𝑠𝑛)) ∈ [−1, 1]2𝑛. We use this representation
in order to remove the discontinuity of the representation [0, 1)𝑛. This representation contains
all the information of the state 𝑠 and the environment is still fully observable (and not partially
observable). The action space is 𝒜 = {1, . . . , 𝑛} × {−𝛼, 𝛼} and action 𝑎 = (𝑖, 𝑢) in state 𝑠 moves
the position on the axis 𝑖 of a quantity 𝑢, then the environment adds a Gaussian noise. Formally
𝑠′ ∼

(︀
(𝑠+ 𝑢.𝑒𝑖 +𝒩 (0, 𝜎2)) mod 1

)︀
, where (𝑒𝑗)16𝑗6𝑛 is the canonical basis (𝑒𝑖)𝑘 = 1𝑖=𝑘. In

practice, we take 𝛼 = 0.1, and 𝜎 = 0.1
𝑛 . The reward is𝑅𝜀(𝑠, 𝑔) = 1‖𝑠−𝑔‖6𝜀 where ‖.‖ is the rescaled

L1 distance in the Torus: ‖𝑠− 𝑔‖ = 1
𝑛

∑︀𝑛
𝑖=1 min((𝑠𝑖 − 𝑔𝑖) mod 1, |((𝑠𝑖 − 𝑔𝑖) mod 1)− 1|). In

practice, we use 𝜀 = 0.05. At the beginning of an episode, we sample a goal uniformly in the
environment, then we observe trajectories of length 200. We set 𝛾 = .995.

FetchReach FetchReach is a standard environment from Plappert et al. (2018). The objective is
to reach a goal position in 3 dimension with the end of the robotic arm. The observation space 𝒮 is
of dimension 10 and contains positions and velocities, such that the environment is Markov, fully
observable, and deterministic. The action space 𝒜 is continuous and of dimension 4. The goal space

13



𝒢 is of dimension 3, and the goal represent the position of the end of the robotic arm. Trajectories are
of length 50.

Q-learning experiments Here we describe experiments with UVFA, HER and 𝛿-DQN, which
have similar structure. For every algorithm, we use the same neural network to learn 𝑄𝜃(𝑠, 𝑎, 𝑔)
or 𝑞𝜃(𝑠, 𝑎, 𝑔). Simlarly to DDPG (Lillicrap et al., 2016), if the action space 𝒜 is continuous, we
additionally learn a deterministic policy 𝜋𝜃 : 𝒮 × 𝒢 → 𝒜. We use a dueling architecture (Wang et al.,
2016): we learn a value network 𝑣𝜃(𝑠, 𝑔) and an advantage network adv𝜃(𝑠, 𝑎, 𝑔). We then define
𝑞𝜃(𝑠, 𝑎, 𝑔) = 𝑣𝜃(𝑠, 𝑔) + ̃︂adv𝜃(𝑠, 𝑎, 𝑔), where ̃︂adv𝜃(𝑠, 𝑎, 𝑔) is the rescaled advantage, and is defined
as ̃︂adv𝜃(𝑠, 𝑎, 𝑔) = adv𝜃(𝑠, 𝑎, 𝑔) − 1

|𝒜|
∑︀
𝑎′∈𝒜 adv𝜃(𝑠, 𝑎

′, 𝑔) if 𝒜 is finite, and ̃︂adv𝜃(𝑠, 𝑎, 𝑔) =

adv𝜃(𝑠, 𝑎, 𝑔)− adv𝜃(𝑠, 𝜋(𝑠, 𝑔), 𝑔) if 𝒜 is continuous. The networks for 𝑣𝜃, 𝑎𝜃 and 𝜋𝜃 are 3-hidden
layers MLP of width 256 and ReLU activations. The inputs of 𝑣𝜃 and 𝜋𝜃 are the concatenation of
𝑠 and 𝑔. If 𝒜 is continuous, the input of adv𝜃 is the concatenation of 𝑠, 𝑎, 𝑔. If 𝒜 is discrete, the
input of adv𝜃 is the concatenation of 𝑠 and 𝑔, and its output is of dimension |𝒜|, every dimension
corresponding to an action.

Most hypereparameters are shared among the three methods: we observe batchs of trajectories of
size 16 for the Torus experiments, and of size 2 for the FetchReach environment. At every epoch,
we observe a batch of trajectories and store it in a memory buffer of size 106 transitions. We use
an 𝜀-greedy exploration strategy, with 𝜀 = 0.2. At every epoch, we sample 100 batches from the
replay buffer for the Torus experiments, and 50 for the FetchReach environment. For HER, we use
the future sampling strategy for goals: when sampling a transition (𝑠, 𝑎, 𝑠′, 𝑔), with probability
0.2 we define 𝑔′ = 𝑔, and with probabiliyt 0.8 we sample 𝑔′ uniformly in the future of 𝑠. For
𝛿-DQN in the Torus environment, we sample independant goals with 𝜌𝒢 uniform distribution in
the Torus. In FetchReach, we do not assume we have access to the goal sampling distribution.
Therefore, we re-sample independant goals from the memory buffer. For every method, observations
and goals are normalized. We use a target network with parameter 𝜃tar and update the target as
𝜃tar ← (1− 𝛼)𝜃tar + 𝛼𝜃 with 𝛼 = 0.05 after every epoch. Every model is trained with the Adam
optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999.

For every method and environment, the most sensitive hyperparameters were selected with a grid-
search. For HER, UVFA and 𝛿-DQN, we selected the learning rate of the optimizer from a range
{1𝑒−6, 3𝑒−6, 1𝑒−5, 3𝑒−5, 1𝑒−4, 3𝑒−4, 1𝑒−3}. For HER and UVFA, we additionally selected
𝑅 a reward scaling factor, in {1𝑒− 2, 1𝑒− 1, 1, 10, 100, 1000, 1𝑒4}. For 𝛿-DQN, we also selected
a parameter 𝑐𝛿 corresponding to the scaling of the reward: the scaled infinitely sparse reward is
𝑅(𝑠,d𝑔) = 𝑐𝛿𝛿𝜙(𝑠)(d𝑔). We experimented all the possible hyperparameters of this grid separately
on every environment on a single run and selected the best hyperparameters. The values in Figure 1
are the mean performance evaluated with 5 different random seeds, and the confidence intervals
represent the standard deviation of the reported metric accross the 5 independent runs. In practice,
the reward scaling factor for UVFA is 10 for all the Torus environments and 100 for FetchReach. The
reward factor is 1 for HER for all the Torus environments and 10 for FetchReach. The learning rate
for UVFA is 1𝑒− 4 for all the Torus environments and 1𝑒− 3 for FetchReach. The learning rate for
HER is 3𝑒 − 4 for all the Torus environments and 1𝑒 − 3 for HER. For 𝛿-DQN, the learning rate
is 1𝑒− 5 for all the Torus environments, and 1𝑒− 4 for the FetchReach environment. The reward
scaling coefficient 𝑐𝛿 is 1𝑒− 2 for every environments.

𝛿-PPO experiments The 𝛿-PPO is defined from 𝛿-AC similarly to PPO (Schulman et al., 2017)
from actor critic methods. We learn the model 𝑚𝜃(𝑠, 𝑔, 𝑔

′) of the density of 𝑀𝜋(𝑠, 𝑔, d𝑔′) with
respect to 𝜌𝒢 , and 𝜋𝜃(𝑎|𝑠, 𝑔) a parametric policy. We used a shared architecture: we define ℎ𝜃(𝑠, 𝑔, 𝑔′)
a network computing a hidden representation of dimension 𝐻 . Then, we define two linear layers 𝐿𝑚𝜃
and 𝐿𝜋𝜃, and define 𝑚𝜃(𝑠, 𝑔, 𝑔

′) = 𝐿𝑚𝜃 (ℎ𝜃(𝑠, 𝑔, 𝑔
′)) and 𝜋𝜃(𝑎|𝑠, 𝑔) = 𝐿𝜋𝜃 (ℎ𝜃(𝑠, 𝑔, 𝑔

′)). In practice,
ℎ𝜃 is a 2-hidden layers MLP with ReLU activations (except at the last layer), with width 𝐻 = 256
for the internal and output layers.

A step of 𝛿-PPO is defined as follow. We first gather a buffer of trajectories with the current policy
𝜋𝜃. Then, we define 𝜃′ := 𝜃. For every transition (𝑠, 𝑎, 𝑠′, 𝑔) in the buffer and every epoch 𝑒 6 𝐸,
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we sample an independant goal 𝑔′ and compute:̂︀𝛿𝜃𝑀 ← ̂︀𝛿𝜃𝛿-TD(𝑠, 𝑎, 𝑠′, 𝑔, 𝑔′) (14)

adv← 𝛾𝑚𝜃𝑀 (𝑠′, 𝑔, 𝑔)−𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔) (15)

𝑟(𝜃′)← 𝜋𝜃′(𝑎|𝑠, 𝑔)

𝜋𝜃(𝑎|𝑠, 𝑔)
(16)

𝑟(𝜃′)← clip(𝑟, 1− 𝑢, 1 + 𝑢) (17)̂︀𝛿𝜃𝜋 ← 𝜕𝜃′ (min (adv × 𝑟(𝜃′), adv × 𝑟(𝜃′))) (18)̂︀𝛿𝜃 ← ̂︀𝛿𝜃𝜋 + 𝑐𝑀 × ̂︀𝛿𝜃𝑀 (19)

where 𝑐𝑀 allow to scale the two updates. Then we use ̂︀𝛿𝜃 and with Adam optimizer to obtain a new
value for 𝜃′. We did not use an entropy regularizer aw we observed that the diversity of actions was
not an issue in practice.

For the Torus environment, the independent goals 𝑔′ are sampled fron 𝜌𝒢 the uniform distribution of
goals in the environment. For FetchReach, we do not assume we know 𝜌𝒢 and sample goals from the
buffer.

In practice, at every step of the 𝛿-PPO algorithm we observe a batch of 2 trajectories for Torus(4)
and Torus(6), 100 for the Torus(4) with the freeze action 𝑎*, and 200 for FetchReach. Three
hyperparameters were selected independently for every environment via a grid search: 𝐸 the number
of epochs per 𝛿-PPO step, the learning rate of Adam optimizer, and the coefficient 𝑐𝑀 . We performed
a grid search with a single run per tuple of parameters. Then, the reported results in Figure 1 are
averaged over 5 different random seeds with the selected hyperparameters. The number of epoch
𝐸 per step was selected as lowest number which achieved close-to-optimal performance accross
the range {1, 2, 5, 10, 20, 50, 100}. In practice, 𝐸 = 20 in the Torus(4) and Torus(6) environments,
𝐸 = 10 in the Torus(4) with the freeze action 𝑎*, and 𝐸 = 50 for FetchReach. The learning rate was
selected in the set {1𝑒−6, 3𝑒−6, 1𝑒−5, 3𝑒−5, 1𝑒−4, 3𝑒−4, 1𝑒−3}, and in practice is 1𝑒−4 for every
environment. The coefficient 𝑐𝑀 was selected in {1𝑒− 4, 1𝑒− 3, 1𝑒− 2, 1𝑒− 1, 1𝑒0, 1𝑒1, 1𝑒2, 1𝑒3}
and in practice is 1𝑒− 3 for every Torus environment and 1𝑒− 1 for the FetchReach environment.

Additional experiments We experimented 𝛿-DQN and 𝛿-PPO in more complex environments
such Torus of higher dimension, or other environments of OpenAI Robotic suite (Plappert et al.,
2018). In the Torus environment, both methods fail when the dimension increases above 15 while
HER is still able to learn. More importantly, 𝛿-PPO and 𝛿-DQN did not learn at all in environments
such as FetchPush (which is easy to solve with HER) or HandReach, which has similar structure but
higher dimension than FetchReach. In the FetchPush environment, the objective is to push a cube
with a robotic arm to a given goal. We observed that the issue of our methods was not an exploration
issue, since the robotic arm oftens reaches and pushes the cube randomly. We tried to increase the
generalization accross goals with the 𝛿-TD(𝑛) update, but it was to computationally expensive, as
explained in Section 3.3. Limitations of 𝛿-DQN and 𝛿-PPO which could explain these results are
discussed in Section 5.

B Proofs of Theorems on HER

B.1 HER is Unbiased in Deterministic Environments

We prove that HER is an unbiased method in deterministic environments. In order to define HER,
we assume access to samples of trajectories (𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...) ∼ 𝜌(𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...) with
𝑔 ∼ 𝜌𝒢(d𝑔), 𝑠0 ∼ 𝜌0(d𝑠0|𝑔), and for every 𝑘 > 0, 𝑎𝑘 ∼ 𝜋expl(𝑎|𝑠𝑘, 𝑔) where 𝜋expl is an exploration
policy, 𝑠𝑘+1 ∼ 𝑃 (d𝑠|𝑠𝑘, 𝑎𝑘). For simplicity, we will assume the trajectories are infinite.

Here we consider HER with the future strategy descibed in the original paper: goals are re-sampled
from a trajectory as goal reached later in the trajectory. We formalize HER as follows: we sample
a trajectory 𝜏 = (𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...) ∼ 𝜌(𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...), a Bernoulli variable 𝑈 ∼ ℬ(𝛼), and
two independent integer random variables 𝐾,𝐿, from distributions 𝑝𝐾 and 𝑝𝐿, such that for every
𝑘, 𝑙, 𝑝𝐾(𝑘) > 0 and 𝑝𝐿(𝑙) > 0. The bernoulli variable 𝑈 represents the random choice of using
the standard Q-learning update, or the HER update with a resampled goal. The random variable
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𝐾 represents the timestep of the transition we will use for the Q-learning update, and 𝐿 represents
the timestep used to sample a new goal 𝑔′ for the future sampling strategy. Then, the update
𝛿𝜃HER(𝜏, 𝑈,𝐾,𝐿) is defined as:

∙ If 𝑈 = 0:

𝛿𝜃HER(𝜏, 𝑈 = 0,𝐾, 𝐿) := 𝜕𝜃
1

2
(𝑄𝜃(𝑠𝐾 , 𝑎𝐾 , 𝑔)−𝑅(𝑠𝐾 , 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠𝐾+1, 𝑎

′, 𝑔))2,

which corresponds to the usual Q-learning update as defined in UVFA (Schaul et al., 2015).

∙ If 𝑈 = 1 we set 𝑔′ = 𝜙(𝑠𝐾+𝐿+1) and:

𝛿𝜃HER(𝜏, 𝑈 = 1,𝐾, 𝐿) := 𝜕𝜃
1

2
(𝑄𝜃(𝑠𝐾 , 𝑎𝐾 , 𝑔

′)−𝑅(𝑠𝐾 , 𝑔
′)− 𝛾 sup

𝑎′
𝑄(𝑠𝐾 , 𝑎

′, 𝑔′))2,

which corresponds to a Q-learning update for a re-sampled goal 𝑔′ = 𝜙(𝑠𝐾+𝐿), a goal
achieved later in the trajectory.

We say that environment is a continuous deterministic environment if there is a continuous function
𝜓 : 𝒮 × 𝒜 → 𝒮 such that for every (𝑠, 𝑎) ∈ 𝒮 × 𝒜, 𝑃 (d𝑠′|𝑠, 𝑎) = 𝛿𝜓(𝑠,𝑎)(d𝑠

′). In particular,
any discrete deterministic environment is a continuous deterministic environment for the discrete
topology. Therefore, the following theorem can be applied to discrete environments.

THEOREM 8 (FORMAL STATEMENT OF THEOREM 2). We assume the environment is a contin-
uous deterministic environment. We also assume that for every pair of states (𝑠, 𝑠′), 𝑠′ is reachable
from 𝑠, which means there is a sequence of actions (𝑎1, ..., 𝑎𝑘) such that applying these actions from
𝑠 leads to 𝑠′. Finally, we assume that the support of the exploration policy 𝜋expl(𝑎|𝑠, 𝑔) is the entire
action space 𝒜 for every 𝑠, 𝑔.

Then, there is an euclidean norm ‖.‖ such that, for every 𝜃, the HER update with the future sampling
strategy at 𝜃, 𝛿𝜃HER is an unbiased estimate of the gradient step between 𝑄𝜃 and the target function
𝑄target := 𝑇max𝑄𝜃:

E
[︁
𝛿𝜃HER

]︁
= 𝜕𝜃

1

2
‖𝑄𝜃 −𝑄tar‖2 (20)

If the state space 𝒮 is finite, HER has a single fixed point 𝑄∞, which is equal to 𝑄*.

The euclidean norm ‖.‖ in the theorem will depend on the exploration policy 𝜋expl(𝑎|𝑠, 𝑔). Therefore,
if the exploration policy is changing during learning, the norm will will be changing as well.

Proof. The principle of the proof is the following. We study the sampling distribution of transitions
𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) with HER. The bias of HER comes from the fact that the sampling of goals 𝑔 with
𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) is not independant of 𝑠′ knowing (𝑠, 𝑎). On the contrary, in deterministic environ-
ments, the disribution of 𝑔 knowing (𝑠, 𝑎) is independant of 𝑠′ because 𝑠′ is uniquely determined by
(𝑠, 𝑎).

We study the sampling distribution of transitions (𝑠, 𝑎, 𝑠′, 𝑔) used in HER. Formally, we sample a
transition (𝑠, 𝑎, 𝑠′, 𝑔) by sampling 𝜏, 𝑈,𝐾,𝐿 and defining (𝑠, 𝑎, 𝑠′, 𝑔′) := Φ(𝜏, 𝑈,𝐾,𝐿) as:

∙ If 𝑈 = 0, Φ(𝜏, 𝑈 = 1,𝐾, 𝐿) = (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝑔)

∙ If 𝑈 = 1, Φ(𝜏, 𝑈 = 1,𝐾, 𝐿) = (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝐾+𝐿))

Then, HER update can be equivalently defined as: sample (𝜏, 𝑈,𝐾,𝐿) as described above, define
(𝑠, 𝑎, 𝑠′, 𝑔) = Φ(𝜏, 𝑈,𝐾,𝐿), and:

𝛿𝜃HER(𝑠, 𝑎, 𝑠′, 𝑔) := 𝜕𝜃
1

2
(𝑄𝜃(𝑠, 𝑎, 𝑠

′, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup
𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2 (21)

Therefore:

E
[︁
𝛿𝜃HER

]︁
= 𝜕𝜃E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

1

2
(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2 (22)
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where we define 𝜇HER to be the distribution of (𝑠, 𝑎, 𝑠′, 𝑔) given by the distribution of Φ*(𝜌 ⊗
𝑝𝑈 ⊗ 𝑝𝐿 ⊗ 𝑝𝐾), where Φ* is the push-forward operator on measures. We now compute 𝜇HER. Let
𝑓 : 𝒮 ×𝒜× 𝒮 × 𝒢 → R be a test function, we have:

E𝑠,𝑎,𝑠′,𝑔∼𝜇HER
[𝑓(𝑠, 𝑎, 𝑠′, 𝑔)] = E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))] (23)

= (1− 𝛼)E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 0]

+ 𝛼E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1]
(24)

Moreover:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 0] =
∑︁
𝐾

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌(𝑔, 𝑠0, 𝑎0, ...)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝑔)

(25)

=
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌𝒢(𝑔)𝜌0(𝑠0|𝑔)(𝑃𝜋exp)𝑘(𝑠|𝑠0, 𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)𝑓(𝑠, 𝑎, 𝑠′, 𝑔)

(26)

=

∫︁
𝑠,𝑎,𝑠′,𝑔

𝑓(𝑠, 𝑎, 𝑠′, 𝑔)

(︃
𝜌𝒢(𝑔)

∫︁
𝑠0

∑︁
𝑘

𝑝𝐾(𝑘)𝜌0(𝑠0|𝑔)(𝑃𝜋exp)𝑘(𝑠|𝑠0, 𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)

)︃
(27)

=

∫︁
𝑠,𝑎,𝑠′,𝑔

𝑓(𝑠, 𝑎, 𝑠′, 𝑔)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) (28)

with

𝜈(𝑠|𝑔) := 𝜌𝒢(𝑔)

∫︁
𝑠0

𝜌0(𝑠0|𝑔)
∑︁
𝑘

𝑝𝐾(𝑘)(𝑃𝜋exp)𝑘(𝑠|𝑠0, 𝑔) (29)

which is the future distribution of states 𝑠 when sampling a goal 𝑔 and following the exploration
policy 𝜋expl(.|., 𝑔), with 𝑝𝐾 as the distribution of future timesteps. If 𝑝𝐾(𝑘) = (1 − 𝛾)𝛾𝑘, this
definition of 𝜈 coincides with the definition of 𝜈𝜋 in the following sections. This is the reason why
we use the same notation, even though 𝜈 is here slightly more general.

We now compute:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1] =
∑︁
𝑘,𝑙

𝑝𝐾(𝑘)𝑝𝐿(𝑙)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌(𝑔, 𝑠0, 𝑎0, ...)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝑘+𝑙))

(30)

If 𝑙 = 0, the re-sampled goal is 𝑔′ = 𝜙(𝑠). Else, the law of 𝑔′ knowing 𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1 is the
law of 𝜙(𝑠𝑘+𝑙), which by using the Markov property is the law of 𝜙(𝑠) if 𝑠 is sampled as
(𝑃𝜋expl)𝑙−1(.|𝑠𝑘+1, 𝑔). Therefore:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1] =
∑︁
𝑘,𝑙>0

𝑝𝐾(𝑘)𝑝𝐿(𝑙)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌(𝑔, 𝑠0, 𝑎0, ...)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝑘+𝑙))

(31)

=
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,...,𝑠𝑘+1

𝜌(𝑔, 𝑠0, ..., 𝑠𝑘+1) (𝑝𝐿(0)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝑘))) +

+
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,...,𝑠𝑘+1

𝜌(𝑔, 𝑠0, ..., 𝑠𝑘+1)

⎛⎝∑︁
𝑙>1

𝑝𝐿(𝑙)

∫︁
𝑠

(𝑃𝜋expl)𝑙−1(𝑠|𝑠𝑘+1, 𝑔)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠))

⎞⎠
(32)

17



We define 𝜇future(d𝑔′|𝑠, 𝑠′, 𝑔) := 𝑝𝐿(0)𝛿𝜙(𝑠)(d𝑔
′) +

∑︀
𝑙>1 𝑝𝐿(𝑙)𝜙*(𝜋exp * 𝑃 )𝑙−1(𝑔′|𝑠′, 𝑔), where

𝜙* is the push-forward on measures, and we have:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1] = (33)

=
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,𝑎0,...,𝑠𝐾+1,𝑠

𝜌(𝑔, 𝑠0, 𝑎0, ..., 𝑠𝑘+1)𝜇future(𝑔
′|𝑠𝑘, 𝑠𝑘+1, 𝑔)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝑔

′)

(34)

=

∫︁
𝑠,𝑎,𝑠′,𝑔′

(︂∫︁
𝑔

𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔
′|𝑠, 𝑠′, 𝑔)

)︂
𝑃 (𝑠′|𝑠, 𝑎)𝑓(𝑠, 𝑎, 𝑠′, 𝑔′).

(35)

Therefore,

𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) = (1−𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)+𝛼

(︂∫︁
𝑔

𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠, 𝑠′, 𝑔)

)︂
𝑃 (𝑠′|𝑠, 𝑎)

(36)

We now use the deterministic hypothesis. We know that for every 𝑠, 𝑎, 𝑃 (d𝑠′|𝑠, 𝑎) = 𝛿𝜓(𝑠,𝑎)(d𝑠
′).

We have, for any 𝑠, 𝑎:

𝑃 (d𝑠′|𝑠, 𝑎)𝜇future(𝑔|𝑠, 𝑠′, 𝑔) = 𝛿𝜓(𝑠,𝑎)(d𝑠
′)𝜇future(𝑔|𝑠, 𝑠′, 𝑔) (37)

= 𝛿𝜓(𝑠,𝑎)(d𝑠
′)𝜇future(𝑔|𝑠, 𝜓(𝑠, 𝑎), 𝑔) (38)

Therefore:

𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) = (39)

= (1− 𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) + 𝛼

(︂∫︁
𝑔

𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠, 𝜓(𝑠, 𝑎), 𝑔)

)︂
𝑃 (𝑠′|𝑠, 𝑎)

(40)

= �̃�(𝑠, 𝑎, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) (41)

where

�̃�(𝑠, 𝑎, 𝑔) := (1−𝛼)𝜌𝒢(𝑔)𝜈(𝑠, 𝑔)𝜋expl(𝑎|𝑠, 𝑔)+𝛼

(︂∫︁
𝑔

𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠, 𝜓(𝑠, 𝑎), 𝑔)

)︂
Therefore:

E
[︁
𝛿𝜃HER

]︁
= 𝜕𝜃

∫︁
𝑠,𝑎,𝑠′,𝑔

�̃�(𝑠, 𝑎, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔′)− 𝛾 sup
𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2 (42)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑠′,𝑔

�̃�(𝑠, 𝑎, 𝑔)𝛿𝜓(𝑠,𝑎)(𝑠
′)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔′)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2 (43)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑠′,𝑔

�̃�(𝑠, 𝑎, 𝑔)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup
𝑎′
𝑄(𝜓(𝑠, 𝑎), 𝑎′, 𝑔))2 (44)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑔

�̃�(𝑠, 𝑎, 𝑔)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) sup
𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2 (45)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑔

�̃�(𝑠, 𝑎, 𝑔)(𝑄(𝑠, 𝑎, 𝑔)− 𝑇 ·𝑄(𝑠, 𝑎, 𝑔))2 (46)

We define ‖𝑄‖�̃� as:

‖𝑄‖2�̃� :=

∫︁
𝑠,𝑎,𝑔

�̃�(𝑠, 𝑎, 𝑔)𝑄(𝑠, 𝑎, 𝑔)2. (47)

We now prove that ‖.‖�̃� is a norm for the space of continuous functions on 𝒮×𝒜×𝒢. This is equivalent
to showing that the support of the probability measure �̃�, supp(�̃�) is equal to 𝒮 ×𝒜× 𝒢. Because
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�̃�(𝑠, 𝑎, 𝑔) > (1 − 𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔), we know that supp(𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)) ⊂
supp(�̃�). Since for every 𝑠, 𝑔, supp(𝜋expl(𝑎|𝑠, 𝑔)) = 𝒜, supp(𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)) =
supp(𝜌𝒢(𝑔)𝜈(𝑠|𝑔)) × 𝒜. Moreover, supp𝜌𝒢 = 𝒢. Therefore, we only need to prove that for
every 𝑔, supp(𝜈(.|𝑔)) = 𝒮 .

Let 𝑔 ∈ 𝒢. Because of the definition of 𝜈 and because 𝑝𝐾(𝑘) > 0 for every 𝑘, we have
supp(𝜈(𝑠|𝑔)) =

⋃︀
𝑘>0,𝑠0∈𝒮 supp

(︀
(𝑃𝜋expl)𝑘(𝑠|𝑠0, 𝑔)

)︀
.

We define the function Ψ : 𝒮×
(︀
∪𝑘>1𝒜𝑘

)︀
→ 𝒮 , corresponding to the action of sequences of action , as

follows: for every 𝑎, Ψ(𝑠, 𝑎) = 𝜓(𝑠, 𝑎), and for every 𝑘, (𝑎1, ..., 𝑎𝑘) ∈ 𝒜𝑘, Ψ(𝑠, (𝑎1, ..., 𝑎𝑘+1)) :=
𝜓(Ψ(𝑠, (𝑎1, ..., 𝑎𝑘)), 𝑎𝑘+1). Ψ is continuous. Moreover, we assumed that for any pair of states (𝑠, 𝑠′),
there is 𝑘 > 0 and a sequence of actions (𝑎0, ..., 𝑎𝑘) such that applying this sequence of actions from
𝑠 leads to 𝑠′. This means that for every 𝑠, Ψ(𝑠, .) is a surjective continuous function.

Moreover, with

supp(𝑃𝜋expl)𝑘+1(𝑠|𝑠0, 𝑔) = ∪𝑠∈supp(𝑃𝜋expl )𝑘(𝑠|𝑠0,𝑔)supp (𝜓(𝑠, ·)*𝜋expl(.|𝑠, 𝑔)) (48)

⊇ ∪𝑠∈supp(𝑃𝜋expl )𝑘(𝑠|𝑠0,𝑔) (𝜓(𝑠, supp(𝜋expl(.|𝑠, 𝑔)))) (49)

by using the continuity of 𝜓(𝑠, .). Then:

supp(𝑃𝜋expl)𝑘+1(𝑠|𝑠0, 𝑔) ⊇ ∪𝑠∈supp(𝑃𝜋expl )𝑘(𝑠|𝑠0,𝑔) (𝜓(𝑠,𝒜)) (50)

= 𝜓(supp(𝑃𝜋expl)𝑘(𝑠|𝑠0, 𝑔)×𝒜) (51)

By induction, we have: supp(𝑃𝜋expl)𝑘(𝑠|𝑠0, 𝑔) ⊇ Ψ(𝑠,𝒜𝑘). Therefore:

supp(𝜈(𝑠|𝑔)) =
⋃︁

𝑘>0,𝑠0∈𝒮

supp(𝑃𝜋expl)𝑘(𝑠|𝑠0, 𝑔) (52)

⊇
⋃︁

𝑘>0,𝑠0∈𝒮

Ψ(𝑠0,𝒜𝑘) (53)

=
⋃︁
𝑠0∈𝒮

Ψ(𝑠0,
⋃︁
𝑘>0

𝒜𝑘) (54)

= 𝒮 (55)

This concludes the proof. The main property we use in the theorem is that 𝜇future(𝑔′|𝑠, 𝑠′, 𝑔) is
independant of 𝑠′. Therefore, a simple way to remove HER bias is to define 𝑝𝐿(𝑙) = 1𝑙=0. Still, this
would not remove the issue of vanishing rewards, since the fixed point of HER are the same than
those of UVFA.

In the following, we will use again the results derived above. In particular, we know that:

E
[︁ ̂︀𝛿𝜃HER

]︁
= E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

[︂
𝜕𝜃

1

2
(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2

]︂
(56)

with

𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) = (1− 𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) + 𝛼

(︂∫︁
𝑔

𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠′, 𝑔)

)︂
𝑃 (𝑠′|𝑠, 𝑎)

(57)

𝜇future(𝑔
′|𝑠′, 𝑔) =

∑︁
𝑙

𝑝𝐿(𝑙)𝜙*(𝜋exp * 𝑃 )𝑙(𝑔′|𝑠′, 𝑔) (58)

𝜈(𝑠|𝑔) = 𝜌𝒢(𝑔)

∫︁
𝑠0

𝜌0(𝑠0|𝑔)
∑︁
𝑘

𝑝𝐾(𝑘)(𝜋exp * 𝑃 )𝑘(𝑠|𝑠0, 𝑔) (59)
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B.2 Proof of HER bias

Let ℳ = ⟨𝒮,𝒢,𝒜, 𝑃,𝑅, 𝛾⟩ be a multi-goal finite Markov Decision Process, with 𝒢 = 𝒮 and
𝑅(𝑠, 𝑔) = 1𝑠=𝑔 . We define 𝑆 = |𝒮| the number of states.

Let ℳ̃ be the augmented MDP with a freeze action 𝑎*, defined as:

∙ The augmented state space 𝒮 = 𝒮 × {0, 1}, where 𝑠 = (𝑠, 𝑥) is said to be frozen if 𝑥 = 1.

∙ The augmented action space 𝒜 = 𝒜 ∪ {𝑎*}, where 𝑎* is the freeze action.

∙ The goal space does not change (𝒢 = 𝒢 = 𝒮). For an augmented state 𝑠 = (𝑠, 𝑥), the
reward is �̃�(𝑠, 𝑔) = �̃�((𝑠, 𝑥), 𝑔) = 𝑅(𝑠, 𝑔)

∙ If 𝑠 = (𝑠, 𝑥) and 𝑠′ = (𝑠′, 𝑥′) are two augmented states, the transition operator 𝑃 (𝑠′|𝑠, 𝑎):

– If the state is frozen (𝑥 = 1), the agent can’t move: 𝑃 ((𝑠′, 𝑦)|(𝑠, 𝑥), 𝑎) = 1𝑠′=𝑠1𝑦=1

– If the state is not frozen (𝑥 = 0) and 𝑎 = 𝑎*, the agent is sent to a uniformly random
frozen state: 𝑃 ((𝑠′, 𝑦)|(𝑠, 0), 𝑎) = 1𝑦=1

1
𝒮

– Else, the dynamic is the same than for ℳ: if 𝑥 = 0 and 𝑎 ̸= 𝑎*, then
𝑃 ((𝑠′, 𝑦)|(𝑠, 0), 𝑎) = 1𝑦=0𝑃 (𝑠′|𝑠, 𝑎).

We can now prove the existence of MDPs such that HER will be biased in these environments.

THEOREM 9 (FORMAL STATEMENT OF THEOREM 1). Let ℳ be a finite MDP, and ℳ̃ the
augmented MDP with the freeze action 𝑎* defined above. We assume that for every 𝑠, 𝑎, 𝑔 the
exploration policy satisfies 𝜋expl(𝑎|𝑠, 𝑔) > 0, and that for every every 𝑠, 𝑔, 𝜈(𝑠|𝑔) > 0, where 𝜈 is
defined in equation (29). This means that from the given distribution, every state 𝑠 has a non-zero
probability of being reached when following the exploration policy conditioned by 𝑔: 𝜋expl(𝑎|𝑠, 𝑔).

Let 𝑄∞ be a fixed point of tabular HER, and 𝑄* the true optimal Q-function. Then, for every
unfrozen state (𝑠, 0) and goal 𝑔, HER overstimates the value of action 𝑎*:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) > 𝑄*((𝑠, 0), 𝑎*, 𝑔) (60)

Proof. The principle of the proof is the following. First, we prove that for frozen states 𝑠 = (𝑠, 1),
HER converge converge to the true value 𝑄∞(𝑠, 𝑎, 𝑔) = 𝑄*(𝑠, 𝑎, 𝑔). Then, we compute the action-
value of action 𝑎* for every unfrozen state for the true 𝑄* and for the fixed point 𝑄∞. HER samples
transitions ((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔). Let us consider the law of 𝑠′ knowing 𝑠, 𝑎*, 𝑔: with probability
(1− 𝛼) the goal 𝑔 was re-sampled from the future sampling strategy, therefore, because after 𝑎*
the position will be frozen, we know that 𝑠′ = 𝑔, the goal is reached and the final return is 𝑂( 1

1−𝛾 ).
With probability 𝛼, the goal 𝑔 the original goal, the law of 𝑠′ is uniform, and the return is of order
𝑂( 1

𝑆(1−𝛾) ). Therefore, when estimating the return after action 𝑎* with HER, the computed value will

be of order 𝑂( (1−𝛼)
1−𝛾 ), while the true value is of order 𝑂( 1

𝑆(1−𝛾) ).

We now prove the theorem. We consider 𝑄∞, a fixed point of the algorithm, which means that
starting from 𝑄∞, the stochastic update defined by HER has mean 0: E

[︁̂︁𝛿𝑄HER

]︁
= 0. We know that

E
[︁̂︁𝛿𝑄HER

]︁
= E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

[︂
𝜕𝜃

1

2
(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2

]︂
(61)

= E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

[︂
𝐸𝑠,𝑎,𝑔(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))

]︂
, (62)

where (𝐸𝑠,𝑎,𝑔) is the canonical basis of the tabular model. Therefore, for every (𝑠, 𝑎, 𝑔) (because
𝜇HER(𝑠, 𝑎, 𝑔) > 0 for every (𝑠, 𝑎, 𝑔)), we have:

𝑄∞(𝑠, 𝑎, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾E𝑠′∼𝜇HER(𝑠′|𝑠,𝑎,𝑔)

[︂
sup
𝑎′
𝑄∞(𝑠′, 𝑎′, 𝑔)

]︂
(63)

First, we prove that the values of frozen states 𝑄∞((𝑠, 1), 𝑎, 𝑔) is equal to the true optimal Q-
values. In that case, 𝑃 (𝑠′|(𝑠, 1), 𝑎) = 𝛿(𝑠,1)(𝑠

′) we can check that 𝜇HER(𝑠′|(𝑠, 1), 𝑎, 𝑔) = 𝛿(𝑠,1)(𝑠
′).
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Therefore:

𝑄∞((𝑠, 1), 𝑎, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾 sup
𝑎′
𝑄∞((𝑠, 1), 𝑎′, 𝑔) (64)

Therefore for every 𝑠, 𝑎, 𝑔, 𝑄∞((𝑠, 1), 𝑎, 𝑔) = 1
1−𝛾𝑅(𝑠, 𝑔).

Then, we compute the values of 𝑄∞((𝑠, 0), 𝑎*, 𝑔), with the freeze action for an unfrozen state. We
have:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾E(𝑠′,𝑦)∼𝜇HER((𝑠′,𝑦)|(𝑠,0),𝑎*,𝑔) sup
𝑎′
𝑄∞((𝑠′, 𝑦), 𝑎′, 𝑔) (65)

= 𝑅(𝑠, 𝑔) +
𝛾

1− 𝛾
E(𝑠′,𝑦)∼𝜇HER((𝑠′,1)|𝑠,𝑎*,𝑔) [1𝑠′=𝑔] (66)

= 𝑅(𝑠, 𝑔) +
𝛾

1− 𝛾
𝜇HER((𝑠′, 𝑦) = (𝑔, 1)|𝑠, 𝑎, 𝑔) (67)

because 𝜇HER((𝑠′, 𝑦)|(𝑠, 0), 𝑎*, 𝑔) is non zero only if 𝑦 = 1, and 𝑄∞((𝑠′, 1), 𝑎′, 𝑔) =
1

1−𝛾𝑅(𝑠′, 𝑔) = 1
1−𝛾1𝑠′=𝑔. We now compute 𝜇HER((𝑠′, 𝑦) = (𝑔, 1)|𝑠, 𝑎, 𝑔). We use that

𝑃 ((𝑠′, 𝑦)|(𝑠, 0), 𝑎*) = 1𝑦=1/𝑆, and 𝜇future(𝑔|(𝑠′, 𝑦)) = 1𝑠′ if 𝑦 = 1.

𝜇HER((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔) = (1− 𝛼)𝜇0((𝑠, 0), 𝑔)𝜋expl(𝑎
*|(𝑠, 0), 𝑔)

1

𝑆
+ 𝛼

(︂∫︁
𝑔

𝜇0((𝑠, 0), 𝑔)𝜋expl(𝑎
*|(𝑠, 0), 𝑔)

)︂
1

𝑆
1𝑔=𝑠′

(68)

Therefore, for every 𝑠′ ̸= 𝑔: 𝜇HER((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔) < 𝜇HER((𝑠, 0), 𝑎*, (𝑔, 1), 𝑔). So:∑︁
𝑠′

𝜇HER((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔) < 𝑆𝜇HER((𝑠, 0), 𝑎*, (𝑔, 1), 𝑔) (69)

and finally 𝜇HER((𝑠′, 𝑦) = (𝑔, 1)|(𝑠, 0), 𝑎*, 𝑔) > 1
𝑆 . Then we have:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) > 𝑅(𝑠, 𝑔) +
𝛾

𝑆(1− 𝛾)
(70)

On the contrary, we can easily check that for any policy 𝜋, 𝑄𝜋((𝑠, 0), 𝑎*, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾
𝑆(1−𝛾) . In

particular, by taking 𝜋 = 𝜋*, we have:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) > 𝑄*((𝑠, 0), 𝑎*, 𝑔) (71)

C Goal-dependent 𝑄-functions in continuous spaces

C.1 Optimal Bellman Operator for action-value measures

With continuous states and goals, in a stochastic environment, the goal-dependent optimal 𝑄-function
𝑄*
𝜀 with reward 𝑅𝜀(𝑠, 𝑔) = 1‖𝜙(𝑠)−𝑔‖6𝜀 vanishes when 𝜀→ 0: the probability of exactly reaching

a goal state is usually 0. Likewise, a direct application of TD would never learn anything because
rewards would likely never be observed.

Instead, the goal-dependent 𝑄-function is a measure over goals. Intuitively, for every infinitesimally
small set of goals d𝑔, the quantity 𝑄*(𝑠, 𝑎,d𝑔) is the expected amount of time spent in d𝑔 by the
policy that tries to maximize time spent in d𝑔, starting at (𝑠, 𝑎).

Formally, for every state-action (𝑠, 𝑎), 𝑄*(𝑠, 𝑎, ·) is a measure over goals, solution to the Bellman
equation

𝑄*(𝑠, 𝑎,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) max
𝑎′

𝑄*(𝑠′, 𝑎′,d𝑔) (72)

where, as above, 𝜙 : 𝑆 → 𝐺 is the function defining the target features, and where 𝛿𝜙(𝑠) is the
Dirac measure at 𝜙(𝑠) in goal space. This is an equality between measures, and the supremum is a
supremum of measures (Bogachev, 2007, Section 4.7).

Existence and uniqueness of solutions, and a formal derivation of a TD algorithm, are nontrivial in
this setting. Uniqueness never holds without restrictions: the infinite measure always solves (72). But
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it is not possible to restrict ourselves to finite-mass measures, because sometimes the solution we
want has infinite mass. The need to deal with possibly infinite measures restricts the use of uniqueness
proofs by 𝛾-contractivity arguments in some norm.

Intuitively, the total mass 𝑄*(𝑠, 𝑎,𝒢) of the goal state 𝒢 describes how much different action
sequences result in non-overlapping distributions of states. If the state space 𝒜 is finite and |𝒜| = 𝐴,
the total mass of the horizon-𝑡 part of the 𝑄*-function can be as much as 𝛾𝑡𝐴𝑡: this is realized when
every possible sequence of 𝑡 actions leads to a disjoint part of the state of goals. In Appendix C.3 we
provide a simple continuous MDP in which every action sequence leads to a distinct state: as there
are an infinite number of action sequences when 𝑡→∞, the total mass 𝑄*(𝑠, 𝑎,𝒢) is infinite.

We still prove the existence of a canonical solution, equal both to the smallest solution and to the
limit of the horizon-𝑡 solution when 𝑡→∞.
THEOREM 10 (FORMAL STATEMENT OF THEOREM 3). Let 𝒬 be the set of functions from
𝒮 ×𝒜 into positive measures over 𝒢. Assume the set of actions𝒜 is countable. Let 𝑇 be the Bellman
operator mapping 𝑄 ∈ 𝒬 to 𝑇 ·𝑄 with

𝑇 ·𝑄(𝑠, 𝑎, ·) := 𝛿𝜙(𝑠)(·) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) sup
𝑎′
𝑄(𝑠′, 𝑎′, ·) (73)

where the supremum is a supremum of measures and 𝛿𝜙(𝑠) is the Dirac measure at 𝜙(𝑠) ∈ 𝒢.

Let 0 ∈ 𝒬 be the measure 0.

Let 𝑄𝑡 := 𝑇 𝑡0. (By expanding the definition of 𝑇 , this is the solution of the expectimax problem at
time horizon 𝑡.) Then when 𝑡→∞, for every state-action (𝑠, 𝑎) and for every measurable set 𝐺 ⊂ 𝒢,
𝑄𝑡(𝑠, 𝑎,𝐺) converges to a finite or infinite limit 𝑄*(𝑠, 𝑎,𝐺). This limit 𝑄* is an element of 𝒬 and
solves the Bellman equation 𝑇𝑄* = 𝑄*. It is the smallest such solution. In finite state spaces, it is
the only solution with finite mass. Moreover, for any goal-dependent policy 𝜋, its Bellman operator
𝑇𝜋 and 𝑄-value 𝑄𝜋 := lim𝑡→∞(𝑇𝜋)𝑡0 can be defined similarly (see equation (78)) and satisfy
𝑄𝜋 6 𝑄* as measures.

Proof. Assume the action space𝒜 is countable. Let𝒬 be the set of measurable functions from 𝒮×𝒜
to the set of measures on 𝒢.

For 𝑄1 and 𝑄2 in 𝒬, we write 𝑄1 6 𝑄2 if 𝑄1(𝑠, 𝑎,𝑋) 6 𝑄2(𝑠, 𝑎,𝑋) for any state-action (𝑠, 𝑎)
and measurable set 𝑋 ⊂ 𝒢. The Bellman operator of Definition 73 acts on 𝒬 and is obviously
monotonous: if 𝑄1 6 𝑄2 then 𝑇𝑄1 6 𝑇𝑄2.

Since the zero measure 0 ∈ 𝒬 is the smallest measure, we have 𝑇0 > 0. Since 𝑇 is monotonous, by
induction we have 𝑇 𝑡+10 > 𝑇 𝑡0 for any 𝑡 > 0. Thus, the (𝑇 𝑡0)𝑡>0 form an increasing sequence of
measures. Therefore, for every state-action (𝑠, 𝑎) and measurable set 𝑋 , the sequence (𝑇 𝑡0)(𝑠, 𝑎,𝑋)
is increasing, and thus converges to a limit. We denote this limit by 𝑄*(𝑠, 𝑎,𝑋). We have to prove
that 𝑄* ∈ 𝒬, namely, that for each (𝑠, 𝑎), 𝑄*(𝑠, 𝑎, ·) is a measure. The only non-trivial point is
𝜎-additivity.

Denote 𝑄𝑡 := 𝑇 𝑡0. If (𝑋𝑖) is a countable collection of disjoint measurable sets, we have

𝑄*(𝑠, 𝑎,∪𝑖𝑋𝑖) = lim
𝑡→∞

𝑄𝑡(𝑠, 𝑎,∪𝑖𝑋𝑖) = lim
𝑡→∞

∑︁
𝑖

𝑄𝑡(𝑠, 𝑎,𝑋𝑖)

=
∑︁
𝑖

lim
𝑡→∞

𝑄𝑡(𝑠, 𝑎,𝑋𝑖) =
∑︁
𝑖

𝑄*(𝑠, 𝑎,𝑋𝑖) (74)

where the limit commutes with the sum thanks to the monotone convergence theorem, using that 𝑄𝑡
is non-decreasing. Therefore, 𝑄* is a measure.

Let us prove that 𝑇𝑄* = 𝑄*. We have
𝑇𝑄*(𝑠, 𝑎, ·) = 𝛿𝜙(𝑠) + 𝛾E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup

𝑎′
𝑄*(𝑠′, 𝑎′, ·) (75)

by definition. For any 𝑠′, denote �̃�𝑡(𝑠′, ·) := sup𝑎′ 𝑄𝑡(𝑠
′, 𝑎′, ·) where the supremum is as measures

over 𝒢. Since 𝑄𝑡 is non-decreasing, so is �̃�𝑡.

For any state 𝑠′, we have

sup
𝑎′
𝑄*(𝑠′, 𝑎′, ·) = sup

𝑎′
sup
𝑡
𝑄𝑡(𝑠

′, 𝑎′, ·) = sup
𝑡

sup
𝑎′
𝑄𝑡(𝑠

′, 𝑎′, ·) = sup
𝑡
�̃�𝑡(𝑠

′, ·) (76)
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since supremums commute. Now, since �̃�𝑡 is non-decreasing, thanks to the monotone convergence
theorem, the supremum commutes with integration over 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) (which does not depend on
𝑡), namely,

E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑎′
𝑄*(𝑠′, 𝑎′, ·) = E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup

𝑡
�̃�𝑡(𝑠

′, ·)

= sup
𝑡

E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)�̃�𝑡(𝑠
′, ·) = sup

𝑡
E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup

𝑎′
𝑄𝑡(𝑠

′, 𝑎′, ·) (77)

and so 𝑇𝑄* = sup𝑡 𝑇𝑄𝑡. Now, since 𝑄𝑡 = 𝑇 𝑡0, we have 𝑇𝑄𝑡 = 𝑇 𝑡+10, so that sup𝑡>0 𝑇𝑄
𝑡 =

sup𝑡>1 𝑇
𝑡0 = 𝑄*. So 𝑄* is a fixed point of 𝑇 .

Let us prove that 𝑄* is the smallest such fixed point. Let 𝑄′ such that 𝑇𝑄′ = 𝑄′. Since 0 6 𝑄′ and
𝑇 is monotonous, we have 𝑇0 6 𝑇𝑄′ = 𝑄′. By induction, 𝑇 𝑡0 6 𝑄′ for any 𝑡 > 0. Therefore,
sup𝑡 𝑇

𝑡0 6 𝑄′, i.e., 𝑄* 6 𝑄′.

The statement for finite state spaces reduces to the classical uniqueness property of the usual 𝑄
function, separately for each goal state.

Optimality of the policy is proved by following classical arguments. Let 𝜋(𝑎|𝑠, 𝑔) be any goal-
dependent policy and let 𝑄 ∈ 𝒬. Define the Bellman operator associated to 𝜋 by

(𝑇𝜋𝑄)(𝑠, 𝑎, ·) := 𝛿𝑠 + 𝛾E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)
∑︁
𝑎′

(𝜋 *𝑄)(𝑠′, 𝑎′, ·) (78)

where for each action 𝑎, the measure (𝜋 * 𝑄) ∈ 𝒬 is defined via (𝜋 * 𝑄)(𝑠′, 𝑎′, 𝑋) :=∫︀
𝑔∈𝑋 𝜋(𝑎′|𝑠′, 𝑔)𝑄(𝑠′, 𝑎′,d𝑔), so that the sum of (𝜋 *𝑄) over all actions 𝑎′ represents the expected

value of 𝑄(𝑠′, 𝑎′, ·) under the goal-dependent policy 𝜋; this formulation allows the policy to depend
on the goal.

Since 𝜋 is a probability distribution, we have∑︁
𝑎′

(𝜋 *𝑄)(𝑠′, 𝑎′, 𝑋) 6 max
𝑎′

𝑄(𝑠′, 𝑎′, 𝑋) (79)

where the right-hand-side is a maximum of measures (thus selecting the best 𝑎′ for each goal): this is
clear from decomposing 𝑋 into the components where each action 𝑎′ is optimal.

Therefore, for any 𝑄 ∈ 𝒬, we have the inequality of measures

𝑇𝜋𝑄 6 𝑇𝑄 (80)

where 𝑇 is the optimal Bellman operator from above. Since the latter is monotonous over 𝑄 ∈ 𝒬, for
any 𝑄,𝑄′ ∈ 𝒬 with 𝑄 6 𝑄′, we have 𝑇𝜋𝑄 6 𝑇𝑄′.

Consequently, by induction, (𝑇𝜋)𝑡0 6 𝑇 𝑡0 for any horizon 𝑡 > 0. The monotonous limit 𝑄𝜋 :=
lim𝑡→∞(𝑇𝜋)𝑡0 exists for the same reasons as 𝑇 𝑡0, representing the 𝑄-function (measure) of policy
𝜋. Therefore, 𝑄𝜋 = lim𝑡→∞(𝑇𝜋)𝑡0 6 lim𝑡→∞ 𝑇 𝑡0 = 𝑄*. This proves that the policy 𝜋 has returns
no greater than 𝑄*.

C.2 Parametric goal-dependent 𝑄-learning.

In this section, we formally derive the 𝛿-DQN update introduced in Section 3.2. Let us consider
parametric models for 𝑄:

𝑄𝜃(𝑠, 𝑎,d𝑔) := 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) (81)
and we will learn 𝑞𝜃. 1

The resulting parametric update is off-policy: we assume access to a sampling distribution
(𝑠, 𝑎, 𝑠′) ∼ 𝜌SA(d𝑠,d𝑎)𝑃 (d𝑠′|𝑠, 𝑎) in a Markov decision. Typically, this can correspond to transi-
tions (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1) from exploration trajectory with 𝑔 ∼ 𝜌𝒢 , 𝑠0 ∼ 𝜌0(.|𝑔), then 𝑎𝑡 ∼ 𝜋expl(.|𝑠𝑡, 𝑔)

1The factor 𝜌𝒢 , or some other measure, is needed to get a well-defined object in continuous state spaces. In
discrete spaces, it results in an 𝑔-dependent scaling of the 𝑄 function, which still has the same optimal policy for
each 𝑔.
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and 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡). Here, our statement with a distribution 𝜌SA is more general. Given a
measure-valued function of (𝑠, 𝑎), such as 𝑄(𝑠, 𝑎,d𝑔), we define its norm as

‖𝑄‖2𝜌SA,𝜌𝒢
:= E(𝑠,𝑎)∼𝜌SA, 𝑔∼𝜌𝒢 [𝑞(𝑠, 𝑎, 𝑔)2] (82)

where 𝑞(𝑠, 𝑎, 𝑔) := 𝑄(𝑠, 𝑎,d𝑔)/𝜌𝒢(d𝑔) is the density of 𝑄 with respect to 𝜌𝒢 , if it exists (otherwise
the norm is infinite).

Let 𝑄𝜃 = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌(d𝑔) be our current estimate of 𝑄, and 𝑄tar(𝑠, 𝑎,d𝑔) = 𝑞tar(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) a
target measure, we define the loss:

𝐽𝑄(𝜃) := ‖𝑄𝜃 − 𝑇 ·𝑄tar‖2𝜌SA,𝜌𝒢 (83)

where 𝑇 is the optimal Bellman operator, and our goal is to obtain an unbiased estimate of 𝜕𝐽𝑄(𝜃). In
the statement of Theorem 4, there is a hidden mathematical subtlety with continuous states regarding
the norm ‖𝑄𝜃 − 𝑇 ·𝑄tar‖2𝜌SA,𝜌𝒢

. Indeed, 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) is absolutely continuous
with respect to 𝜌𝒢 , while 𝑇 · 𝑄tar is not, due to the Dirac term 𝛿𝜙(𝑠)(d𝑔). This makes the norm
‖𝑄𝜃 − 𝑇 ·𝑄tar‖2𝜌SA,𝜌𝒢

infinite (see its definition in (82)). However, the gradient of this norm is
actually still well-defined. There are at least two ways to handle this rigorously, which lead to the
same result. It is possible to do the computation in the finite state space case and observe that the
resulting gradient still makes sense in the continuous case (which can be obtained by a limiting
argument). The other way we will use here, is to observe that the loss 𝐽𝑄(𝜃) is equal to

𝐽𝑄(𝜃) =
1

2
‖𝑄𝜃‖2𝜌SA,𝜌𝒢

− ⟨𝑄𝜃, 𝑇𝑄tar⟩𝜌SA,𝜌𝒢 +
1

2
‖𝑇 ·𝑄tar‖2𝜌SA,𝜌𝒢 (84)

where
⟨𝑄1, 𝑄2⟩𝜌SA,𝜌𝒢 :=

∫︁
𝑠,𝑎

𝑄1(𝑠, 𝑎,d𝑔)𝑄2(𝑠, 𝑎,d𝑔)
1

𝜌𝒢(d𝑔)
. (85)

Even though ‖𝑄1−𝑄2‖𝜌SA,𝜌𝒢 is finite only if𝑄1 and𝑄2 are both absolutely continuous with respect
to 𝜌𝒢(d𝑔), the dot product ⟨𝑄1, 𝑄2⟩𝜌SA,𝜌𝒢 is still defined if only one of 𝑄1 or 𝑄2 is absolutely
continuous. Therefore, we can define:

𝐽 ′
𝑄(𝜃) =

1

2
‖𝑄𝜃‖2𝜌SA,𝜌𝒢 − ⟨𝑄𝜃, 𝑇 ·𝑄tar⟩𝜌SA,𝜌𝒢 (86)

For a given 𝑄tar, 𝐽 ′
𝑄(𝜃) and 𝐽𝑄(𝜃) have the same minima and gradients, but 𝐽 ′

𝑄(𝜃′) is always well
defined and finite. Namely, 𝐽𝑄 and 𝐽 ′

𝑄 differ by a constant in the finite case, and by an “infinite
constant” in the continuous case. We will work with the loss 𝐽 ′

𝑄, which is finite even in the continuous
case.
THEOREM 11 (FORMAL STATEMENT OF THEOREM 4). Let 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔)
be a current estimate of 𝑄*(𝑠, 𝑎,d𝑔). Let likewise 𝑄tar(𝑠, 𝑎,d𝑔) = 𝑞tar(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) be a target
𝑄-function. We consider the loss function 𝐽 ′

𝑄(𝜃) defined in equation (86).

We consider the following update to bring 𝑄𝜃 closer to 𝑇𝑄tar with 𝑇 the optimal Bellman oper-
ator: Let (𝑠, 𝑎, 𝑠′) ∼ 𝜌𝑆𝐴(d𝑠,d𝑎)𝑃 (𝑠′|𝑠, 𝑎) be samples of the environment and 𝑔 ∼ 𝜌𝒢 sampled
independently. Let ̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠′, 𝑔) bê︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠′, 𝑔) := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠)) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)

(︁
𝛾max

𝑎′
𝑞tar(𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)
)︁

(87)

Then ̂︀𝛿𝜃𝛿-DQN is an unbiased estimate of 𝜕𝜃𝐽 ′
𝑄(𝜃): E

[︁ ̂︀𝛿𝜃𝛿-DQN

]︁
= −𝜕𝜃𝐽 ′

𝑄(𝜃).

In particular, the true optimal state-action measure 𝑄* is a fixed point of this update: if 𝑄𝜃 = 𝑄tar =

𝑄* then E
[︁ ̂︀𝛿𝜃𝛿-DQN

]︁
= 0.

Here we have presented the update using a fixed “target network” with parameter 𝜃0 (typically a
previous value of 𝜃), a common practice for parametric 𝑄-learning.

For this theorem, we sample goals 𝑔 independently of (𝑠, 𝑎, 𝑠′). In practice, this could be a source
of variance, as sampling goals far from the current state should produce close-to-0 Q-values. If we
instead sample goals from a distribution 𝜇(𝑔|𝑠, 𝑎), this introduces an implicit scaling factor 𝛼(𝑠, 𝑔)
to the reward. This is discussed in details and the end of Appendix E.2 in the case of the 𝑉 -function.

24



Proof. By definition of the optimal Bellman operator 𝑇 and the target 𝑄tar, we have:

𝑇𝑄tar(𝑠, 𝑎,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)

[︂
sup
𝑎′
𝑞tar(𝑠

′, 𝑎′, 𝑔)

]︂
𝜌𝒢(d𝑔) (88)

By definition of 𝐽 ′
𝑄(𝜃) and of the norm ‖·‖𝜌SA,𝜌𝒢 , we have

𝐽 ′
𝑄(𝜃) =

1

2
‖𝑄𝜃‖2𝜌SA,𝜌

− ⟨𝑄𝜃, 𝑇𝑄tar⟩𝜌SA,𝜌 (89)

=
1

2

∫︁
𝑠,𝑎,𝑔

𝑞2𝜃(𝑠, 𝑎, 𝑔)𝜌SA(d𝑠,d𝑎)𝜌(d𝑔)−
∫︁
𝑠,𝑎,𝑔

𝑞𝜃(𝑠, 𝑎, 𝑔)(𝑇 ·𝑄tar)(𝑠, 𝑎,d𝑔)𝜌SA(d𝑠,d𝑎)

(90)

Consequently,

𝜕𝜃𝐽
′(𝜃) =

∫︁
𝑠,𝑎,𝑔

𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌SA(d𝑠,d𝑎)𝜌𝒢(d𝑔)−
∫︁
𝑠,𝑎,𝑔

𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)𝑇𝑄tar(𝑠, 𝑎,d𝑔)𝜌SA(d𝑠,d𝑎)

(91)

=

∫︁
𝑠,𝑎,𝑔

𝜌SA(d𝑠,d𝑎)𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔) (𝑄𝜃(𝑠, 𝑎,d𝑔)− 𝑇𝑄tar(𝑠, 𝑎,d𝑔)) (92)

assuming 𝑞𝜃 is smooth enough so that the derivative makes sense and commutes with the integral.

Moreover, we have:

𝑇𝑄tar(𝑠, 𝑎,d𝑔)−𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝛿𝜙(𝑠)(d𝑔)+𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)[sup
𝑎′
𝑞tar(𝑠

′, 𝑎′, 𝑔)−𝑞𝜃(𝑠, 𝑎, 𝑔)]𝜌𝒢(d𝑔)

(93)

Therefore,

−𝜕𝜃𝐽 ′(𝜃) =

∫︁
𝑠,𝑎

𝜌SA(d𝑠,d𝑎)𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)𝛿𝜙(𝑠)(d𝑔)

+

∫︁
𝑠,𝑎,𝑔

𝜌SA(d𝑠,d𝑎)𝜌𝒢(d𝑔)

(︂
𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)[sup

𝑎′
𝑞𝜃0(𝑠′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)]

)︂ (94)

=

∫︁
𝑠,𝑎

𝜌SA(d𝑠,d𝑎)𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠))

+

∫︁
𝑠,𝑎,𝑔

𝜌SA(d𝑠,d𝑎)𝜌𝒢(d𝑔)

(︂
𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)[sup

𝑎′
𝑞𝜃0(𝑠′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)]

)︂ (95)

By definition of ̂︂𝛿𝜃𝑄, we have:

E𝑠,𝑎∼𝜌SA

[︁̂︂𝛿𝜃𝑄]︁ =E𝑠,𝑎∼𝜌SA,𝑔∼𝜌𝒢(d𝑔) [𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠))]

+ E𝑠,𝑎∼𝜌SA,𝑔∼𝜌𝒢(d𝑔)

[︂
𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)

(︂
𝛾 sup

𝑎′
𝑞𝜃0(𝑠′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)

)︂]︂ (96)

= −𝜕𝜃𝐽 ′(𝜃) (97)

Finally, if 𝑄tar = 𝑄𝜃 = 𝑄*, then 𝑇𝑄tar = 𝑄* and:

𝜕𝐽 ′
𝑄(𝜃) =

∫︁
𝑠,𝑎,𝑔

𝜌SA(d𝑠,d𝑎)𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔) (𝑄𝜃(𝑠, 𝑎,d𝑔)− 𝑇𝑄tar(𝑠, 𝑎,d𝑔)) (98)

= 0 (99)
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C.3 Examples of MDPs with Infinite Mass for 𝑄*

Here are two simple examples of MDPs with finite action space, for which the mass of the goal-
dependent 𝑄-measure 𝑄*(𝑠, 𝑎,d𝑔) is infinite. The first has discrete states, the second, continuous
ones.

Take for 𝒮 an infinite rooted dyadic tree, namely, 𝒮 = {∅, 0, 1, 00, 01, . . .} the set of binary strings
of finite length 𝑘 > 0, and 𝒢 = 𝒮. Consider the two actions “add a 0 at the end” and “add a 1 at
the end”. Then, for every state 𝑠, 𝑄*(𝑠, 𝑎, ·) is a measure that gives mass 𝛾𝑘 to all states 𝑔 that are
extensions of 𝑠 by a length-𝑘 string that starts with 𝑎. Thus, its mass is 1 +

∑︀
𝑘>1 𝛾

𝑘2𝑘−1. This is
infinite as soon as 𝛾 > 1/2. This extends to any number of actions by considering higher-degree
trees.

A similar example with continuous states is obtained as follows. Let 𝒮 = [0; 1) × [0; 1). Let
𝐶 = {∅, 0, 1, 00, 01, . . .} the dyadic tree above. For each string 𝑤 ∈ 𝑋 , consider the set 𝐵𝑤 ⊂ 𝒮
defined as follows: 𝐵𝑤 is made of those points (𝑥, 𝑦) ∈ 𝒮 such that the binary expansion of 𝑥 starts
with 𝑤, and 𝑦 ∈ [1 − 1/2𝑘; 1 − 1/2𝑘+1) where 𝑘 is the length of 𝑤. Graphically, this creates a
tree-like partition of the square 𝒮 , where the empty string corresponds to the bottom half, the strings
𝑤 = 0 and 𝑤 = 1 correspond to two sets on the left and right above the bottom hald, etc. Define
the following MDP with two actions 0 and 1: with action 0, every state 𝑠 ∈ 𝐵𝑤 goes to a uniform
random state in 𝐵𝑤0, and with action 1, every state 𝑠 ∈ 𝐵𝑤 goes to a uniform random state in 𝐵𝑤1.
The goal-dependent 𝑄-function 𝑄* is similar to the dyadic tree above, but is continuous. Its mass is
infinite for the same reasons.

D The successor goal measure 𝑀(𝑠, 𝑔, d𝑔′)

D.1 Definition and existence of the successor goal measure

THEOREM 12. The successor measure
𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)

∑︁
𝑘>0

𝛾𝑘(𝑃𝜋)𝑘(d𝑠|𝑠0, 𝑔) (100)

is a well defined probability measure over 𝒮 for every 𝑠0, 𝑔. It satisfies the fixed-point equation:
𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0(d𝑠) + E𝑎∼𝜋(d𝑎|𝑠0,𝑔),𝑠1∼𝑃 (d𝑠1|𝑠0,𝑎) [𝜈𝜋(d𝑠|𝑠0, 𝑔)] (101)

The successor-goal measure is defined as:

𝑀𝜋(𝑠, 𝑔, .) :=
1

1− 𝛾
𝜙*𝜈

𝜋(.|𝑠, 𝑔) (102)

where 𝜙* is the push-forward operator on measures. We define the Bellman operator mapping
𝑀(𝑠, 𝑔1,d𝑔2) to 𝑇𝜋𝑀 with

(𝑇𝜋 ·𝑀)(𝑠, 𝑔1,d𝑔2) = 𝛿𝜙(𝑠)(d𝑔2) + 𝛾E𝑎∼𝜋(𝑎|𝑠,𝑔1),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) [𝑀(𝑠′, 𝑔1,d𝑔2)] , (103)

Then, 𝑀𝜋 is a fixed point of 𝑇𝜋 .

Proof. For every 𝑘, (𝑃𝜋)𝑘(d𝑠|𝑠0, 𝑔) is a probability measure over 𝒮. Therefore, for any mea-
surable set 𝑆 ⊂ 𝒮, the sum (1 − 𝛾)

∑︀
𝑘>0 𝛾

𝑘(𝑃𝜋)𝑘(𝑆|𝑠0, 𝑔) 6 1, and the sum converges.
𝜈𝜋(d𝑠|𝑠0, 𝑔) is a positive measure as a convergent sum of positive measure. Its total mass is
(1− 𝛾)

∑︀
𝑘>0 𝛾

𝑘(𝑃𝜋)𝑘(𝒮|𝑠0, 𝑔) = (1− 𝛾)
∑︀
𝑘>0 𝛾

𝑘 = 1. Therefore, 𝜈𝜋(d𝑠|𝑠0, 𝑔) is a well-defined
probability measure.

We now prove the fixed point equation. We have:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)(𝑃𝜋)0(d𝑠|𝑠0, 𝑔) + (1− 𝛾)
∑︁
𝑘>1

𝛾𝑘(𝑃𝜋)𝑘(d𝑠|𝑠0, 𝑔) (104)

= (1− 𝛾)𝛿𝜙(𝑠0)(d𝑠) +

⎛⎝𝑃𝜋
⎛⎝(1− 𝛾)

∑︁
𝑘>1

𝛾𝑘(𝑃𝜋)𝑘−1

⎞⎠⎞⎠ (d𝑠|𝑠0, 𝑔) (105)

= (1− 𝛾)𝛿𝜙(𝑠0)(d𝑠) + 𝛾 (𝑃𝜋 * 𝜈𝜋) (d𝑠|𝑠0, 𝑔) (106)

= (1− 𝛾)𝛿𝑠0(d𝑠) + E𝑎∼𝜋(d𝑎|𝑠0,𝑔),𝑠1∼𝑃 (d𝑠1|𝑠0,𝑎) [𝜈𝜋(d𝑠|𝑠0, 𝑔)] (107)
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where (𝑃𝜋 *𝜈𝜋)(d𝑠|𝑠0, 𝑔) :=
∫︀
𝑠1
𝑃𝜋(d𝑠1|𝑠0, 𝑔)𝜈𝜋(d𝑠|𝑠1, 𝑔). We now show the Bellman fixed point

equation of 𝑀𝜋 . We now that

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0(d𝑠) + E𝑎∼𝜋(d𝑎|𝑠0,𝑔),𝑠1∼𝑃 (d𝑠1|𝑠0,𝑎) [𝜈𝜋(d𝑠|𝑠0, 𝑔)] (108)

By applying the push-forward operator 𝜙* we have:

(1− 𝛾)𝑀𝜋(𝑠0, 𝑔,d𝑔
′) = (1− 𝛾)𝛿𝑠0(d𝑠) + 𝜙*

(︂∫︁
𝑎,𝑠1

𝜋(𝑎|𝑠0, 𝑔)𝑃 (d𝑠1|𝑠0, 𝑎)𝜈𝜋(d𝑠|𝑠1, 𝑔)

)︂
(109)

= (1− 𝛾)𝛿𝑠0(d𝑠) +

(︂∫︁
𝑎,𝑠1

𝜋(𝑎|𝑠0, 𝑔)𝑃 (d𝑠1|𝑠0, 𝑎)𝜙*𝜈
𝜋(d𝑠|𝑠1, 𝑔)

)︂
(110)

= (1− 𝛾)𝛿𝑠0(d𝑠) +

∫︁
𝑎,𝑠1

𝜋(𝑎|𝑠0, 𝑔)𝑃 (d𝑠1|𝑠0, 𝑎)𝑀𝜋(𝑠1, 𝑔, d𝑔
′) (111)

D.2 The Policy Evaluation Update

In this section, we prove Theorem 5 for learning 𝑀𝜋 via temporal differences algorithm, TD and
𝑇𝐷(𝑛). This theorem very similar to Theorem 11. We directly prove the result for TD(𝑛), as the
standard TD update stated in Theorem 5 corresponds to the TD(𝑛) update for 𝑛 = 1.

The resulting parametric update is on-policy: Let 𝜋 be a policy, we assume access to a sampling
distribution (𝑔, 𝑠0, ..., , 𝑠𝑛) ∼ 𝜌SG(d𝑔,d𝑠0)𝑃𝜋(d𝑠1|𝑠0, 𝑔)...𝑃𝜋(d𝑠𝑛|𝑠𝑛−1, 𝑔), where 𝜌SG is any
distribution on 𝒮 × 𝒢. Typically, this can correpond to couples (𝑔, 𝑠𝑘) from trajectory with 𝑔 ∼ 𝜌𝒢 ,
𝑠0 ∼ 𝜌0(.|𝑔), 𝑠𝑡+1 ∼ 𝑃𝜋(.|𝑠𝑡, 𝑔). Here, our statement with a distribution 𝜌SG is more general.

Given a measure-valued function of (𝑠, 𝑠), such as 𝑀(𝑠, 𝑔, d𝑔′), we define its norm as

‖𝑀‖2𝜌SG,𝜌𝒢
:= E(𝑠,𝑔)∼𝜌SG, 𝑔′∼𝜌𝒢 [𝑚(𝑠, 𝑔, 𝑔′)2] (112)

where 𝑚(𝑠, 𝑔, 𝑔′) := 𝑀(𝑠, 𝑔, d𝑔′)/𝜌𝒢(d𝑔′) is the density of 𝑀𝜋(𝑠, 𝑔, .) with respect to 𝜌𝒢 , if it
exists (otherwise the norm is infinite).
THEOREM 13 (FORMAL STATEMENT OF THEOREM 5). Let 𝑀𝜃(𝑠, 𝑔, d𝑔

′) =
𝑚𝜃(𝑠, 𝑔, 𝑔

′)𝜌𝒢(d𝑔′) be a current estimate of 𝑀𝜋(𝑠, 𝑔, d𝑔′). Let likewise 𝑀tar(𝑠, 𝑔, d𝑔
′) =

𝑚tar(𝑠, 𝑔, 𝑔
′)𝜌𝒢(d𝑔′) be a target 𝑀 , and consider the following update to bring 𝑀𝜃 closer to

(𝑇𝜋)𝑛𝑀tar with 𝑇𝜋 the Bellman operator.

Let 𝜏 = (𝑔, 𝑠0, ..., 𝑠𝑛) ∼ 𝜌SG(d𝑔,d𝑠0)𝑃𝜋(d𝑠1|𝑠0, 𝑔)...𝑃𝜋(d𝑠𝑛|𝑠𝑛−1, 𝑔) be a sample of the environ-
ment and 𝑔′ ∼ 𝜌𝒢 is a goal sampled independently. Let ̂︀𝛿𝜃𝛿-TD(𝑛) be

̂︀𝛿𝜃𝛿-TD(𝑛)(𝜏, 𝑔
′) :=

𝑛−1∑︁
𝑙=0

𝛾𝑙𝜕𝜃𝑚𝜃(𝑠0, 𝑔, 𝜙(𝑠𝑙)) + 𝜕𝜃𝑚𝜃(𝑠0, 𝑔, 𝑔
′) (𝛾𝑛𝑚𝜃(𝑠𝑛, 𝑔, 𝑔

′)−𝑚𝜃(𝑠𝑛, 𝑔, 𝑔
′))

(113)
Then ̂︀𝛿𝜃𝛿-TD(𝑛) is an unbiased estimate of the Bellman error: E𝜏,𝑔′

[︁ ̂︀𝛿𝜃𝛿-TD(𝜏, 𝑔′)
]︁

= 1
2𝜕𝜃‖𝑀𝜃 −

(𝑇𝜋)𝑛𝑀tar‖2𝜌SG,𝜌𝒢 .

In particular, the true 𝑀𝜋 is a fixed point of this udpate: if 𝑀𝜃 = 𝑀tar = 𝑀𝜋 , then

E
[︁ ̂︀𝛿𝜃𝛿-TD(𝑛)

]︁
= 0 (114)

For this theorem, we sample goals 𝑔′ independently of 𝜏 . In practice, this could be a source of
variance, as sampling goals far from the current state should produce close-to-0 V-values. If we
instead sample goals from a distribution 𝜇(𝑔|𝑠, 𝑎), this introduces an implicit scaling factor 𝛼(𝑠, 𝑔)
to the reward. This is discussed in details and the end of Appendix E.2 in the case of the 𝑉 -function.

As in Appendix C.2, there is a hidden mathematical subtlety with continuous states regarding the
norm ‖𝑀𝜃 − (𝑇𝜋)𝑛𝑀tar‖, which is infinite because (𝑇𝜋)𝑛𝑀tar is not absolutely continuous with
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respect to 𝜌𝒢 . However, as in Appendix C.2, the gradient of ‖𝑀𝜃 − (𝑇𝜋)𝑛𝑀tar‖ is finite. Because
the rigorous way to handle it is exactly the same technique as in Appendix C.2, we will not derive it
in this section.

Proof. The proof is very similar to the proof of Theorem 11. Similarly to the derivation of (92), we
have:

−𝜕𝜃
1

2
𝜕𝜃‖𝑀𝜃−(𝑇𝜋)𝑛𝑀tar‖2𝜌SG,𝜌𝒢 =

∫︁
𝑠0,𝑔,𝑔′

𝜌SG(d𝑠0,d𝑔)𝜕𝜃𝑚(𝑠0, 𝑔, 𝑔
′)((𝑇𝜋)𝑛𝑀tar(𝑠, 𝑔, d𝑔

′)−𝑀𝜃(𝑠, 𝑔, d𝑔
′))

(115)

Moreover:

(𝑇𝜋)𝑛𝑀 tar(𝑠, 𝑔, d𝑔′)−𝑀𝜃(𝑠, 𝑔, d𝑔
′) =

𝑛−1∑︁
𝑘=0

𝛾𝑘E𝑠1,...,𝑠𝑘|𝑠0,𝑔
[︀
𝛿𝜙(𝑠𝑘)(d𝑔)

]︀
+
(︀
𝛾𝑛E𝑠𝑛|𝑠0,𝑔 [𝑚tar(𝑠𝑛, 𝑔, 𝑔

′)]−𝑚𝜃(𝑠0, 𝑔, 𝑔
′)
)︀
𝜌𝒢(d𝑔′)

(116)

Therefore:

−𝜕𝜃𝐽(𝜃) =

∫︁
𝑠0,𝑔,𝑔′

𝜌SG(d𝑠0,d𝑔)𝜕𝜃𝑚(𝑠0, 𝑔, 𝑔
′)

𝑛−1∑︁
𝑘=0

𝛾𝑘E𝑠1,...,𝑠𝑘|𝑠0,𝑔
[︀
𝛿𝜙(𝑠𝑘)(d𝑔)

]︀
+

∫︁
𝑠0,𝑔,𝑔′

𝜌SG(d𝑠0,d𝑔)𝜕𝜃𝑚(𝑠0, 𝑔, 𝑔
′)
(︀
𝛾𝑛E𝑠𝑛|𝑠0,𝑔 [𝑚𝜃(𝑠𝑛, 𝑔, 𝑔

′)]−𝑚𝜃(𝑠0, 𝑔, 𝑔
′)
)︀
𝜌𝒢(d𝑔′)

(117)

−𝜕𝜃𝐽(𝜃) =

∫︁
𝑠0,𝑔,𝑔′

𝜌SG(d𝑠0,d𝑔)E𝑠1,...,𝑠𝑛|𝑠0,𝑔

[︃
𝑛−1∑︁
𝑘=0

𝛾𝑘𝜕𝜃𝑚(𝑠0, 𝑔, 𝜙(𝑠𝑘))

]︃

+

∫︁
𝑠0,𝑔,𝑔′

𝜌SG(d𝑠0,d𝑔)𝜕𝜃𝑚(𝑠0, 𝑔, 𝑔
′)
(︀
𝛾𝑛E𝑠𝑛|𝑠0,𝑔 [𝑚𝜃(𝑠𝑛, 𝑔, 𝑔

′)]−𝑚𝜃(𝑠0, 𝑔, 𝑔
′)
)︀
𝜌𝒢(d𝑔′)

(118)

Therefore, E𝜏,𝑔′
[︁ ̂︀𝛿𝜃𝛿-TD(𝜏, 𝑔′)

]︁
= 1

2𝜕𝜃‖𝑀𝜃 − (𝑇𝜋)𝑛𝑀tar‖2𝜌SG,𝜌𝒢 .

Finally, if 𝑀𝜃 = 𝑀tar = 𝑀𝜋 , we have:

−𝜕𝜃
1

2
𝜕𝜃‖𝑀𝜃 − (𝑇𝜋)𝑛𝑀tar‖2𝜌SG,𝜌𝒢 =

∫︁
𝑠0,𝑔,𝑔′

𝜌SG(d𝑠0,d𝑔)𝜕𝜃𝑚(𝑠0, 𝑔, 𝑔
′)((𝑇𝜋)𝑛𝑀tar(𝑠, 𝑔, d𝑔

′)−𝑀𝜃(𝑠, 𝑔, d𝑔
′)) = 0

(119)

This concludes the proof.

E The continuous density setting

E.1 The continuous density assumption

Here, we introduce the continuity assumption, which will be used in this section, to formalize the
relation between the multi-goal formulation with infinitely sparse Dirac rewards with the standard
formulation with reward located in a neighborhood of size 𝜀 around the goal, and to derive a policy
gradient theorem.
ASSUMPTION 1. We assume that 𝒮 and 𝒢 are finite dimensional vector spaces, and that 𝒜 is a
compact subset of a finite dimensional vector space. Moreover, 𝜌𝒢(d𝑔) is absolutely continuous
with respect to the Lebesgue measure on 𝒢, and we write 𝑝𝒢 its density: 𝑝𝒢(𝑔)𝜆(d𝑔), where 𝑝𝒢 is a
continuous function. Similarly, 𝜌(d𝑠0|𝑔) the distribution of initial states given a goal is supposed to
be absolutely continuous with respect the Lebesgue measure: 𝜌(d𝑠0|𝑔) = 𝑝0(𝑠0|𝑔)𝜆(d𝑔), with 𝑝0
continuous. The transition probability measure 𝑃 (d𝑠′|𝑠, 𝑎) is absolutely continuous with respect to
the Lebesgue measure on 𝒮, and we write 𝑝(𝑠′|𝑠, 𝑎) its density, which is continuous.
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We assume that supp𝜌𝒢 is compact and that there is a compact subset 𝐾𝒮 ⊂ 𝒮 such that for every
𝑠, 𝑎 ∈ 𝒮,𝒢, supp𝑃 (d𝑠′|𝑠, 𝑎) ⊂ 𝐾𝒮 .

We consider only policies in Π, the set of policies 𝜋 such that 𝜋(𝑎|𝑠, 𝑔) is a continuous function of
𝑎, 𝑠, 𝑔.

We assume dim𝒢 6 𝒮 and 𝜙 is a surjective linear function, and 𝜙(𝒮) = 𝒢.

Let us comment Assumption 1. First, we require 𝑃 , 𝜌𝒢 , and 𝜌0 to be absolutely continuous with
respect to Lebesgue measure. This is typically true in environments such that, at every step, the
environment adds a noise absolutely continuous with respect to Lebesgue measure (for instance
Gaussian) to the position. On the contrary, in environments such that the agent lies in a submanifold of
dimension lower than dim𝒮 , the assumption is not satisfied. In the Torus(n) environment, with the
state representation 𝑠 ∈ [0, 1)𝑛, the environment satisfies this assumption. But with the representation
used in the experiments 𝑠 = (cos(2𝜋𝑠1), sin(2𝜋𝑠1), ..., cos(2𝜋𝑠𝑛), sin(2𝜋𝑠𝑛)) ∈ [−1, 1]2𝑛, this
assumption is not satisfied. The assumption that 𝜙 is linear is often satisfied in practice, when the
achieved goal of a state corresponds to a some coordinates of 𝑠. For instance, in FetchReach, the state
𝑠 contains information on the position and velocity of the robotic arm, while the achieved goal is the
position of the extremity of the robotic arm. This assumption could be generalized to 𝜙 a submersion
(a differentiable function such that its d𝜙𝑠 is surjective for every 𝑠), but we used the linear assumption
for the simplicity of the proof.

Under this assumption, we have the following lemma on the probability distribution 𝜈𝜋 introduced in
Appendix D.1 and 𝑀𝜋:

LEMMA 14. Under Assumption 1, there is a function 𝑞𝜋(𝑠|𝑠0, 𝑔) such that for any (𝑠0, 𝑔):

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0(d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠) (120)

and 𝑞𝜋(𝑠|𝑠0, 𝑔) is a continuous function of 𝑠, 𝑠0, 𝑔.

Moreover, 𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝜙*
(︀
𝜈𝜋(d𝑠′|𝑠, 𝑔)

)︀
(d𝑔′) (where 𝜙* is the push-forward operator) and

there is a function �̃�𝜋(𝑠, 𝑔, 𝑔′) such that for any 𝑠, 𝑔:

𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠) + �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′). (121)

and �̃�𝜋(𝑠, 𝑔, 𝑔′) is a continuous function of (𝑠, 𝑔, 𝑔′).

The function �̃�𝜋 satisfies for every (𝑠, 𝑔, 𝑔′) ∈ 𝐾𝒮 × 𝒢 × 𝒢 the fixed point equation:

�̃�(𝑠, 𝑔, 𝑔′) = 𝛾

∫︁
𝑎

𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔′|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔′)

)︂
(122)

Proof. We have:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)
∑︁
𝑘>0

𝛾𝑘(𝑃𝜋)𝑘(d𝑠|𝑠0, 𝑔) (123)

We know that

(𝑃𝜋)(d𝑠′|𝑠, 𝑔) = 𝜆(d𝑠′)

∫︁
𝑎

𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎),

and by induction, for 𝑘 > 1,

(𝑃𝜋)𝑘(d𝑠|𝑠0, 𝑔) = 𝜆(d𝑠)

∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)

(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)

)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1).

We define:

𝑞𝜋(𝑠|𝑔, 𝑠0) := (1−𝛾)
∑︁
𝑘>1

𝛾𝑘
∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)

(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)

)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)

(124)
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We now check that 𝑞𝜋 is well-defined and continuous. For every 𝑘 > 1, the function

(𝑔, 𝑠0, 𝑎0, ..., 𝑠𝑘−1, 𝑎𝑘−1, 𝑠) ↦→ 𝜋(𝑎0|𝑠0, 𝑔)

(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)

)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)

is continuous and the supports of 𝜋 are 𝑝 compact sets. Therefore, for every 𝑘 > 0, the function

(𝑔, 𝑠0, 𝑠) ↦→
∫︁
𝑎0,𝑠1,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)

(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)

)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)

is well defined and continuous.

Moreover, for every 𝑘 > 0, and (𝑠, 𝑔):⃒⃒⃒⃒
⃒𝛾𝑘
∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)

(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)

)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)

⃒⃒⃒⃒
⃒ 6 (125)

6 𝛾𝑘
∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)

(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)

)︃
‖𝑝‖∞ (126)

= 𝛾𝑘‖𝑝‖∞ (127)

and
∑︀
𝑘>0 𝛾

𝑘‖𝑝‖∞ 6∞. Therefore, 𝑞𝜋(𝑠|𝑔, 𝑠0) is a continuous function and we have:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0(d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠). (128)
Moreover, the support of 𝜈𝜋 is compact and for every 𝑠0 ∈ 𝐾𝒮 , we have supp (𝜈𝜋(.|𝑠0, 𝑔)) ⊂ 𝐾𝒮 .

We now show the existence of �̃�𝜋 . We have:

𝑀𝜋(𝑠, 𝑔, d𝑔′) =
1

1− 𝛾
(︀
𝜙*𝜈

𝜋(d𝑠′|𝑠, 𝑔)
)︀
(d𝑔′) = 𝜙* ((𝛿𝑠(d𝑠

′)) (d𝑔′)+
1

1− 𝛾
𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)) (d𝑔′)

First, 𝜙*(𝛿𝑠) = 𝛿𝜙(𝑠). Then, we study the second part 𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)) (d𝑔′), and show that
there is a continuous function �̃�(𝑠, 𝑔, 𝑔′) such that

1

1− 𝛾
𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)) (d𝑔′) = �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) (129)

Let 𝑓(𝑔) be a continuous test function. We have:∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠)) (d𝑔′) =

∫︁
𝑠′
𝑓(𝜙(𝑠′))𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′) (130)

We use the change of variable 𝑠′ = 𝑒+𝑘 with 𝑘 ∈ Ker𝜙 and 𝑒 ∈ Ker𝜙⊥ and use that 𝜙(𝑠′) = 𝜙(𝑒),
and 𝜙Ker𝜙⊥ the restriction of 𝜙 to Ker𝜙⊥ is invertible. In order to use continuity theorems on
integrals, we want to restrict the integral domains to compact sets. We define the orthogonal
projections of 𝐾𝒮 on Ker𝜙 and Ker𝜙⊥: 𝐾 = projKer𝜙(K𝒮) and 𝐸 = projKer𝜙⊥(K𝒮). 𝐾 and 𝐸
are compact sets and supp (𝑞𝜋(𝑠′|𝑠, 𝑔)) ⊂ {𝑒+ 𝑘 , (𝑘, 𝑒) ∈ 𝐾 × 𝐸} for every 𝑠 ∈ 𝐾𝒮 . We have:∫︁

𝑔′∈𝒢
𝑓(𝑔′)𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)) (d𝑔′) =

∫︁
𝑒∈Ker𝜙⊥,𝑘∈Ker𝜙

𝑓(𝜙(𝑒+ 𝑘))𝑞𝜋(𝑒+ 𝑘|𝑠, 𝑔)𝜆(d𝑒,d𝑘)

(131)

=

∫︁
𝑒∈𝐸,𝑘∈𝐾

𝑓(𝜙(𝑒+ 𝑘))𝑞𝜋(𝑒+ 𝑘|𝑠, 𝑔)𝜆(d𝑒,d𝑘) (132)

=

∫︁
𝑒∈𝐸

𝑓(𝜙(𝑒))𝜆(d𝑒)

∫︁
𝑘∈𝐾

𝑞𝜋(𝑒+ 𝑘|𝑠, 𝑔)𝜆(d𝑘) (133)

where we can switch integrals because the sets are compact and the functions continuous. We use the
change of variable: 𝑔′ = (𝜙|Ker𝜙⊥)−1(𝑒). For simplicity, we use the notation 𝜙−1 = (𝜙|Ker𝜙⊥)−1.∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)) (d𝑔′) =

∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜆(d𝑔′)

(︂
det(𝜙−1)

∫︁
𝑘∈𝐾

1𝐸(𝜙−1(𝑔′)𝑞𝜋(𝜙−1(𝑔′) + 𝑘|𝑠, 𝑔)𝜆(d𝑘)

)︂
(134)

=

∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜆(d𝑔′)

(︂
det(𝜙−1)

∫︁
𝑘∈𝐾

𝑞𝜋(𝜙−1(𝑔′) + 𝑘|𝑠, 𝑔)𝜆(d𝑘)

)︂
(135)
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where the last line is obtained by using that 1𝐸(𝑠′)𝑞𝜋(𝑠′|., .) = 𝑞𝜋(𝑠′|., .) because 𝑠′ /∈ 𝐸 ⇒
𝑞𝜋(𝑠′|., .) = 0. We define �̃�𝜋(𝑠, 𝑔, 𝑔′) = 1

1−𝛾 det(𝜙)−1
∫︀
𝑘∈𝐾 𝑞

𝜋(𝜙−1(𝑔′) + 𝑘|𝑠, 𝑔)𝜆(d𝑘). The
function (𝑠, 𝑔, 𝑘, 𝑔′) → 𝑞𝜋(𝜙−1(𝑔′) + 𝑘|𝑠, 𝑔) is continuous and 𝐾 is compact. Therefore, �̃�𝜋 is
continuous and bounded, and:

1

1− 𝛾
𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)) (d𝑔′) = �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)

Moreover, the support of �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) is compact and supp (�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)) ⊂ 𝜙(𝐾𝒮).

We now prove the fixed point equation on �̃�𝜋 . We consider the Bellman equation on 𝑀𝜋(𝑠, 𝑔, d𝑔′).
We have:

𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑀𝜋(𝑠′, 𝑔,d𝑔′) (136)

By using 𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′), we have:

�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) = 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔

′) + �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)
)︀

(137)

Let 𝑓(𝑔′) be a continuous test function, we have:∫︁
𝑔′
𝑓(𝑔′)�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) = (138)

= 𝛾

∫︁
𝑠′,𝑎,𝑔′

𝜆(d𝑠′,d𝑎)𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔

′) + �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)
)︀

(139)

= 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)

(︂
𝑓(𝜙(𝑠′)) +

∫︁
𝑔′
𝜆(d𝑔′)𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�(𝑠′, 𝑔, 𝑔′)

)︂
(140)

= 𝛾

∫︁
𝑎,𝑔′

𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑔′|𝑠, 𝑎) + 𝛾

∫︁
𝑎,𝑠′,𝑔′

𝜆(d𝑎,d𝑠′,d𝑔′)𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�(𝑠′, 𝑔, 𝑔′)𝑓(𝑔′)

(141)

where 𝑝(𝑔|𝑠, 𝑎) is the density with respect to Lebesgue measure 𝜆(d𝑔) of 𝜙*𝑃 (d𝑠′|𝑠, 𝑎). Formally,
the existence proof of 𝑝 is the same than for �̃� in equation (129), and is using the fact that 𝑃 is
continuous with respect to 𝜆(d𝑠) and 𝜙 is a surjective linear operator. Therefore, we have, for
𝜆-almost 𝑠, 𝑔, 𝑔′:

�̃�(𝑠, 𝑔, 𝑔′) = 𝛾

∫︁
𝑎

𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔′|𝑠, 𝑎) + 𝛾

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔′)

)︂
(142)

Because �̃�𝜋 is continuous, this relation is true for every 𝑠, 𝑔, 𝑔′, in particular if 𝑔 = 𝑔′.

E.2 The Value Measure Under the Continuous Density Assumption

Under Assumption 1, we can rigorously define the value measure 𝑉 𝜋(𝑠,d𝑔) as follows. Then,
we briefly show why learning directly 𝑉 𝜋(𝑠,d𝑔) without bias poses technical issues as states in
Section 3.3, which is the reason why we learn 𝑀𝜋 .
THEOREM 15. Under Assumption 1, we can define the value-measure 𝑉 𝜋(𝑠,d𝑔) as the measure on
𝒢 × 𝒢:

𝑉 𝜋(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + �̃�(𝑠, 𝑔, 𝑔)𝜆(d𝑔) (143)

The value measure 𝑉 𝜋 satisfies the fixed point equation:

𝑉 𝜋(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑔) [𝑉 𝜋(𝑠′,d𝑔)] (144)

Finally, the value-measure is consistent with the value function 𝑉 𝜀(𝑠, 𝑔) when 𝜀→ 0. Formally, the
measure on 𝐾𝒮 × 𝒢: 𝜆(d𝑠) 1

𝜆(𝜀)𝑉
𝜋
𝜀 (𝑠, 𝑔)𝜆(d𝑔) converges weakly to 𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔) when 𝜀→ 0.
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Proof. Let 𝑓(𝑔) be a continuous test function. We have:∫︁
𝑔

𝑉 𝜋(𝑠,d𝑔)𝑓(𝑔) = 𝑓(𝜙(𝑠)) +

∫︁
𝑔

�̃�𝜋(𝑠, 𝑔, 𝑔)𝑓(𝑔)𝜆(d𝑔) (145)

Moreover, we know from Lemma 14 that

�̃�𝜋(𝑠, 𝑔, 𝑔) = 𝛾

∫︁
𝑎

𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

)︂
(146)

Therefore:∫︁
𝑔

𝑉 𝜋(𝑠,d𝑔)𝑓(𝑔) = 𝑓(𝜙(𝑠)) + 𝛾

∫︁
𝑔,𝑎

𝜆(d𝑎,d𝑔)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

)︂
(147)

On the other side, we have:∫︁
𝑔

𝑓(𝑔)E𝑎∼𝜋(.|𝑠,𝑔),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) [𝑉 𝜋(𝑠′,d𝑔)] = (148)

=

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔) + �̃�𝜋(𝑠′, 𝑔, 𝑔)𝜆(d𝑔)

)︀
(149)

=

∫︁
𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑓(𝜙(𝑠′)) +

∫︁
𝑎,𝑠′,𝑔

𝜆(d𝑎,d𝑠′,d𝑔)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

(150)

For the first part, we use the change of variable 𝑔 = 𝜙(𝑠′), and we have:∫︁
𝑔

𝑓(𝑔)E𝑎∼𝜋(.|𝑠,𝑔),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) [𝑉 𝜋(𝑠′,d𝑔)] = (151)

=

∫︁
𝑎,𝑔

𝜆(d𝑎,d𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎)𝑓(𝑔) +

∫︁
𝑎,𝑠′,𝑔

𝜆(d𝑎,d𝑠′,d𝑔)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

(152)

where 𝑝(.|𝑠, 𝑎) is the density of 𝜙*𝑃 (.|𝑠, 𝑎) (where 𝜙* is the push-forward operator) with respect to
Lebesgue measure. Therefore, we have:∫︁

𝑔

𝑉 (𝑠,d𝑔)𝑓(𝑔) =

∫︁
𝑔

𝑓(𝑔)
(︀
𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃𝜋(d𝑠′|𝑠,𝑔) [𝑉 𝜋(𝑠′,d𝑔)]

)︀
(153)

and we can conclude:

𝑉 𝜋(𝑠,d𝑔)𝑓(𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃𝜋(d𝑠′|𝑠,𝑔) [𝑉 𝜋(𝑠′,d𝑔)] (154)

We now show that know that the measure on 𝐾𝒮 × 𝒢: 𝜆(d𝑠) 1
𝜆(𝜀)𝑉

𝜋
𝜀 (𝑠, 𝑔)𝜆(d𝑔) converges weakly

to 𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔) when 𝜀→ 0. We know that:

𝑉 𝜋𝜀 (𝑠, 𝑔) = E

⎡⎣∑︁
𝑘>0

𝛾𝑘𝑅𝜀(𝑠𝑘, 𝑔)|𝑠0 = 𝑠

⎤⎦ (155)

=
1

1− 𝛾

∫︁
𝑠′∈𝒮

𝜈𝜋(d𝑠′|𝑠, 𝑔)𝑅𝜀(𝑠
′, 𝑔) (156)

=

∫︁
𝑠′∈𝒮

𝜈𝜋(d𝑠′|𝑠, 𝑔)1‖𝜙(𝑠′)−𝑔‖6𝜀 (157)

We use the change of variable 𝑔′ = 𝜙(𝑠′), and we have (with 𝜙* the push-forward operator):

𝑉 𝜋𝜀 (𝑠, 𝑔) =

∫︁
𝑔′∈𝒮

(𝜙*𝜈
𝜋)(d𝑔′|𝑠, 𝑔)1‖𝑔′−𝑔‖6𝜀 (158)

=

∫︁
𝑔′∈𝒮

𝑀𝜋(𝑠, 𝑔, d𝑔′)1‖𝑔′−𝑔‖6𝜀 (159)

= 𝑀𝜋(𝑠, 𝑔, 𝐵(𝑔, 𝜀)) (160)
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Let 𝐹 := {𝑔 ∈ 𝒢, inf𝑠∈𝐾𝒮 ‖𝑔 − 𝜙(𝑠)‖ < 1}. Therefore, for every 𝜀 < 1, the support of
𝜆(d𝑠) 1

𝜆(𝜀)𝑉
𝜋
𝜀 (𝑠, 𝑔)𝜆(d𝑔) is compact and is a subset of 𝐹 . Let 𝑓(𝑠, 𝑔) be a continuous bounded

test function and 0 < 𝜀 < 1. We have:∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)
1

𝜆(𝜀)
𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑠,d𝑔) =

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹

𝑓(𝑠, 𝑔)
1

𝜆(𝜀)
𝑀𝜋(𝑠, 𝑔, 𝐵(𝑔, 𝜀))𝜆(d𝑠,d𝑔)

(161)

We know that 𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′). Therefore, 𝑀𝜋(𝑠, 𝑔, 𝐵(𝑔, 𝜀)) =

1‖𝑔−𝜙(𝑠)‖6𝜀 +
∫︀
𝑔′

1‖𝑔−𝑔′‖6𝜀

𝜆(𝜀) �̃�𝜋(𝑠, 𝑔, 𝑔′), and we have:∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)
1

𝜆(𝜀)
𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑠,d𝑔) = (162)

=

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹

1‖𝑔−𝜙(𝑠)‖6𝜀

𝜆(𝜀)
𝑓(𝑠, 𝑔)𝜆(d𝑠,d𝑔) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹,𝑔′∈𝒢

𝑓(𝑠, 𝑔)
1‖𝑔−𝑔′‖6𝜀

𝜆(𝜀)
�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑠,d𝑔,d𝑔′)

(163)

=

∫︁
𝑢

(︂∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠) + 𝑢) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔 + 𝑢)𝜆(d𝑠,d𝑔)

)︂
𝑈𝜀(d𝑢)

(164)

where 𝑈𝜀(d𝑢) is the uniform measure on𝐵(0, 𝜀) the ball of size 𝜀 around 0: 𝑈𝜀(d𝑢) :=
1‖𝑢‖6𝜀

𝜆(𝜀) 𝜆(d𝑢).
We can switch the order of integration because 𝑓 , �̃�𝜋 are continuous, bounded, and the integral is com-
puted on compact sets. The function 𝑢→

∫︀
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠)+𝑢)+
∫︀
𝑠∈𝐾𝒮 ,𝑔∈𝐹 𝑓(𝑠, 𝑔)�̃�(𝑠, 𝑔, 𝑔+

𝑢)𝜆(d𝑠,d𝑔) is bounded and continuous. Since 𝑈𝜀(d𝑢) converges weakly to 𝛿0(d𝑢), we have:

lim
𝜀→0

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)
1

𝜆(𝜀)
𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑠,d𝑔) = (165)

= lim
𝜀→0

∫︁
𝑢

(︂∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠) + 𝑢) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔 + 𝑢)𝜆(d𝑠,d𝑔)

)︂
𝑈𝜀(d𝑢)

(166)

=

∫︁
𝑢

(︂∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠) + 𝑢) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔 + 𝑢)𝜆(d𝑠d𝑔)

)︂
𝛿0(d𝑢)

(167)

=

∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠)) +

∫︁
𝑠∈𝐾𝒮 ,𝑔

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔)𝜆(d𝑠,d𝑔) (168)

=

∫︁
𝑠∈𝐾𝒮 ,𝑔

𝑓(𝑠, 𝑔)𝑉 𝜋(𝑠,d𝑔)𝜆(d𝑠) (169)

This concludes the proof.

Obstacles for learning 𝑉 𝜋 directly. We briefly show why learning 𝑉 𝜋 directly without bias poses
technical issues, stemming from the necessity to work on-policy for 𝑉 and the resulting correlation
between visited states and goals along trajectories in the training set. As a result, the “obvious”
analogue of 𝛿-DQN for 𝑉 introduces uncontrolled bias and implicit preferences among all possible
states 𝑠 that achieve the same goal 𝑔. This problem disappears only if the correspondence between 𝑠
and 𝑔 is one-to-one (e.g., 𝜙 = Id). This is why we learn the more complicated object 𝑀𝜋 instead of
𝑉 𝜋 in Section 3.3.

Assume similarly to Theorem 13 that we can sample state-goal pairs from a distribution 𝜌SG(d𝑠,d𝑔)
over 𝒮 × 𝒢, and define the norm ‖ · ‖𝜌SG as

‖𝑉 ‖𝜌SG
=

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)

(︂
𝑉 (𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂2

(170)
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where 𝑉 (𝑠,d𝑔)
𝜌𝒢(d𝑔) is the density of 𝑉 (𝑠,d𝑔) with respect to 𝜌𝒢(d𝑔) (if it does not exist, the norm

is infinite). We assume we have a model 𝑉𝜃(𝑠,d𝑔) = 𝑣𝜃(𝑠, 𝑔)𝜌𝒢(d𝑔), a target 𝑉tar(𝑠,d𝑔) =
𝑣tar(𝑠, 𝑔)𝜌𝒢(d𝑔), and want to estimate:

1

2
𝜕𝜃‖𝑉𝜃 − 𝑇𝜋𝑉tar‖2𝜌SG (171)

where 𝑇𝜋𝑉 (𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃𝜋(.|𝑠,𝑔)𝑉 (𝑠′,d𝑔). Then, informally, we have:

1

2
𝜕𝜃‖𝑉𝜃 − 𝑇𝜋𝑉tar‖2𝜌SG

=
1

2
𝜕𝜃

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)

(︂
𝑉𝜃(𝑠,d𝑔)

𝜌𝒢(d𝑔)
− 𝑇𝑉tar(𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂2

(172)

=
1

2
𝜕𝜃

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)

(︂
𝑣𝜃(𝑠, 𝑔)− 𝑇𝑉tar(𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂2

(173)

=

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)

(︂
𝑣𝜃(𝑠, 𝑔)− 𝑇𝑉tar(𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂
(174)

=

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)
(︀
𝑣𝜃(𝑠, 𝑔)− 𝛾E𝑠′∼𝑃𝜋(.|𝑠,𝑔) [𝑣tar(𝑠

′, 𝑔)]
)︀

+

(175)

+

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)
𝛿𝜙(𝑠)(d𝑔)

𝜌𝒢(d𝑔)
(176)

If we assume that 𝜌SG(d𝑠,d𝑔) has a density 𝛼(𝑠, 𝑔) with respect to 𝜌SG(d𝑠) ⊗ 𝜌𝒢(d𝑔), namely,
𝜌SG(d𝑠,d𝑔) = 𝛼(𝑠, 𝑔)𝜌SG(d𝑠)𝜌𝒢(d𝑔), then the second part, corresponding to the Dirac reward, is
equal to:∫︁

𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)
𝛿𝜙(𝑠)(d𝑔)

𝜌𝒢(d𝑔)
=

∫︁
𝑠,𝑔

𝜌SG(d𝑠)𝛼(𝑠, 𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)𝛿𝜙(𝑠)(d𝑔) (177)

=

∫︁
𝑠

𝜌SG(d𝑠)𝛼(𝑠, 𝜙(𝑠))𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) (178)

If 𝛼(𝑠, 𝑔) is always equal to 1, the integral
∫︀
𝑠
𝜌SG(d𝑠)𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) can be estimated without bias

by sampling 𝑠 ∼ 𝜌SG(d𝑠) and estimating 𝑣𝜃(𝑠, 𝜙(𝑠)).

However, the case 𝛼(𝑠, 𝑔) = 1 for every 𝑠, 𝑔 corresponds to 𝑠 and 𝑔 independent in 𝜌SG. This is
difficult to realize in practice. Learning 𝑉 requires actions to be selected on-policy (term E𝑠′∼𝑃𝜋(.|𝑠,𝑔)
above). If we set a goal 𝑔 and an initial state 𝑠0, and generate an exploration trajectory by following
the policy 𝜋(.|., 𝑔) for that goal, obviously the states 𝑠 visited by the trajectory are going to be
correlated to 𝑔, by an unknown factor 𝛼. Independence could be ensured by re-sampling a new target
goal at each step, independently from the current state, and selecting the next action from the policy
for this goal. But such an exploration strategy would be essentially random and would not be efficient.

Assume we just ignore this problem and sample exploration trajectories (𝑔, 𝑠0, 𝑠1, ...) as with other
methods, namely, with 𝑔 ∼ 𝜌𝒢 , 𝑠0 ∼ 𝜌0(d𝑠0|𝑔) and 𝑠𝑡+1 ∼ 𝑃𝜋(.|𝑠𝑡, 𝑔), and define the estimatê︀𝛿𝜃𝑉 (𝑠, 𝑠′, 𝑔) = 𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) + 𝜕𝜃𝑣𝜃(𝑠, 𝑔) (𝛾𝑣tar(𝑠

′, 𝑔)𝑣𝜃(𝑠, 𝑔)) (179)

similarly to updates of 𝛿-DQN or 𝛿-TD. In that case, we have:

E𝑠,𝑔∼𝜌SG,𝑠′∼𝑃𝜋(.|𝑠,𝑔)

[︁ ̂︀𝛿𝜃𝑉 (𝑠, 𝑠′, 𝑔)
]︁

= ‖𝑉𝜃 − 𝑇𝜋𝛼𝑉tar‖𝜌SG (180)

where:
𝑇𝜋𝛼𝑉 = 𝛼(𝑠, 𝑔)𝛿𝜙(𝑠) + E𝑠′∼𝑃𝜋(.|𝑠,𝑔) [𝑉 (𝑠′,d𝑔)] . (181)

This is an unbiased estimate of the TD error with the rescaled reward 𝛼(𝑠, 𝑔)𝛿𝜙(𝑠)(d𝑔) instead of
𝛿𝜙(𝑠)(d𝑔).

If 𝒮 = 𝒢 and 𝜙 = Id, such a reward rescaling is not an issue. Indeed, in that case, 𝛼(𝑠, 𝑔)𝛿𝑠(d𝑔) =
𝛼(𝑔, 𝑔)𝛿𝑠(d𝑔) as the Dirac measure is nonzero only for 𝑠 = 𝑔. This means that for every goal 𝑔, the
value function for that goal is rescaled by a constant 𝛼(𝑔, 𝑔), and we learn 𝛼(𝑔, 𝑔)𝑉 (𝑠,d𝑔) instead of
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𝑉 (𝑠,d𝑔). This does not change the ranking of state values for each goal 𝑔, nor the direction of policy
improvement for each goal (but it changes the relative importance of learning different goals 𝑔).

On the contrary, if 𝒮 ≠ 𝒢, for a fixed goal 𝑔, this implicit reward rescaling can favor some states 𝑠 over
others among the set of states 𝑠 achieving this goal (𝜙(𝑠) = 𝑔). For instance, assume the the agent
starts at 𝑠0 and wants to reach 𝑔, and that there are two states 𝑠1, 𝑠2 such that 𝜙(𝑠1) = 𝜙(𝑠2) = 𝑔.
Even if 𝑠1 is easier to reach than 𝑠2 from 𝑠0, the policy 𝜋 might prefer to reach 𝑠2 because its
implicitly rescaled reward is higher. Therefore, the algorithm could converge to non-optimal policies
and is not unbiased. It would still learn to reach 𝑔, but not necessarily in an optimal way.

E.3 Equivalence Between 𝜀→ 0 and the Dirac Setting

DEFINITION 16. We say that 𝜋2 is better than 𝜋1 with infinitely sparse rewards if the two measures
𝜆(d𝑠)𝑉 𝜋1(𝑠,d𝑔) and 𝜆(d𝑠)𝑉 𝜋2(𝑠,d𝑔) on 𝐾𝒮 × 𝒢 satisfy: 𝜆(d𝑠)𝑉 𝜋1(𝑠,d𝑔) 6 𝜆(d𝑠)𝑉 𝜋2(𝑠, .).

We say that 𝜋2 is asymptotically better than 𝜋1 when 𝜀→ 0 if for all 𝑠, 𝑔,

lim inf
𝜀→0

𝑉 𝜋2
𝜀 (𝑠, 𝑔)

𝑉 𝜋1
𝜀 (𝑠, 𝑔)

> 1.

THEOREM 17. We assume Assumption 1 and take 𝜋1, 𝜋2 ∈ Π.

Then, 𝜋2 is better than 𝜋1 with infinitely sparse rewards if and only if 𝜋2 is asymptotically better than
𝜋1 when 𝜀→ 0. In particular, a policy 𝜋* is an optimal policy with infinitely sparse rewards if and
only if it is an optimal policy when 𝜀→ 0.

Proof. We know that 𝑉 𝜋(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + �̃�(𝑠, 𝑔, 𝑔)𝜋𝜆(d𝑔). Moreover:

𝑉 𝜋𝜀 (𝑠0, 𝑔) = 𝑀(𝑠0, 𝑔, 𝐵(𝑔, 𝜀)) (182)
= 1𝜙(𝑠0)=𝑔 + 𝜆(𝜀)�̃�𝜋(𝑠0, 𝑔, 𝑔) + 𝑜(𝜆(𝜀)) (183)

Therefore, for any policies 𝜋1, 𝜋2 ∈ Π:

𝑉 𝜋2
𝜀 (𝑠, 𝑔)

𝑉 𝜋1
𝜀 (𝑠, 𝑔)

=
1𝜙(𝑠)=𝑔 + �̃�𝜋2(𝑠, 𝑔, 𝑔)𝜆(𝜀) + 𝑜(𝜆(𝜀))

1𝜙(𝑠)=𝑔 + �̃�𝜋1(𝑠, 𝑔, 𝑔)𝜆(𝜀) + 𝑜(𝜆(𝜀))
(184)

= 1𝜙(𝑠)=𝑔 + 1𝜙(𝑠)̸=𝑔
�̃�𝜋2(𝑠, 𝑔, 𝑔)

�̃�𝜋1(𝑠, 𝑔, 𝑔)
+ 𝑜𝜀→0(1) (185)

Therefore, by definition, 𝜋2 is asymptotically better than 𝜋1 when 𝜀 → 0 if and only if, for all
(𝑠, 𝑔) ∈ 𝒮 × 𝒢:

1𝜙(𝑠)=𝑔 + 1𝜙(𝑠)̸=𝑔
�̃�𝜋2(𝑠, 𝑔, 𝑔)

�̃�𝜋1(𝑠, 𝑔, 𝑔)
> 1 (186)

If 𝜙(𝑠) ̸= 𝑔, this inequality is equivalent to �̃�𝜋2(𝑠, 𝑔, 𝑔) > 𝑚𝜋1(𝑠, 𝑔, 𝑔). Because �̃�𝜋1 and �̃�𝜋2 are
continuous, �̃�𝜋2(𝑠, 𝑔, 𝑔) > 𝑚𝜋1(𝑠, 𝑔, 𝑔) for all𝜙(𝑠) ̸= 𝑔 is equivalent to �̃�𝜋2(𝑠, 𝑔, 𝑔) > 𝑚𝜋1(𝑠, 𝑔, 𝑔)
for every (𝑠, 𝑔). Therefore, 𝜋2 is asymptotically better than 𝜋1 when 𝜀 → 0 if and only if, for all
(𝑠, 𝑔), 𝑚𝜋2(𝑠, 𝑔, 𝑔) > 𝑚𝜋1(𝑠, 𝑔, 𝑔).

On the other side 𝜋2 is better than 𝜋1 with infinitely sparse rewards if and only if:

𝜆(d𝑠)𝑉 𝜋1(𝑠,d𝑔) ⪯ 𝜆(d𝑠)𝑉 𝜋2(𝑠,d𝑔) (187)
⇔ 𝜆(d𝑠)𝛿𝜙(𝑠)(d𝑔) +𝑚𝜋1

(𝑠, 𝑔, 𝑔)𝜆(d𝑠,d𝑔) ⪯ 𝜆(d𝑠)𝛿𝜙(𝑠)(d𝑔) +𝑚𝜋2
(𝑠, 𝑔, 𝑔)𝜆(d𝑠,d𝑔) (188)

⇔ 𝑚𝜋1(𝑠, 𝑔, 𝑔)𝜆(d𝑠,d𝑔) 6 𝑚𝜋2(𝑠, 𝑔, 𝑔)𝜆(d𝑠,d𝑔) (189)

Therefore, for 𝜆-almost every (𝑠, 𝑔), 𝑚𝜋1(𝑠, 𝑔, 𝑔) 6 𝑚𝜋2(𝑠, 𝑔, 𝑔). Therefore: 𝜋2 is better than 𝜋1
with infinitely sparse rewards if and only if �̃�𝜋2(𝑠, 𝑔, 𝑔) > 𝑚𝜋1(𝑠, 𝑔, 𝑔) for 𝜆-almost every 𝑠, 𝑔. This
concludes the proof.

In the following statement, we introduce 3 definitions of expected return: the return 𝐽(𝜋) with
infinitely sparse reward, the return 𝐽𝜀(𝜋) with sparse reward 𝑅𝜀, and the estimated return 𝐽𝑛(𝜋) with
the value measure approximator 𝑣𝑛. Then, we show that these three definitions are consistent.
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THEOREM 18. We define 𝐽(𝜋), the expected return with infinitely sparse rewards for the goal
density 𝑝𝒢 , as:

𝐽(𝜋) :=

∫︁
𝑠0,𝑔

𝜆(d𝑠0)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝑉 𝜋(𝑠0,d𝑔). (190)

We consider the expected return for the reward 𝑅𝜀 and the goal distribution 𝜌(d𝑔).

𝐽𝜀(𝜋) = E𝑔∼𝜌(d𝑔),𝑠0,𝑎0,...

⎡⎣∑︁
𝑡>0

𝛾𝑡𝑅𝜀(𝑠𝑡, 𝑔)

⎤⎦ =

∫︁
𝑔,𝑠0

𝑝𝒢(𝑔)𝜆(d𝑠0,d𝑔)𝑝0(𝑠0|𝑠)𝑉𝜀(𝑠0, 𝑔) (191)

Let (𝑣𝑛(𝑠, 𝑔))𝑛>0 be any sequence of densities on 𝒮 × 𝒢 such that the measure on 𝒮 × 𝒢:
𝜆(d𝑠)𝑣𝑛(𝑠, 𝑔)𝜌𝒢(d𝑔) converges weakly to 𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔). We define 𝜌(d𝑔) := 1

𝑐𝑝
2
𝒢(𝑔)𝜆(d𝑔)

with 𝑐 :=
∫︀
𝑔
𝑝2𝒢(𝑔)𝜆(d𝑔), and 𝐽𝑛(𝜋) the estimator of the average return for the goal distribution 𝜌

with estimator 𝑣𝑛:

𝐽𝑛(𝜋) := E𝑔∼𝜌(d𝑔),𝑠0∼𝑝(𝑠0|𝑔) [𝑣𝑛(𝑠0, 𝑔)] (192)

Then the two estimators 𝐽𝑛 and 𝐽𝜀 converge to 𝐽 :
1

𝜆(𝜀)
𝐽𝜀(𝜋)→𝜀→0 𝐽(𝜋) (193)

𝑐𝐽𝑛(𝜋)→𝑛→∞ 𝐽(𝜋) (194)

Proof. We have:

𝐽𝜀(𝜋) =

∫︁
𝑠0,𝑔

𝑉𝜀(𝑠0, 𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0,d𝑔) (195)

𝐽𝑛(𝜋) =

∫︁
𝑠0,𝑔

𝑣𝑛(𝑠0, 𝑔)
1

𝑐
𝑝2𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0,d𝑔) (196)

and whe know from Theorem 15 that 𝑉𝜀(𝑠,𝑔)
𝜆(𝜀) 𝜆(d𝑠,d𝑔) and 𝑣𝑛(𝑠, 𝑔)𝑝𝒢(d𝑔)𝜆(d𝑠,d𝑔) converge weakly

to 𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔) on𝐾𝒮×𝒢 when 𝜀→ 0 and 𝑛→∞. Therefore, because 𝑝0 and 𝑝𝒢 are continuous
bounded functions,

lim
𝜀→0

1

𝜆(𝜀)
𝐽𝜀(𝜋) =

∫︁
𝑠0,𝑔

𝑉 𝜋(𝑠0,d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0) = 𝐽(𝜋) (197)

Similarly:

lim
𝑛→∞

𝐽𝑛(𝜋) =

∫︁
𝑠0,𝑔

𝑉 𝜋(𝑠,d𝑔)
1

𝑐
𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0) (198)

=
1

𝑐
𝐽(𝜋) (199)

PROPOSITION 19. We assume Assumption 1. Moreover, we assume that 𝑝𝒢(𝑔) > 0 for every
𝑔 ∈ 𝜙(𝐾𝒮), and 𝑝0(𝑠0|𝑔) > 0 for every (𝑠0, 𝑔) ∈ 𝐾𝒮 × 𝒢.

We consider the partial order ≺ defined as: 𝜋1 ≺ 𝜋2 if 𝜋2 is strictly better than 𝜋1 with infinitely
sparse rewards: 𝜆(d𝑠)𝑉 𝜋1(𝑠,d𝑔) ≺ 𝜆(d𝑠)𝑉 𝜋2(𝑠,d𝑔) on 𝐾𝒮 × 𝒢.

Then 𝜋 ↦→ 𝐽(𝜋) is strictly increasing for ≺.

Proof. The function 𝐽(𝜋) is clearly non-decreasing, and we have to check that we cannot have
𝜋1 ≺ 𝜋2 with 𝐽(𝜋1) = 𝐽(𝜋2). Let 𝜋1, 𝜋2 ∈ Π such that 𝜋1 ≺ 𝜋2. Therefore, there is 𝑈 ⊂ 𝐾𝒮 × 𝒢
such that (𝜆⊗ 𝑉 𝜋2(., .))(𝑈) > (𝜆⊗ 𝑉 𝜋1(., .))(𝑈). Moreover, because supp (𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔)) ⊂
𝐾𝒮 × 𝜙(𝐾𝒮), therefore we can suppose 𝑈 ⊂ 𝐾𝒮 × 𝜙(𝐾𝒮), and we have:∫︁

(𝑠,𝑔)∈𝑈
𝜆(d𝑠,d𝑔)(�̃�𝜋2(𝑠, 𝑔, 𝑔)− �̃�𝜋1(𝑠, 𝑔, 𝑔)) > 0 (200)
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We already know that �̃�𝜋2(𝑠, 𝑔, 𝑔)−�̃�𝜋1(𝑠, 𝑔, 𝑔) > 0 for almost every 𝑠, 𝑔 (see proof of Theorem 17).
Therefore, there is 𝜀′ > 0 and 𝑉 ⊂ 𝑈 with d𝜆(𝑉 ) > 0 such that for every 𝑠, 𝑔 ∈ 𝑉 , �̃�𝜋2(𝑠, 𝑔, 𝑔)−
�̃�𝜋1(𝑠, 𝑔, 𝑔) > 𝜀′.

We have:

𝐽(𝜋2)− 𝐽(𝜋1) =

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑝0(𝑠|𝑔)𝑝𝒢(𝑔)(𝑉 𝜋2(𝑠,d𝑔)− 𝑉 𝜋1(𝑠,d𝑔) (201)

>
∫︁
(𝑠,𝑔)∈𝑉

𝑝0(𝑠|𝑔)𝑝𝒢(𝑔) (�̃�𝜋2(𝑠, 𝑔, 𝑔)− �̃�𝜋1(𝑠, 𝑔, 𝑔)) (202)

> 𝜀′
∫︁
(𝑠,𝑔)∈𝑉

𝑝0(𝑠|𝑔)𝑝𝒢(𝑔) (203)

> 0 (204)

because 𝑝𝒢(𝑔) > 0 for 𝜆-almost every 𝑔 in 𝜙(𝐾𝒮), and 𝑝0(𝑠|𝑔) > 0 for 𝜆-almost every 𝑠, 𝑔 in
𝐾𝒮 × 𝒢. This concludes the proof.

E.4 Policy Gradient

THEOREM 20 (FORMAL STATEMENT OF INFORMAL THEOREM 7). Let 𝜋𝜃(𝑎|𝑠, 𝑔) be a
parametrized goal-dependent policy, defined for every 𝜃 ∈ Θ. We assume that for every
𝜃 ∈ Θ, 𝑠 ∈ 𝒮, 𝑔 ∈ 𝒢, 𝑎 ∈ 𝒜, 𝜋𝜃(𝑎|𝑠, 𝑔) > 0. Moreover, we assume 𝜋𝜃(𝑎|𝑠, 𝑔) is a continuous
function of 𝑎, 𝑠, 𝑔, 𝜃, and continuously differentiable with respect to 𝜃.

We define 𝜌(d𝑔) := 1
𝑐𝑝

2
𝒢(𝑔)𝜆(d𝑔) with 𝑐 :=

∫︀
𝑔
𝑝2𝒢(𝑔)𝜆(d𝑔). We assume access to samples 𝑔 ∼

𝜌(d𝑔), 𝑠0 ∼ 𝜌0(d𝑠|𝑔) = 𝑝0(𝑠0|𝑔)𝜆(d𝑠0), 𝑠 ∼ 𝜈𝜋𝜃 ( 𝑠|𝑠0, 𝑔), 𝑎 ∼ 𝜋(𝑎|𝑠, 𝑔) and 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎).
Let (𝑣𝑛(𝑠, 𝑔))𝑛>0 be a sequence of densities, such that 𝜆(d𝑠)𝑣𝑛(𝑠, 𝑔)𝜌(d𝑔) converges weakly to

𝜆(d𝑠)𝑉 𝜋𝜃 (𝑠,d𝑔). We define the stochastic actor critic ̂︀𝛿𝜃(𝑛)𝛿-AC for estimate 𝑛 as:̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔) := 𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔) (𝛾𝑣𝑛(𝑠′, 𝑔)− 𝑣𝑛(𝑠, 𝑔)) (205)

Then, we have:

lim
𝑛→∞

E𝑔∼𝜌,𝑠∼𝜈𝜋(.|𝑔),𝑎∼𝜋𝜃(.|𝑠,𝑔),𝑠′∼𝑃 (.|𝑠,𝑎)

[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)

]︂
=

1− 𝛾
𝑐

𝜕𝜃𝐽(𝜋𝜃) (206)

Moreover, we have:

lim
𝜀→0

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃) = 𝜕𝜃𝐽(𝜋𝜃) (207)

Proof. We first compute 𝜕𝜃𝐽(𝜋𝜃). We have:

𝐽(𝜋𝜃) =

∫︁
𝑠0,𝑔

𝑉 𝜋𝜃 (𝑠0,d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0) (208)

We know that 𝑉 𝜋(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + �̃�𝜋(𝑠, 𝑔, 𝑔)𝜆(d𝑔). We define for simplicity 𝑣𝜋(𝑠, 𝑔) =
�̃�𝜋(𝑠, 𝑔, 𝑔). Moreover, we know, by taking 𝑔′ = 𝑔 in Equation (122) in Lemma 14 that for every
(𝑠, 𝑔), we have:

𝑣𝜋𝜃 (𝑠, 𝑔) = 𝛾

∫︁
𝑎

𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)

)︂
(209)

We define 𝐹 (𝑠, 𝑔, 𝜃) = 𝛾
∫︀
𝑎
𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎). The function 𝐹𝜃 is continuous in 𝑠 and 𝑔 and

continuously differentiable in 𝜃, because 𝑝 is and 𝜋𝜃 are continuous, 𝜋𝜃 is continuously differentiable,
and 𝒜 is compact. From the proof of Equation (122) in Lemma 14, we know that 𝐹 (𝑠, 𝑔, 𝜃) is the
density of 𝛾

∫︀
𝑎,𝑠′

𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝛿𝜙(𝑠′)(d𝑔) with respect to the Lebesgue measure 𝜆(d𝑔). This
remark will be used later in the computation. We now have:

𝑣𝜋𝜃 (𝑠, 𝑔) = 𝐹 (𝑠, 𝑔, 𝜃) + 𝛾

∫︁
𝑎,𝑠′

𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)𝜆(d𝑎,d𝑠′) (210)

37



Therefore:

𝑣𝜋𝜃 (𝑠, 𝑔) = 𝐹 (𝑠, 𝑔, 𝜃) +
∑︁
𝑘>1

𝛾𝑘
∫︁
𝑎0,𝑠1,...

𝜆(d𝑎0,d𝑠1, ...,d𝑠𝑘)

(︃
𝑘−1∏︁
𝑖=0

𝜋𝜃(𝑎𝑖|𝑠𝑖, 𝑔)𝑝(𝑠𝑖+1|𝑠𝑖, 𝑎𝑖)

)︃
𝐹 (𝑠𝑘, 𝑔, 𝜃)

(211)

because it is a fixed point of 𝑣𝜋 equation, and is the only fixed point which is continuous and bounded,
because the space is compact, and 𝜋𝜃, 𝑝 are continuous an bounded.

Equation (211) can also be written:

𝑣𝜋𝜃 (𝑠, 𝑔) =
1

1− 𝛾

∫︁
𝑠′
𝜈𝜋𝜃 (d𝑠′|𝑠, 𝑔)𝐹 (𝑠′, 𝑔, 𝜃) (212)

Because 𝐹 (𝑠′, 𝑔, 𝜃) is continuously differentiable in 𝜃 and the support of 𝜈𝜋 is compact, 𝑣𝜋𝜃 (𝑠, 𝑔)
is differentiable. We will now now derive a fixed point equation on 𝜕𝜃𝑣𝜋𝜃 . We differentiate equa-
tion (210) and we get:

𝜕𝜃𝑣
𝜋𝜃 (𝑠, 𝑔) = 𝜕𝜃𝐹 (𝑠, 𝑔, 𝜃) + 𝛾

∫︁
𝑎,𝑠

𝜆(d𝑎,d𝑠)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)+ (213)

+ 𝛾

∫︁
𝑎,𝑠

𝜆(d𝑎,d𝑠)𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝑣
𝜋𝜃 (𝑠′, 𝑔) (214)

We define 𝐺(𝑠, 𝑔, 𝜃) := 𝜕𝜃𝐹 (𝑠, 𝑔, 𝜃) + 𝛾
∫︀
𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔). We have:

𝜕𝜃𝑣
𝜋𝜃 (𝑠, 𝑔) = 𝐺(𝑠, 𝑔, 𝜃) + 𝛾

∫︁
𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝑣
𝜋𝜃 (𝑠′, 𝑔) (215)

Similarly to the derivation of 𝑣𝜋 from its fixed point equation (from (210) to (211)):

𝜕𝜃𝑣
𝜋𝜃 (𝑠, 𝑔) = 𝐺(𝑠, 𝑔, 𝜃) +

∑︁
𝑘>1

𝛾𝑘
∫︁
𝑎0,𝑠1,...

𝜆(d𝑎0,d𝑠1, ...,d𝑠𝑘)

(︃
𝑘−1∏︁
𝑖=0

𝜋𝜃(𝑎𝑖|𝑠𝑖, 𝑔)𝑝(𝑠𝑖+1|𝑠𝑖, 𝑎𝑖)

)︃
𝐺(𝑠𝑘, 𝑔, 𝜃)

(216)

=
1

1− 𝛾

∫︁
𝑠′
𝜈𝜋𝜃 (d𝑠′|𝑠, 𝑔)𝐺(𝑠′, 𝑔, 𝜃) (217)

We now compute 𝜕𝜃𝐽(𝜋𝜃). We have:

𝜕𝜃𝐽(𝜃) = 𝜕𝜃

(︂∫︁
𝑠0,𝑔

𝜆(d𝑠0)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝑉 𝜋𝜃 (𝑠0,d𝑔)

)︂
(218)

= 𝜕𝜃

(︂∫︁
𝑠0,𝑔

𝜆(d𝑠0)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)
(︀
𝛿𝜙(𝑠0)(d𝑔) + 𝑣𝜋𝜃 (𝑠0, 𝑔)𝜆(d𝑔)

)︀)︂
(219)

= 𝜕𝜃

(︂∫︁
𝑠0,𝑔

𝜆(d𝑠0,d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝑣𝜋𝜃 (𝑠0, 𝑔)

)︂
(220)

=

∫︁
𝑠0,𝑔

𝜆(d𝑠0,d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜕𝜃𝑣
𝜋𝜃 (𝑠0, 𝑔) (221)

=
1

1− 𝛾

∫︁
𝑠0,𝑠,𝑔

𝜆(d𝑠0,d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜈𝜋𝜃 (d𝑠|𝑠0, 𝑔)𝐺(𝑠, 𝑔, 𝜃) (222)

We now show that:

𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔) = 𝛾

∫︁
𝑠′,𝑎

𝑉 (𝑠′,d𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎) (223)

While this result might seem to come out of nowhere, remember that 𝐹 (𝑠, 𝑔, 𝜃) was derived above as
the measure density of 𝛾

∫︀
𝑠′,𝑎

𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑔)𝛿𝜙(𝑠′)(d𝑔) with respect to Lebesgue measure. With
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the following informal computation, we have:

𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔) = 𝜆(d𝑔)𝜕𝜃
1

𝜆(d𝑔)

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝛾𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝛿𝜙(𝑠′)(d𝑔) + 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)

(224)

=

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝛾𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠)(d𝑔) + 𝑣𝜋𝜃 (𝑠′, 𝑔)𝜆(d𝑔)

)︀
(225)

=

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝛾𝑉 𝜋𝜃 (𝑠′,d𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎) (226)

This derivation is informal because we differentiated through a density: we use 𝜆(d𝑔)𝜕𝜃
1

𝜆(d𝑔) = 𝜕𝜃.
We now derive the result rigorously. Let 𝑓(𝑔) be a continuous test function. We have:∫︁
𝑔

𝑓(𝑔)𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔) = (227)

=

∫︁
𝑔

𝜆(d𝑔)𝑓(𝑔)

(︂
𝛾

∫︁
𝑎

𝜆(d𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎) + 𝛾

∫︁
𝑎,𝑠′

𝜆(d𝑠′,d𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)

)︂
(228)

We consider the first part. The following is the reversed derivation of 𝑝 in Equations (138)-(141).We
have:∫︁

𝑔

𝜆(d𝑔)𝑓(𝑔)

(︂
𝛾

∫︁
𝑎

𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎)

)︂
= 𝛾

∫︁
𝑔,𝑎

𝜆(d𝑔,d𝑎)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎) (229)

= 𝛾

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝛿𝜙(𝑠′)(d𝑔)

(230)

Therefore:∫︁
𝑔

𝑓(𝑔)𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔) = 𝛾

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔) + 𝑣𝜋𝜃 (𝑠′, 𝑔)𝜆(d𝑔)

)︀
(231)

= 𝛾

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑉 𝜋𝜃 (𝑠′,d𝑔) (232)

This establishes equation (223). Finally, from (222) and (223), we have:

𝜕𝜃𝐽(𝜋𝜃) =
1

1− 𝛾

∫︁
𝑔,𝑠0,𝑠,𝑎,𝑠′

𝜆(d𝑠0)𝛾𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜈𝜋𝜃 (d𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑉 𝜋𝜃 (𝑠′,d𝑔)

(233)

We now show that Then, we have: lim𝑛→∞ E
[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)

]︂
= 1−𝛾

𝑐 𝜕𝜃𝐽(𝜋𝜃) and

lim𝜀→0
1

𝜆(𝜀)𝜕𝜃𝐽𝜀(𝜋𝜃) = 𝜕𝜃𝐽(𝜋𝜃).

We first compute 𝜕𝜃𝐽𝜀(𝜋𝜃). We apply the policy gradient theorem (Sutton & Barto, 2018) to the
augmented state augmented (non-multi goal) environment 𝒮 = 𝒮 × 𝒢, and we have, for any baseline
function 𝑏(𝑠) with 𝑠 ∈ 𝒮:

𝜕𝜃𝐽𝜀(𝜋𝜃) =
1

1− 𝛾

∫︁
𝑠0,𝑠,𝑎,𝑠′

𝜆(d𝑎)𝜌0(𝑠0)𝜈𝜋𝜃 (d𝑠|𝑠0)𝑃 (d𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠) (𝑅𝜀(𝑠) + 𝛾𝑉 𝜋𝜀 (𝑠′)− 𝑏(𝑠))

(234)

=
1

1− 𝛾

∫︁
𝑔,𝑠0,𝑠,𝑎,𝑠′

𝜆(d𝑎)𝜌𝒢(d𝑔)𝜌0(d𝑠0|𝑔)𝜈𝜋𝜃 (d𝑠|𝑠0, 𝑔)𝑃 (d𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔) (𝑅𝜀(𝑠, 𝑔) + 𝛾𝑉 𝜋𝜀 (𝑠′, 𝑔)− 𝑏(𝑠, 𝑔))

(235)
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with the change of variable 𝑠 = (𝑠, 𝑔), 𝑠′ = (𝑠′, 𝑔), 𝑠0 = (𝑠0, 𝑔). We use the baseline 𝑏(𝑠, 𝑔) =
𝑅𝜀(𝑠, 𝑔), and we have:

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃) =

1

1− 𝛾

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠0,d𝑎,d𝑔)𝑝𝒢(𝑔)𝑝(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)

(︂
𝛾𝑉𝜀(𝑠

′, 𝑔)

𝜆(𝜀)

)︂
(236)

We now compute E
[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)

]︂
. We have:

E
[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)

]︂
(237)

=

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑔,d𝑠0,d𝑠
′,d𝑎)

1

𝑐
𝑝𝒢(𝑔)2𝑝(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝜋𝜃(𝑎|𝑠, 𝑔)𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔)(𝛾𝑣𝑛(𝑠′, 𝑔)− 𝑣𝑛(𝑠, 𝑔))

(238)

=

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑔,d𝑠0,d𝑠
′,d𝑎)

1

𝑐
𝑝𝒢(𝑔)2𝑝(𝑠0|𝑔)𝜈𝜋(𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)(𝛾𝑣𝑛(𝑠′, 𝑔)− 𝑣𝑛(𝑠, 𝑔))

(239)

We know that for every baseline function 𝑏(𝑠, 𝑔):∫︁
𝑎

𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑏(𝑠, 𝑔) = 𝑏(𝑠, 𝑔)𝜕𝜃

∫︁
𝑎

𝜋𝜃(𝑎|𝑠, 𝑔) = 0 (240)

We define 𝑏(𝑠, 𝑔) = 𝑣𝑛(𝑠, 𝑔), and we have:

E
[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)

]︂
= 𝛾

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑔,d𝑠0,d𝑠
′,d𝑎)

1

𝑐
𝑝𝒢(𝑔)2𝑝0(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝑛(𝑠′, 𝑔)

(241)

We know from Lemma 14 that 𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1 − 𝛾)𝛿𝑠0(d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠) where 𝑞𝜋 is
continuous, bounded, and with compact support as a density. Therefore, for any goal 𝑔, if we take the
expectation with respect to 𝑠0 ∼ 𝑝0(𝑠0|𝑔):∫︁

𝑠0

𝑝0(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔) =

∫︁
𝑠0

(1− 𝛾)𝑝0(𝑠0|𝑔)𝛿𝑠0(d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠) (242)

=

(︂
(1− 𝛾)𝑝0(𝑠|𝑔) +

∫︁
𝑠0

𝑝0(𝑠0|𝑔)𝑞𝜋(𝑠|𝑠0, 𝑔)

)︂
𝜆(d𝑠) (243)

= 𝑞𝜋(𝑠|𝑔)𝜆(d𝑠) (244)

where 𝑞𝜋 is continuous, bounded and with compact support as a density. Moreover, 𝑝𝒢 and 𝑝0(𝑠0|𝑔)
are continuous bounded functions. Therefore:

E
[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)

]︂
= 𝛾

∫︁
𝑠′,𝑔

𝜆(d𝑠′,d𝑔)𝑣𝑛(𝑠′, 𝑔)
1

𝑐
𝑝𝒢(𝑔)2

∫︁
𝑠,𝑎

𝜆(d𝑠,d𝑎)𝑞(𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)

(245)

and similarly:

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃) =

𝛾

1− 𝛾

∫︁
𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠,d𝑎,d𝑠′,d𝑔)𝑝𝒢(𝑔)𝑞(𝑠|𝑔)𝜕𝜃𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
𝑉𝜀(𝑠

′, 𝑔)

𝜆(𝜀)
(246)

=
𝛾

1− 𝛾

∫︁
𝑠′,𝑔

𝜆(d𝑠′,d𝑔)
𝑉𝜀(𝑠

′, 𝑔)

𝜆(𝜀)
𝑝𝒢(𝑔)

∫︁
𝑠,𝑎

𝜆(d𝑠,d𝑎)𝑞(𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)

(247)

We know that the two measures on 𝐾𝒮 × 𝒢 defined as 𝜆(d𝑠,d𝑔)𝑉𝜀(𝑠,𝑔)
𝜆(𝜀) and 𝜆(d𝑠)𝑣𝑛(𝑠, 𝑔)𝜌(d𝑔) =

𝜆(d𝑠,d𝑔)𝑣𝑛(𝑠, 𝑔)𝑝𝒢(𝑔) converges weakly to 𝜆(d𝑠)𝑉 𝜋𝜃 (𝑠,d𝑔). Moreover, (𝑠′, 𝑔) →
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∫︀
𝑠,𝑎
𝑞(𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔) is continuous and bounded because 𝑞, 𝑝 and 𝜕𝜃𝜋𝜃 are continu-

ous, bounded, and the supports are compact. Therefore, from equation (245):

E
[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠′, 𝑔)

]︂
→𝑛→∞

𝛾

𝑐

∫︁
𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠,d𝑠′,d𝑎)𝑝𝒢(𝑔)𝑉 𝜋𝜃 (𝑠′,d𝑔)𝑞(𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)

(248)

=
𝛾

𝑐

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠0,d𝑠,d𝑎,d𝑠
′)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝑉 𝜋𝜃 (𝑠′,d𝑔)𝛾𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)

(249)

=
1− 𝛾
𝑐

𝜕𝜃𝐽(𝜋𝜃) (250)

and from equation (247)

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃)→𝜀→0 𝜕𝜃𝐽(𝜋𝜃) (251)

This concludes the proof.
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