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Abstract

We describe four algorithms for neural network training, each
adapted to different scalability constraints. These algorithms are math-
ematically principled and invariant under a number of transformations
in data and network representation, from which performance is thus
independent. These algorithms are obtained from the setting of dif-
ferential geometry, and are based on either the natural gradient using
the Fisher information matrix, or on Hessian methods, scaled down in
a specific way to allow for scalability while keeping some of their key
mathematical properties.

The most standard way to train neural networks, backpropagation, has
several known shortcomings. Convergence can be quite slow. Backpropa-
gation is sensitive to data representation: for instance, even such a simple
operation as exchanging 0’s and 1’s on the input layer will affect performance
(Figure 1), because this amounts to changing the parameters (weights and
biases) in a non-trivial way, resulting in different gradient directions in pa-
rameter space, and better performance with 1’s than with 0’s. (In the related
context of restricted Boltzmann machines, the standard training technique by
gradient ascent favors setting hidden units to 1, for similar reasons [OAAH11,
Section 5].) This specific phenomenon disappears if, instead of the logistic
function, the hyperbolic tangent is used as the activation function, or if the
input is normalized. But this will not help if, for instance, the activities of
internal units in a multilayer network are not centered on average. Scaling
also has an effect on performance: for instance, a common recommenda-
tion [LBOM96] is to use 1.7159 tanh(2𝑥/3) instead of just tanh(𝑥) as the
activation function.

It would be interesting to have algorithms whose performance is insen-
sitive to particular choices such as scaling factors in network construction,
parameter encoding or data representation. We call an algorithm invariant,
or intrinsic, if applying a change of variables to the parameters and activities
results in the same learning trajectory. This is not the case for backpropa-
gation (even after changing the learning rate): for instance, changing from
sigmoid to tanh activation amounts to dividing the connection weights by 4
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Figure 1: Backpropagation learns faster with 1’s. A neural network with
two layers of size 50 (no hidden layer) is trained to reproduce its input. A
random binary sequence 𝑥 of length 50 with 75% of 1’s is generated. The
network is trained on the input-output pair (𝑥, 𝑥) for 100 backpropagation
steps (learning rate 0.01). The experiment is repeated on the input-output
pair (1− 𝑥, 1− 𝑥). In both cases all initial weights are set to 0.

and shifting the biases by half the weights (Eqs. (46)–(47)), which does not
preserve gradient directions.

Invariance of an algorithm means fewer arbitrary design choices, and also
more robustness: good performance on a particular problem indicates good
performance over a whole class of problems equivalent to the first one by
simple (e.g., affine) transformations.

Known invariant algorithms include Newton or quasi-Newton methods
[BL88], or the natural gradient [Ama98]. The latter, in particular, is invariant
(and thus preserves performance) under a wide class of changes in the
representation of the data and of the network, while Newton-like methods
are only invariant under affine transforms. However, these methods are
generally not scalable: the cost of maintaining the whole Hessian or Fisher
information matrix is quadratic in parameter dimension and prohibitive
for large networks [BL88, LBOM96]. The approximations made to ensure
their scalability, such as keeping only diagonal terms [LBOM96, SZL13],
making small-rank approximations [LMB07], or using limited-memory BFGS
(e.g. [LNC+11] for a recent example), break their invariance properties.

Scalable Riemannian methods for neural networks. In this work
we introduce four invariant algorithms adapted to four different scalability
constraints. For this we develop a suitable theoretical framework in which
to build invariant algorithms, by treating neural networks in the context of
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Riemannian geometry.
For a network with 𝑛 units, 𝑛out output units and at most 𝑑 incoming

connections per unit, processing each data sample with backpropagation has
an algorithmic cost 𝑂(𝑛𝑑). The most lightweight of our invariant algorithms
has 𝑂(𝑛𝑑) cost per sample as well. The heaviest one is more faithful to the
true natural gradient but has a cost 𝑂(𝑛𝑑2 + 𝑛𝑑𝑛out) and thus requires that
the network is sparsely connected (the average number of units influencing a
given unit must not be too large) and that the output layer is not too large.
This latter condition is typically fulfilled in classification tasks.

The unitwise natural gradient is a scaled-down version of Amari’s natural
gradient [Ama98] in which the blocks of incoming parameters to each unit
are treated independently, thus dealing, at each unit, with a square matrix
indexed by the incoming parameters to this unit. This has been proposed
as far back as [Kur94] to train neural networks; however the algorithm
in [Kur94] is limited to networks with only one hidden layer, because it
relies on an explicit symbolic computation of entries of the Fisher matrix.
Here Proposition 27 allows for an efficient computation of the exact Fisher
information matrix in arbitrary neural networks, by doing 𝑛out distinct
backpropagations for each sample in the dataset. As a result, the unitwise
natural gradient is adapted to situations where both the connectivity of the
network and the output layer are reasonably small: the algorithmic cost of
processing each data sample is 𝑂(𝑛𝑑2 + 𝑛𝑑𝑛out).

The backpropagated metric gradient can be described as a blockwise
quasi-Newton method in which several approximations (Gauss–Newton and
neglecting cross-unit terms) are used. However, we describe it in an intrinsic
way: it stems from a well-defined backpropagated metric on parameter space,
in which no approximations are involved. Invariance properties follow from
this viewpoint. It is adapted to networks with reasonably small connectivity
but output layers of arbitrary size: the cost of processing a data sample is
𝑂(𝑛𝑑2).

The quasi-diagonal natural gradient and quasi-diagonal backpropagated
metric gradient apply a “quasi-diagonal reduction” to these two algorithms,
which removes the quadratic dependency on connectivity at each unit. This is
done in a specific way to keep some (but not all) of the invariance properties,
such as insensitivity to using sigmoid or 1.7159 tanh(2𝑥/3). The quasi-
diagonal natural gradient still requires that the output layer is not too
large, with a cost of 𝑂(𝑛𝑑𝑛out) per data sample, whereas the quasi-diagonal
backpropagated metric gradient has the same 𝑂(𝑛𝑑) complexity as ordinary
backpropagation. These quasi-diagonal methods have not been described
before, to the best of our knowledge.

In this context, we also clarify another method found in the literature
[APF00, LMB07]. It is related to, and sometimes confused with, the natural
gradient (discussion in [PB13]). We call this method the outer product metric
gradient and introduce a scaled-down, invariant version. We prove a novel

3



interpretation of this method as the unique one that, at each step, spreads
the improvement most uniformly over all training samples (Proposition 15).

Organization of the text. In Section 1 we give the explicit form of the
algorithms, without justification, to serve as a reference for implementation.
In Section 2 we provide the mathematical principles behind the algorithms,
starting with the relationship between gradients, metrics, and choice of
coordinates (Section 2.1), then using the tools of Riemannian geometry
to build several invariant metrics for neural networks (Section 2.2 and
Appendix C) together with a way of computing them. In Section 2.3 we
introduce the quasi-diagonal reduction of a metric. These metrics produce
associated gradient descents (Section 2.4). In Section 2.5 we discuss in detail
the case of the Fisher metric for neural networks and various ways to compute
or approximate it. In Section 3 we present some mathematical properties of
these algorithms, focusing on invariance by change of coordinates (Section 3.2)
and a “best-fit” interpretation (Section 3.3). Section 4 contains a set of
small-scale experiments as a proof of concept for the new algorithms.

A companion article [Oll13] develops related ideas for recurrent neural
networks and provides more in-depth experiments on complex symbolic data
sequences.

We now provide an introduction to how invariant algorithms are built,
and an overview of the experimental results.

Gradient descents and metrics. To build these invariant algorithms,
we use gradient descent in suitable invariant metrics.

Backpropagation is the simple gradient descent over parameter space.
Gradient descents follow the steepest direction of change in parameter space,
and implicitly rely on a norm (or quadratic form, or metric) to define the
steepest direction: the gradient step 𝑥← 𝑥− 𝜂∇𝑓 can also be rewritten (for
small enough 𝜂, up to 𝑂(𝜂2) and for regular enough functions 𝑓) as

𝑥← arg min
𝑦

{︂
𝑓(𝑦) + 1

2𝜂
‖𝑦 − 𝑥‖2

}︂
(1)

namely, the gradient descent moves into the direction yielding the smallest
values of 𝑓 , penalized by the distance from the current point, measured
by the square norm ‖𝑦 − 𝑥‖2. For backpropagation this norm ‖·‖2 is the
numerical change in the values of the parameters: backpropagation provides
the direction of largest improvement for a minimal change in these numerical
values. Hence simple changes in parametrization influence the behavior of
the algorithm. On the other hand, norms ‖·‖2 based on what the network
does, rather than how it is represented as numbers, will lead to “intrinsic”
algorithms. This is one of the ideas behind Amari’s natural gradient.
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In Section 2 we build several invariant norms, by placing neural networks
in the context of differential manifolds and Riemannian geometry. The
gradient descent coming from an invariant norm (Riemannian metric) will
itself be invariant. Moreover, any gradient descent using any norm has the
property that small enough learning rates ensure performance improvement
at each step.

The resulting algorithms are all invariant under a number of transfor-
mations, including affine reparametrization of the unit activities. Among
the invariance properties enjoyed by the unitwise natural gradient and the
backpropagated metric (but not their quasi-diagonal reductions) are linear
recombinations of the input received by a given unit in the network, so
that a unit receiving signals 𝑓 and 𝑓 + 𝜀𝑔 (as functions over the dataset)
from incoming units will learn an output correlated to 𝑔 just as fast as a
unit receiving signals 𝑓 and 𝑔 (on the input layer this can be accounted
for by normalizing and de-correlating the inputs, but this could occur at
internal units as well). Thus these gradients have a “best-fit” interpretation
(Section 3.3): at each unit they solve a least-square problem of matching
input signals and desired backpropagated output, an interpretation proposed
in [Kur94].

The quasi-diagonal reductions of these algorithms are based on the
observation that there is a distinction between weights 𝑤𝑖𝑘 and 𝑤𝑗𝑘 coming
to 𝑘 from different units, but no intrinsic mathematical separation between
weights and biases. Intuitively, given that unit 𝑘 receives a signal 𝑤𝑖𝑘𝑎𝑖 from
unit 𝑖, if we change 𝑤𝑖𝑘 to 𝑤𝑖𝑘 + 𝛿𝑤𝑖𝑘, the average signal to unit 𝑘 will change
by 𝛿𝑤𝑖𝑘�̄�𝑖 where �̄�𝑖 is the average activation of 𝑖. Hence it might be a good
idea to automatically add −𝛿𝑤𝑖𝑘�̄�𝑖 to the bias of 𝑘, to compensate. The
quasi-diagonal algorithms we present are more sophisticated versions of this,
tuned for invariance and using weighted averages. The few added terms in
the update sometimes greatly improve performance (Fig 5 on page 50).

Arguably, none of these algorithms is second-order: the update on param-
eter 𝜃 takes the form 𝜃 ← 𝜃 −𝐴(𝜃)−1 𝜕𝜃𝑓 where 𝐴(𝜃) is a matrix depending
on the network but not on the objective function 𝑓 . This matrix comes from
(Riemannian) metrics evaluating the magnitude of the effect on the output
of changes in a given direction, thus providing a suitable learning rate for
each direction, without estimating derivatives of gradients. Second-order
effects are emulated in the same way the Gauss–Newton algorithm emulates
the Newton method1.

Experimental proof of concept. While the focus of this article is mainly
the mathematics of neural network training, we quickly tested experimentally

1Actually, in the framework of differential geometry, without a metric, the Hessian is
only defined at local optima of the function [GHL87, paragraph 3.37], so one could say
that in such a setting the Newton method approximates the Gauss–Newton algorithm
rather than the other way around.
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Figure 2: Auto-encoding using a 100–30–10–30–100 deep sparsely connected
network. Comparison of backpropagation using sigmoid and tanh activation,
and the four algorithms described in Section 1, for a given computation time
budget.

the implementability and impact of using the various methods. We selected
a very simple auto-encoding problem on which we expected that any training
method would perform well. A sparsely connected network with 5 layers of
size 100, 30, 10, 30, and 100 was built, and 16 random length-100 binary
strings were fed to the input layer, with the target equal to the input. Ideally
the network learns to encode each of the 16 samples using 4 bits on the
middle layer (thus with room to spare) and rewrites the output from this.
The details are given in Section 4.

Even then, backpropagation performs poorly: after 10, 000 batch passes
the average log-loss is about 36 bits per sample (out of 100) for sigmoid
backpropagation, and about 25 bits per sample for tanh backpropagation.
Note that 30 bits per sample would correspond to a method which learns
only the parameters of the output layer and can reproduce the output if
someone fills the last hidden layer with the correct 30 bits.

For the same total computation time equivalent to 10, 000 batch back-
propagations2, the quasi-diagonal algorithms have a log loss of about 1.5
to 3.5 bits per sample, and both the unitwise natural gradient and the
backpropagated metric gradient have a log loss of 0.3 to 1.5 bit per sample,

2as measured in CPU time on a personal computer, but this can depend a lot on
implementation details
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thus essentially solving the problem. See Figure 2.
The impact of the few non-diagonal terms in the quasi-diagonal algorithms

was tested by removing them. In this case the quasi-diagonal backpropagated
metric gradient reduces to the diagonal Gauss–Newton method ([LBOM96,
Section 7.4], also used in [SZL13]). This breaks the invariance properties, thus
the impact is different for sigmoid or tanh implementations. The diagonal
Gauss–Newton method in sigmoid implementation was found to perform
more poorly, with a final log-loss of about 12 bits per sample (Figure 5 on
page 50), while in tanh implementation it comes somewhat close to the quasi-
diagonal algorithms at about 3.5 bits per sample (presumably because in our
problem, the activity of all units, not only input units, stay perfectly centered
during training). Thus the quasi-diagonal backpropagated metric gradient
can be seen as “the invariant way” to write the diagonal Gauss–Newton
method, while performance of the latter is not at all invariant.

We also compared the exact unitwise natural gradient obtained thanks
to Proposition 27, to a variant of the natural gradient in which only the
gradient terms 𝑏𝑏⊤ corresponding to the target for each sample are added
to the Fisher matrix ([APF00, LMB07] and Section 2.5 below). The latter,
when implemented unitwise, performs rather poorly on this auto-encoding
task, with a log loss of about 25 to 28 bits per sample. The reason, discussed
in Section 4, may be that quality of this approximation to the Fisher matrix
strongly depends on output dimensionality.

One lesson from the numerical experiments is that the regularization term
𝜀 Id added to the matrices, needed to prevent bad behavior upon inversion,
formally breaks the invariance properties: individual trajectories in sigmoid
or tanh implementations, initialized in the same way, start to differ after a
dozen iterations. Still, overall performance is not affected and is the same in
both implementations (Figure 4, p. 49).

Though the quasi-diagonal methods perform well, the only methods
to sometimes reach very small values of the loss function on this example
(less than 0.1 bit per sample) are the unitwise natural gradient and the
backpropagated metric, which at each unit maintain a full matrix over the
incoming parameters and thus achieve invariance under affine recombination
of incoming signals. These two methods are relevant only when network
connectivity is not too high. This highlights the interest of sparsely connected
networks from a theoretical viewpoint.

Notation for neural networks

Consider a directed neural network model: a set ℒ of units together with
a set of directed edges 𝑖 → 𝑗 for 𝑖, 𝑗 ∈ ℒ, without cycle. Let ℒout be the
output units, that is, the units with no outgoing edges3, and similarly let ℒin

3This restriction on output units is not necessary (any unit could be an output unit)
but simplifies notation.
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be the set of units without incoming edges. Let 𝑠 : R→ R be an activation
function. Given an activation level for the input units, each unit 𝑗 gets an
activation level

𝑎𝑗 = 𝑠
(︁∑︀

𝑖→𝑗𝑤𝑖𝑗𝑎𝑖

)︁
(2)

depending on the activation levels of the units 𝑖 pointing to 𝑗 and on
the firing coefficients 𝑤𝑖𝑗 from4 𝑖 to 𝑗. Biases are treated as the weights
𝑤0𝑗 from a special always-activated unit 0 (𝑎0 ≡ 1) connected to every
other unit. A common choice for the activation function 𝑠 is the logistic
[RN03] function 𝑠(𝑉 ) = e𝑉

1+e𝑉 = 1
1+e−𝑉 , although for instance [LBOM96]

recommends the hyperbolic tangent 𝑠(𝑉 ) = tanh(𝑉 ), related to the logistic
by tanh(𝑉 ) = 2( 1

1+e−2𝑉 ) − 1. We refer to [RN03], which we mostly follow
with minor changes in notation.

For a given non-input unit 𝑗, we call the parameters 𝑤0𝑗 and 𝑤𝑖𝑗 for
𝑖→ 𝑗 the set of incoming parameters to unit 𝑗.

The dataset for this network is a set 𝒟 of inputs, where each input
𝑥 ∈ Rℒin is a real-valued vector over the input layer. For each input is given
a target 𝑦 in an arbitrary space. We view the network as a probabilistic
generative model: given an input 𝑎𝑖 = 𝑥𝑖 on the input layer ℒin, we assume
that the activations of the output layer are interpreted in a fixed way as a
probability distribution 𝜔(𝑦) over the target space. The goal is to maximize
the probability to output 𝑦 on input 𝑥: we define the loss function

ℓ(𝜔, 𝑦) := − ln 𝜔(𝑦) (3)

the sum of which over the dataset is to be minimized. For instance, interpret-
ing the output layer activities (𝑎𝑘)𝑘∈ℒout as Gaussian variables with mean
𝑎𝑘 and variance 1 leads to a quadratic loss function ℓ.

Example 1 (Square-loss, Bernoulli, and two classifica-
tion interpretations). The square-loss interpretation of the output
layer sends the activations (𝑎𝑘)𝑘∈ℒout of the output layer to a random variable
𝑌 = (𝑌𝑘)𝑘∈ℒout of independent Gaussian variables, where each 𝑌𝑘 ∼ 𝒩 (𝑎𝑘, 1)
is a Gaussian of mean 𝑎𝑘.

Assume that the activities 𝑎𝑖 of units in the network lie in [0; 1]. The
Bernoulli interpretation of the output layer is a Bernoulli distribution as
follows: given the activations (𝑎𝑘)𝑘∈ℒout of the output layer, the final output is
a {0, 1}ℒout-valued random variable 𝑌 = (𝑌𝑘)𝑘∈ℒout of independent Bernoulli
variables, where the activations 𝑎𝑘 give the probability to have 𝑌𝑘 = 1,
namely Pr(𝑌𝑘 = 1) = 𝑎𝑘.

For classification, the interpretation must send the output activations
(𝑎𝑘)𝑘∈ℒout to a probability distribution over the indices 𝑘 in the output

4What is 𝑤𝑖𝑗 for some authors is 𝑤𝑗𝑖 for others. Our convention is the same as [RN03]
but for instance [LBOM96] follows the opposite convention.

8



layer. In the softmax interpretation5, the probability of class 𝑘 ∈ ℒout is
e𝑎𝑘/

∑︀
𝑘′∈ℒout e𝑎𝑘′ . In the spherical interpretation6, the probability of class

𝑘 ∈ ℒout is 𝑎2
𝑘/(
∑︀

𝑘′∈ℒout 𝑎2
𝑘′).

Remark 16 covers the case when the interpretation depends on extra pa-
rameters 𝜗, such as a softmax Pr(𝑘) = e𝜗𝑘𝑎𝑘/

∑︀
𝑘′∈ℒout e𝜗𝑘′ 𝑎𝑘′ with trainable

weights 𝜗𝑘.

Backpropagation. A common way to train the network on a given target
value 𝑦 is by backpropagation, which amounts to a gradient descent over the
parameters 𝑤𝑖𝑗 . For a given loss function, define the backpropagated value
𝑏𝑖 at each unit 𝑖 by

𝑏𝑖 := − 𝜕ℓ

𝜕𝑎𝑖
(4)

so that 𝑏𝑖 indicates how we should modify the activities to decrease ℓ. Then
the value of 𝑏𝑖 satisfy the backpropagation equations [RN03] from the output
layer:

𝑏𝑖 =
∑︁

𝑗, 𝑖→𝑗

𝑤𝑖𝑗𝑟𝑗𝑏𝑗 for 𝑖 ̸∈ ℒout (5)

where the activation levels 𝑎𝑖 have first been computed by forward propaga-
tion, and where let 𝑟𝑗 stand for the value of the derivative of the activation
function at unit 𝑗:

𝑟𝑗 := 𝑠′

⎛⎝∑︁
𝑖→𝑗

𝑤𝑖𝑗𝑎𝑖

⎞⎠ =
{︃

𝑎𝑗(1− 𝑎𝑗) for sigmoid activation function
1− 𝑎2

𝑗 for tanh activation function
(6)

The backpropagated values on the output layer are computed directly by
(4), for instance,

𝑏𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑦𝑖 − 𝑎𝑖 (square-loss interpretation)
𝑦𝑖−𝑎𝑖

𝑎𝑖(1−𝑎𝑖) (Bernoulli interpretation)
𝑦𝑖 − e𝑎𝑖∑︀

𝑘∈ℒout
e𝑎𝑘

(softmax interpretation)
2𝑦𝑖
𝑎𝑖
− 2𝑎𝑖∑︀

𝑘∈ℒout
𝑎2

𝑘

(spherical interpretation)

(7)

for 𝑖 ∈ ℒout.
5Usually combined with a linear activation function (𝑠 = Id) on the last layer
6This latter example is motivated by a theoretical argument: the set of probability

distributions over a finite set, equipped with its Fisher metric, is isometric to the positive
quadrant in a sphere and so is naturally parametrized by numbers 𝑎𝑘 with

∑︀
𝑎2

𝑘 = 1, and
these variables yield a slightly simpler expression for the Fisher matrix. Besides, taking
squares gives a boost to the most activated output unit, in a smooth way, as in the softmax
interpretation.
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The backpropagated values are used to compute the gradient of the loss
function with respect to the parameters 𝑤𝑖𝑗 . Indeed we have

𝜕ℓ

𝜕𝑤𝑖𝑗
= −𝑎𝑖𝑟𝑗𝑏𝑗 (8)

for each edge (𝑖𝑗) in the network. (This includes the bias 𝑤0𝑗 using 𝑎0 ≡ 1.)
It is sometimes more convenient to work with the reduced variables

�̃�𝑖 := 𝑟𝑖𝑏𝑖 (9)

which satisfy the backpropagation equation

�̃�𝑖 = 𝑟𝑖

∑︁
𝑗, 𝑖→𝑗

𝑤𝑖𝑗 �̃�𝑗 for 𝑖 ̸∈ ℒout (10)

and
𝜕ℓ

𝜕𝑤𝑖𝑗
= −𝑎𝑖�̃�𝑗 (11)

The gradient descent with learning rate 𝜂 > 0 is then defined as the
following update on the firing coefficients:

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 − 𝜂
𝜕ℓ

𝜕𝑤𝑖𝑗
= 𝑤𝑖𝑗 + 𝜂 𝑎𝑖𝑟𝑗𝑏𝑗 = 𝑤𝑖𝑗 + 𝜂 𝑎𝑖�̃�𝑗 (12)

1 Four invariant gradient algorithms
We now describe four gradient algorithms for network training: the unitwise
natural gradient, the quasi-diagonal natural gradient, the backpropagated
metric gradient, and the quasi-diagonal backpropagated metric gradient. Each
of these algorithms is adapted to a different scalability constraint. The
unitwise natural gradient requires low connectivity and a small output
layer; the quasi-diagonal natural gradient requires a small output layer; the
backpropagated metric gradient requires low connectivity; the quasi-diagonal
backpropagated metric gradient has the same asymptotic complexity as
backpropagation.

These algorithms are the implementation of the more general versions
described in Section 2. As they are designed for invariance properties,
implementing them using either sigmoid or tanh activation function should
result in the same output, learning trajectories, and performance, provided the
initialization is changed accordingly (Section 3.2). However, the Bernoulli and
classification interpretations of the output layer assumes that the activities
lie in [0; 1], as in sigmoid activation.

We first present the algorithms in a batch version. It is straightforward
to adapt them to use random mini-batches from the dataset. In Section 1.3
they are also adapted to an online setting: this can be done using standard
techniques because the main quantities involved take the form of averages
over the dataset, which can be updated online.
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1.1 Unitwise natural gradient and quasi-diagonal natural gra-
dient

The unitwise natural gradient has been proposed as far back as [Kur94]
to train neural networks; however the presentation in [Kur94] is limited to
networks with only one hidden layer, because it relies on an explicit symbolic
computation of entries of the Fisher matrix. Proposition 27 below allows for
an efficient computation of the exact Fisher information matrix by doing
𝑛out distinct backpropagations for each sample in the dataset. This relies on
linearity of backpropagation, as follows.

Definition 2 (Backpropagation transfer rates). Fix an input
𝑥 for the network and compute the activities by forward propagation. Let 𝑘
be a unit in the network and 𝑘out be a unit in the output layer. Define the
backpropagation transfer rates 𝐽𝑘out

𝑘 from 𝑘out to 𝑘 by backpropagating the
value 1 at 𝑘out. Formally:{︃

𝐽𝑘out
𝑘out

:= 1 , 𝐽𝑘out
𝑘 := 0, for 𝑘 ̸= 𝑘out in the output layer ℒout

𝐽𝑘out
𝑘 :=

∑︀
𝑗, 𝑘→𝑗 𝑤𝑘𝑗 𝑟𝑗 𝐽𝑘out

𝑗 for non-output units 𝑘
(13)

where 𝑟𝑗 is the derivative of the activation function, given by (6).

These transfer rates have the property that if backpropagation values
𝑏 are set on the output layer, then 𝑏𝑘 =

∑︀
𝑘out∈ℒout 𝐽𝑘out

𝑘 𝑏𝑘out for any unit 𝑘
(see also [LBOM96, Section 7.2]).

Computation of the transfer rates can be done by 𝑛out distinct back-
propagations. There are further simplifications, since the transfer rates for
𝑘 in the input layer are never used (as there are no incoming parameters),
and the transfer rates on the last hidden layer are readily computed as
𝐽𝑘out

𝑘 = 𝑤𝑘𝑘out𝑟𝑘out . Thus it is enough to backpropagate the transfer rates
from the last hidden layer to the first hidden layer. In particular, with only
one hidden layer (the case considered in [Kur94] for the Fisher matrix) no
backpropagation is needed.

Definition 3 (Fisher modulus). Fix an input 𝑥 for the network
and compute the activities by forward propagation. For each unit 𝑘 in the
network, define the Fisher modulus Φ𝑘(𝑥) of unit 𝑘 on input 𝑥 as follows,
depending on output layer interpretation.

∙ For the Bernoulli interpretation, set

Φ𝑘(𝑥) :=
∑︁

𝑘out∈ℒout

(𝐽𝑘out
𝑘 )2

𝑎𝑘out(1− 𝑎𝑘out)
(14)

∙ For the square-loss interpretation, set

Φ𝑘(𝑥) :=
∑︁

𝑘out∈ℒout

(𝐽𝑘out
𝑘 )2 (15)
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∙ For the softmax interpretation, set

Φ𝑘(𝑥) := 1
𝑆

∑︁
𝑘out∈ℒout

e𝑎𝑘out (𝐽𝑘out
𝑘 )2 − 1

𝑆2

⎛⎝ ∑︁
𝑘out∈ℒout

e𝑎𝑘out 𝐽𝑘out
𝑘

⎞⎠2

(16)

where 𝑆 :=
∑︀

𝑘out∈ℒout e𝑎𝑘out .

∙ For the spherical interpretation, set

Φ𝑘(𝑥) := 4
𝑆

∑︁
𝑘out∈ℒout

(𝐽𝑘out
𝑘 )2 − 4

𝑆2

⎛⎝ ∑︁
𝑘out∈ℒout

𝑎𝑘out𝐽
𝑘out
𝑘

⎞⎠2

(17)

where 𝑆 :=
∑︀

𝑘out∈ℒout 𝑎2
𝑘out

.

Definition 4 (Unitwise Fisher matrix). Let 𝑘 be a unit in the
network. Let 𝐸𝑘 be the set of incoming units to 𝑘 (including the always-
activated unit 0). The unitwise Fisher matrix at unit 𝑘 is the (#𝐸𝑘)× (#𝐸𝑘)
matrix 𝐹 (𝑘) defined by

𝐹
(𝑘)
𝑖𝑗 := E𝑥∈𝒟 𝑎𝑖𝑎𝑗𝑟2

𝑘Φ𝑘 (18)

for 𝑖 and 𝑗 in 𝐸𝑘 (including the unit 0 with 𝑎0 ≡ 1), with Φ𝑘 the Fisher
modulus of Definition 3. Here E𝑥∈𝒟 represents the average over samples 𝑥 in
the dataset (all the terms 𝑎𝑖, 𝑎𝑗 , 𝑟𝑘, Φ𝑘 depend on the input to the network).

By Proposition 27 below, 𝐹
(𝑘)
𝑖𝑗 is the block of the Fisher information

matrix associated with the incoming parameters to 𝑘, hence the name.

Definition 5 (Unitwise natural gradient). The unitwise natu-
ral gradient with learning rate 𝜂 > 0 updates the parameters of the network
as follows.

For each unit 𝑘, define the vector 𝐺(𝑘) by

𝐺
(𝑘)
𝑖 := −E𝑥∈𝒟

𝜕ℓ(𝑦)
𝜕𝑤𝑖𝑘

= E𝑥∈𝒟 𝑎𝑖𝑟𝑘𝑏𝑘 (19)

where 𝑏𝑘 is the backpropagated value at 𝑘 obtained from the target 𝑦 associ-
ated with 𝑥, and where 𝑖 runs over the incoming units to 𝑘 (including the
always-activated unit 𝑖 = 0). Compute the vector

𝛿𝑤(𝑘) := (𝐹 (𝑘))−1𝐺(𝑘) (20)

Then the parameters of the network are updated by

𝑤𝑖𝑘 ← 𝑤𝑖𝑘 + 𝜂𝛿𝑤
(𝑘)
𝑖 (21)
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The asymptotic algorithmic cost of the unitwise natural gradient is as
follows. Computing 𝜏 requires 𝑛out distinct backpropagations for each input
𝑥. For a network with 𝑛 units, 𝑛out output units, and at most 𝑑 incoming
connections per unit, this costs 𝑂(𝑛out𝑛𝑑) per data sample (this can be
reduced in some cases, as discussed above). Computing Φ takes 𝑂(𝑛𝑛out).
Computing 𝐹

(𝑘)
𝑖𝑗 for every 𝑘 takes 𝑂(𝑛𝑑2). Computing the gradient requires

inverting these matrices, which takes 𝑂(𝑛𝑑3) but is done only once in each
(mini-)batch, thus if the size of batches is larger than 𝑑 this cost is negligible;
if the size of batches is smaller than 𝑑 or in an online setting, inversion can
be done recursively using the Sherman–Morrison formula at a cost of 𝑂(𝑛𝑑2)
per data sample. So the overall cost of this gradient is 𝑂(𝑛𝑑2 + 𝑛out𝑛𝑑) per
data sample.

This algorithmic cost is fine if connectivity is low. We now define a more
light-weight version in case connectivity is large. Its computational cost is
equivalent to that of ordinary backpropagation provided the output layer is
small.

Definition 6 (Quasi-diagonal natural gradient). The quasi-
diagonal natural gradient with learning rate 𝜂 > 0 updates the parameters
of the network as follows.

For each unit 𝑘, compute only the entries 𝐹
(𝑘)
00 , 𝐹

(𝑘)
0𝑖 , and 𝐹

(𝑘)
𝑖𝑖 of the

unitwise Fisher matrix at 𝑘. Define the vector 𝐺(𝑘) as in (19) above. Define
the vector 𝛿𝑤(𝑘) by

𝛿𝑤
(𝑘)
𝑖 = 𝐺

(𝑘)
𝑖 𝐹

(𝑘)
00 −𝐺

(𝑘)
0 𝐹

(𝑘)
0𝑖

𝐹
(𝑘)
𝑖𝑖 𝐹

(𝑘)
00 − (𝐹 (𝑘)

0𝑖 )2
for 𝑖 ̸= 0 (22)

𝛿𝑤
(𝑘)
0 = 𝐺

(𝑘)
0

𝐹
(𝑘)
00
−
∑︁
𝑖 ̸=0

𝐹
(𝑘)
0𝑖

𝐹
(𝑘)
00

𝛿𝑤
(𝑘)
𝑖 (23)

and update the parameters of the network by

𝑤𝑖𝑘 ← 𝑤𝑖𝑘 + 𝜂𝛿𝑤
(𝑘)
𝑖 (24)

With respect to the unitwise natural gradient, the algorithmic cost does
not involve any 𝑂(𝑛𝑑2) terms because we only compute 𝑂(𝑑) entries of the
matrices 𝐹 and do not require a matrix inversion. The variables 𝜏 and Φ still
need to be computed. Thus the overall complexity is reduced to 𝑂(𝑛out𝑛𝑑).

The quasi-diagonal formulas may seem arbitrary. If we remember that
(omitting the superscript (𝑘)) 𝐹00 = E𝑥∈𝒟 𝑟2

𝑘 Φ𝑘, 𝐹0𝑖 = E𝑥∈𝒟 𝑎𝑖𝑟
2
𝑘 Φ𝑘, and

𝐹𝑖𝑖 = E𝑥∈𝒟 𝑎2
𝑖 𝑟2

𝑘 Φ𝑘, we can consider these sums as expectations over the
dataset with weights 𝑟2

𝑘Φ𝑘. Then the weighted average of 𝑎𝑖 is 𝐴𝑖 = 𝐹0𝑖/𝐹00
and its weighted variance is 𝑉𝑖 = 𝐹𝑖𝑖/𝐹00 −𝐴2

𝑖 so that we have

𝛿𝑤𝑖 = 𝐺𝑖 −𝐺0𝐴𝑖

𝐹00𝑉𝑖
(25)
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and in particular the denominator is always positive unless the activity of
unit 𝑖 is constant (in this case, the numerator vanishes too).

A possible interpretation is as follows: If the activity 𝑎𝑖 of unit 𝑖 is not
centered on average over the dataset (with the weights above), increasing
a weight 𝑤𝑖𝑘 not only increases the influence of unit 𝑖 over unit 𝑘, but also
shifts the average activity of unit 𝑘, which may not be desirable. Using the
method above, if 𝑎𝑖 is not centered, when we change 𝑤𝑖𝑘 a corresponding
term is automatically subtracted from the bias 𝑤0𝑘 so as not to shift the
average activity of unit 𝑘, as discussed in the introduction. On the other
hand if the activity 𝑎𝑖 is centered, then the update is diagonal, and scaled
by the inverse “variance” 1/𝑉𝑖.

1.2 Backpropagated metric gradient and quasi-diagonal back-
propagated metric gradient

Computing the Fisher matrix as above requires performing 𝑛out backpropaga-
tions for each sample. If one tries to compute the Fisher modulus Φ directly
by backpropagation, the backpropagation equation involves cross-terms be-
tween different units. Neglecting these cross-terms results in a simpler version
of the Fisher modulus which can be computed in one backward pass; the
corresponding backpropagation equation is well-known as an approximation
of the Hessian [LBOM96, Section 7]. It turns out this quantity and the
associated metric are still intrinsic.

Definition 7 (Backpropagated modulus). Fix an input 𝑥 for the
network and compute the activities by forward propagation. Define the
backpropagated modulus 𝑚𝑘(𝑥) for each unit 𝑘 by

𝑚𝑘(𝑥) :=
∑︁

𝑗, 𝑘→𝑗

𝑤2
𝑘𝑗 𝑟2

𝑗 𝑚𝑗(𝑥) (26)

if 𝑘 is not an output unit, and, depending on output interpretation,

𝑚𝑘(𝑥) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
𝑎𝑘(1−𝑎𝑘) (Bernoulli)
1 (square-loss)
e𝑎𝑘

𝑆 (1− e𝑎𝑘

𝑆 ), 𝑆 =
∑︀

𝑘out∈ℒout e𝑎𝑘out (softmax)
4
𝑆 (1− 𝑎2

𝑘
𝑆 ), 𝑆 =

∑︀
𝑘out∈ℒout 𝑎2

𝑘out
(spherical)

(27)

for 𝑘 in the output layer.

Definition 8 (Backpropagated metric). Let 𝑘 be a unit in the
network. Let 𝐸𝑘 be the set of incoming units to 𝑘 (including the always-
activated unit 0). The backpropagated metric at unit 𝑘 is the (#𝐸𝑘)× (#𝐸𝑘)
matrix 𝑀 (𝑘) defined by

𝑀
(𝑘)
𝑖𝑗 := E𝑥∈𝒟 𝑎𝑖𝑎𝑗𝑟2

𝑘𝑚𝑘 (28)
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for 𝑖 and 𝑗 in 𝐸𝑘 (including the unit 0 with 𝑎0 ≡ 1). Here E𝑥∈𝒟 represents
the average over samples 𝑥 in the dataset (all the terms 𝑎𝑖, 𝑎𝑗 , 𝑎𝑘, 𝑚𝑘 depend
on the input to the network).

The backpropagated metric gradient can thus be described as an approx-
imate, blockwise Hessian method in which the Hessian is approximated by
the Gauss–Newton technique with, in addition, cross-unit terms neglected.
Such a method turns out to be intrinsic.

Definition 9 (Backpropagated metric gradient). The back-
propagated metric gradient with learning rate 𝜂 > 0 updates the parameters
of the network as follows.

For each unit 𝑘, define the vector 𝐺(𝑘) by

𝐺
(𝑘)
𝑖 := −E𝑥∈𝒟

𝜕ℓ(𝑦)
𝜕𝑤𝑖𝑘

= E𝑥∈𝒟 𝑎𝑖𝑟𝑘𝑏𝑘 (29)

where 𝑏𝑘 is the backpropagated value at 𝑘 obtained from the target 𝑦 associ-
ated with 𝑥, and where 𝑖 runs over the incoming units to 𝑘 (including the
always-activated unit 𝑖 = 0). Compute the vector

𝛿𝑤(𝑘) := (𝑀 (𝑘))−1𝐺(𝑘) (30)

Then the parameters of the network are updated by

𝑤𝑖𝑘 ← 𝑤𝑖𝑘 + 𝜂𝛿𝑤
(𝑘)
𝑖 (31)

The algorithmic cost of the backpropagated metric gradient is 𝑂(𝑛𝑑2)
per data sample, with notation as above. Indeed, computing 𝑚 costs the
same as a backpropagation pass, namely 𝑂(𝑛𝑑). Computing the matrices 𝑀
costs 𝑂(𝑛𝑑2). Inverting the matrices has no impact on the overall complexity,
as explained after Definition 5. This cost is acceptable for small 𝑑 (sparsely
connected networks). For large 𝑑 we define the following.

Definition 10 (Quasi-diagonal backpropagated metric gra-
dient). The quasi-diagonal backpropagated metric gradient with learning
rate 𝜂 > 0 updates the parameters of the network as follows.

For each unit 𝑘, compute only the entries 𝑀
(𝑘)
00 , 𝑀

(𝑘)
0𝑖 , and 𝑀

(𝑘)
𝑖𝑖 of

backpropagated metric at 𝑘. Define the vector 𝐺(𝑘) as in (19) above. Define
the vector 𝛿𝑤(𝑘) by

𝛿𝑤
(𝑘)
𝑖 = 𝐺

(𝑘)
𝑖 𝑀

(𝑘)
00 −𝐺

(𝑘)
0 𝑀

(𝑘)
0𝑖

𝑀
(𝑘)
𝑖𝑖 𝑀

(𝑘)
00 − (𝑀 (𝑘)

0𝑖 )2
for 𝑖 ̸= 0 (32)

𝛿𝑤
(𝑘)
0 = 𝐺

(𝑘)
0

𝑀
(𝑘)
00
−
∑︁
𝑖 ̸=0

𝑀
(𝑘)
0𝑖

𝑀
(𝑘)
00

𝛿𝑤
(𝑘)
𝑖 (33)

and update the parameters of the network by

𝑤𝑖𝑘 ← 𝑤𝑖𝑘 + 𝜂𝛿𝑤
(𝑘)
𝑖 (34)
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The same remarks as for the quasi-diagonal natural gradient apply for
interpreting the various terms. The denominator 𝑀

(𝑘)
𝑖𝑖 𝑀

(𝑘)
00 − (𝑀 (𝑘)

0𝑖 )2 can be
seen as a weighted variance of the activity of unit 𝑖, and is positive unless 𝑎𝑖

is constant over the dataset. The contribution of 𝛿𝑤
(𝑘)
𝑖 to 𝛿𝑤

(𝑘)
0 compensates

the change of average activity induced by a change of 𝑤𝑖𝑘.
The asymptotic cost of this update is 𝑂(𝑛𝑑) per data sample, as for

backpropagation.
If, in the quasi-diagonal backpropagated metric gradient, the non-diagonal

terms are neglected (𝑀 (𝑘)
0𝑖 is set to 0), then this reduces to the diagonal

Gauss–Newton method equations from [LBOM96, Section 7.4] (also used for
instance in [SZL13]).

Remark 11. On the incoming parameters to the output layer, the unitwise
natural gradient and the backpropagated metric gradient coincide if the
Bernoulli or square-loss interpretation is used. (Actually, with learning rate
𝜂 = 1 they also both coincide with the Newton method restricted to the
output layer parameters.)

Remark 12. Since these algorithms rely on inverting matrices, regular-
ization is an issue. In practice, terms 𝜀 Id have to be added to 𝐹 and 𝑀

before inversion; terms 𝜀 have to be added to the diagonal terms 𝐹
(𝑘)
00 , 𝐹

(𝑘)
𝑖𝑖 ,

𝑀
(𝑘)
00 and 𝑀

(𝑘)
𝑖𝑖 in the quasi-diagonal reduction. This formally breaks the

invariance properties. Section 3.3 elaborates on this. Still, this operation
preserves the guarantee of improvement for small enough learning rates.

1.3 Adaptation to an online setting

The unitwise natural gradient and unitwise backpropagated metric gradient
both update the weights by

𝛿𝑤 = 𝐴−1𝐺 (35)

with 𝐺 the gradient of the loss function over the dataset, and 𝐴 a positive-
definite, symmetric matrix. A key feature here is that the matrix 𝐴 takes
the form of an expectation over the dataset: 𝐹

(𝑘)
𝑖𝑗 = E𝑥∈𝒟 𝑎𝑖𝑎𝑗𝑟2

𝑘Φ𝑘 for the
Fisher matrix, and 𝑀

(𝑘)
𝑖𝑗 = E𝑥∈𝒟 𝑎𝑖𝑎𝑗𝑟2

𝑘𝑚𝑘 for the backpropagated metric.
Any such algorithm can be turned online using a standard construction

as follows (compare e.g. [LMB07]). Another possibility is, of course, to use
mini-batches.

In the following, 𝐴 stands for either the unitwise Fisher matrix or the
backpropagated metric. Let 𝐴(𝑥) be the corresponding contribution of
each input 𝑥 in the expectation, namely, 𝐴(𝑥)(𝑘)

𝑖𝑗 = 𝑎𝑖𝑎𝑗𝑟2
𝑘Φ𝑘 for the Fisher

metric and 𝐴(𝑥)(𝑘)
𝑖𝑗 = 𝑎𝑖𝑎𝑗𝑟2

𝑘𝑚𝑘 for the backpropagated metric, so that
𝐴 = E𝑥∈𝒟 𝐴(𝑥).

16



At each step 𝑡, we use one new sample in the dataset, update an estimate
𝐴(𝑡) of 𝐴, and follow a gradient step for this sample, as follows.

∙ Initialize the matrix 𝐴(0) by using a small subsample 𝒟init ⊂ 𝒟, for
instance the first 𝑛init samples in the dataset:

𝐴(0) := E𝑥∈𝒟init 𝐴(𝑥) (36)

∙ Fix a discount factor 0 < 𝛾 < 1. For each new sample 𝑥𝑡, compute its
contribution 𝐴(𝑥𝑡) and update 𝐴 by

𝐴(𝑡) := (1− 𝛾)𝐴(𝑡−1) + 𝛾𝐴(𝑥𝑡) (37)

∙ Compute the inverse of 𝐴(𝑡) from the inverse of 𝐴(𝑡−1) by the Sherman–
Morrison formula at each unit, using that 𝐴(𝑥𝑡) is a rank-one matrix
at each unit. (This way matrix inversion is no more costly than the
rest of the step.)

∙ Compute the negative gradient 𝐺(𝑥𝑡) of the loss function on input 𝑥𝑡

by backpropagation.

∙ Update the parameters by

𝑤 ← 𝑤 + 𝜂𝑡(𝐴(𝑡))−1𝐺(𝑥𝑡) (38)

where 𝜂𝑡 is the learning rate.

∙ For the quasi-diagonal reductions of the algorithms, only the entries
𝐴00, 𝐴𝑖𝑖 and 𝐴0𝑖 of the matrix 𝐴 are updated at each step. No matrix
inversion is required for the update equations (22)–(23) and (32)–(33).

We could also initialize 𝐴(0) to a simple matrix like Id, but this breaks
the invariance properties of the algorithms.

The update rule for 𝐴(𝑡) depends on the discount factor 𝛾. It should
be large enough so that a large number of data points contribute to the
computation of 𝐴, but small enough to be reactive so that 𝐴 evolves as
training gets along. In our setting, from the particular form of 𝐴(𝑥) at a
unit 𝑘 we see that each 𝐴(𝑥𝑡) contributes a rank-one matrix. This means
that 𝛾 should be much smaller than 1/𝑛𝑘 with 𝑛𝑘 the number of parameters
at unit 𝑘, because otherwise the estimated matrix 𝐴(𝑡) will be close to a
low-rank matrix, and presumably a poor approximation of the true matrix
𝐴, unreliable for numerical inversion.

The same remark applies to the number 𝑛init of samples used for initial-
ization: it should be somewhat larger than the number of parameters at each
unit, otherwise 𝐴(0) will be of low rank.
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2 Constructing invariant algorithms: Riemannian
metrics for neural networks

2.1 Gradient descents and metrics, natural metrics

The gradient of a function 𝑓 on R𝑑 gives the direction of steepest ascent:
among all (very small) vectors with a given norm, it provides the greatest
variation of 𝑓 . Formally, the gradient ∇𝑓 of a smooth function 𝑓 is defined
by the property that

𝑓(𝑥 + 𝜀𝑣) = 𝑓(𝑥) + 𝜀⟨∇𝑓, 𝑣⟩+ 𝑂(𝜀2) (39)

for any vector 𝑣, for small enough 𝜀. This depends on the choice of a scalar
product ⟨·, ·⟩. In an orthonormal basis, the coordinates of the gradient are
simply the partial derivatives 𝜕𝑓/𝜕𝑥𝑖 so that gradient descent is

𝑥𝑖 ← 𝑥𝑖 − 𝜂 𝜕𝑓/𝜕𝑥𝑖 (40)

in an orthonormal basis.
For a given norm of the vector 𝑣, the quantity ⟨∇𝑓, 𝑣⟩ is maximal when 𝑣

is collinear with ∇𝑓 : so the gradient ∇𝑓 indeed gives the direction of steepest
ascent among all vectors with a given norm. The gradient step 𝑥← 𝑥−𝜂∇𝑓
can actually be rewritten (for small enough 𝜂, up to 𝑂(𝜂2) and for regular
enough functions 𝑓) as

𝑥← arg min
𝑦

{︂
𝑓(𝑦) + 1

2𝜂
‖𝑦 − 𝑥‖2

}︂
(41)

namely, the gradient descent moves into the direction yielding the smallest
values of 𝑓 , penalized by the distance from the current point7. This makes
it clear how the choice of the scalar product will influence the direction of
the gradient ∇𝑓 : indeed, another scalar product will define another norm
‖𝑣‖2 = ⟨𝑣, 𝑣⟩ for the vector 𝑣, so that the steepest direction among all vectors
with a given norm will not be the same. The norm thus defines directions 𝑣
in which it is “cheap” or ”expensive” to move; the gradient is the direction
of steepest ascent taking this into account.

If we happen to work in a non-orthonormal basis of vectors 𝑣1, . . . , 𝑣𝑑,
the gradient is given by 𝐴−1𝜕𝑓/𝜕𝑥 where 𝜕𝑓/𝜕𝑥 is the vector of partial
derivatives with respect to the coordinates 𝑥𝑖 in the basis, and 𝐴 is the
symmetric matrix made of the scalar products of the basis vectors with
themselves: 𝐴𝑖𝑗 := ⟨ 𝑣𝑖 | 𝑣𝑗 ⟩. Indeed, the change of variable �̃� := 𝐴1/2𝑥
provides an orthonormal basis, thus gradient descent for �̃� is �̃� ← �̃� −

7This can be used to define or study the direction of the gradient in more general metric
spaces (e.g., [AGS05, Chapter 2]).
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𝜂 𝜕𝑓/𝜕�̃� = �̃�− 𝜂𝐴−1/2𝜕𝑓/𝜕𝑥. Thus, translating back on the variable 𝑥, the
gradient descent of 𝑓 takes the form

𝑥← 𝑥− 𝜂 𝐴−1𝜕𝑓/𝜕𝑥 (42)

Conversely, we can start with a norm on R𝑑 defined through a positive-
definite, symmetric matrix 𝐴 (which thus defines “cheap” and ”expensive”
directions). The gradient descent using this norm will then be given by (42).

So any update of the form (42) above with 𝐴 a symmetric, positive-
definite matrix can be seen as the gradient descent of 𝑓 using some norm.
The matrix 𝐴 may even depend on the current point 𝑥, defining a Riemannian
metric in which the norm of a small change 𝛿𝑥 of 𝑥 is

‖𝛿𝑥‖2 :=
∑︁
𝑖𝑗

𝛿𝑥𝑖𝐴𝑖𝑗(𝑥)𝛿𝑥𝑗 = 𝛿𝑥⊤𝐴(𝑥) 𝛿𝑥 (43)

An important feature of gradient descent, in any metric, is that for 𝜂
small enough, the step is guaranteed to decrease the value of 𝑓 .

The choice of a metric 𝐴 represents the choice of a norm for vectors in
parameter space. Conversely, choosing a set of parameters and using the
“naive” gradient ascent for these parameters amounts to implicitly deciding
that these parameters form an orthonormal basis.

For the neural network above, the gradient ascent 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 − 𝜂 𝜕ℓ
𝜕𝑤𝑖𝑗

corresponds to the choice of 𝐴 = Id on parameter space, namely, the norm of
a change of parameters 𝛿𝑤 = (𝛿𝑤𝑖𝑗) is ‖𝛿𝑤‖2 :=

∑︀
| 𝛿𝑤𝑖𝑗 |2. Thus, gradient

descent for 𝑤𝑖𝑗 gives the best 𝛿𝑤 for a given norm ‖𝛿𝑤‖, that is, the best
change of 𝑓 for a given change in the numerical value of the parameters.

Example: from sigmoid to tanh activation function. Neural net-
works using the sigmoid and tanh activation function are defined, respectively,
by

𝑎𝑘 = sigm(
∑︁

𝑖, 𝑖→𝑘

𝑎𝑖𝑤𝑖𝑘) (44)

and
𝑎′

𝑘 = tanh(
∑︁

𝑖, 𝑖→𝑘

𝑎′
𝑖𝑤

′
𝑖𝑘) (45)

(including the biases 𝑤0𝑘 and 𝑤′
0𝑘). Since tanh(𝑥) = 2 sigm(2𝑥) − 1, the

activities of the network correspond to each other via 𝑎′
𝑘 = 2𝑎𝑘 − 1 for all 𝑘

if we set
𝑤′

𝑖𝑘 = 𝑤𝑖𝑘

4 (46)

for 𝑖 ̸= 0, and
𝑤′

0𝑘 = 𝑤0𝑘

2 + 1
4
∑︁
𝑖 ̸=0

𝑤𝑖𝑘 (47)
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for the biases.
Consequently, while the gradient for the sigmoid function will try to

improve performance while minimizing the change to the numerical values
of 𝑤𝑖𝑘 and 𝑤0𝑘, the gradient for the tanh function will do the same for the
numerical values of 𝑤′

𝑖𝑘 and 𝑤′
0𝑘, obviously resulting in different updates. If

we follow the tanh gradient and rewrite it back in terms of the variables 𝑤𝑖𝑘,
we see that the tanh update expressed in the variables 𝑤𝑖𝑘 is

𝑤𝑖𝑘 ← 𝑤𝑖𝑘 + 16(𝛿𝑤𝑖𝑘 −
1
2 𝛿𝑤0𝑘) (𝑖 ̸= 0) (48)

and

𝑤0𝑘 ← 𝑤0𝑘 + 4𝛿𝑤0𝑘 − 8
∑︁
𝑖 ̸=0

(𝛿𝑤𝑖𝑘 −
1
2 𝛿𝑤0𝑘) (49)

where 𝛿𝑤𝑖𝑘 is the update that would have been applied to 𝑤𝑖𝑘 if we were
following the standard sigmoid backpropagation. Indeed this takes the form
of a symmetric matrix applied to 𝛿𝑤𝑖𝑘 (the cross-contributions of 𝛿𝑤0𝑘 to
𝑤𝑖𝑘 and of 𝛿𝑤𝑖𝑘 to 𝑤0𝑘 are the same).

Apart from an obvious speedup factor, an important difference between
this update and ordinary (sigmoid) backpropagation on the 𝑤𝑖𝑘 is that each
time a weight 𝑤𝑖𝑘 is updated, there is an opposite, twice as small contribution
to 𝑤0𝑘: in this sense, it is as if this update assumes that the activities 𝑎𝑖 are
centered around 1/2 so that when 𝑤𝑖𝑘 gets changed to 𝑤𝑖𝑘 + 𝑐, one “needs”
to add −𝑐/2 to the bias so that things stay the same on average.

Newton’s method and gradient descent. To find the minimum of a
function 𝑓 on R, one can use the Newton method to solve 𝑓 ′ = 0, namely,
𝑥← 𝑥− 𝑓 ′(𝑥)/𝑓 ′′(𝑥). In higher dimension this becomes

𝑥← 𝑥− (Hess 𝑓)−1𝜕𝑓/𝜕𝑥 (50)

where 𝜕𝑓/𝜕𝑥 is the vector of partial derivatives, and (Hess 𝑓)𝑖𝑗 := 𝜕2𝑓/𝜕𝑥𝑖𝜕𝑥𝑗

is the Hessian matrix of 𝑓 .
Around a non-degenerate minimum of 𝑓 , the Hessian Hess 𝑓 will be a

positive-definite matrix. So the Newton method can be seen as a gradient
descent with learning rate 𝜂 = 1, in the metric 𝐴 = Hess 𝑓 , when one is close
enough to a minimum.

Intrinsic metrics. There could be a lot of arguing and counter-arguing
about the “right” way to write the parameters with respect to which the
gradient should be taken. The solution to avoid these choices is known:
use metrics that depend on what the system does, rather than on how the
parameters are decomposed as numbers.
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The Fisher metric, which defines a natural gradient [AN00], is one such
metric. Namely: the size (norm) of a change of parameters is measured by
the change it induces on the probability distribution of the output of the
model. The symmetric matrix 𝐴 used in the gradient update is then the
Fisher information matrix. We will use scaled-down versions of the Fisher
metric for better scalability.

We present another metric for neural networks, the backpropagated metric.
The size of a change of parameters at a given unit is measured by the
effect it has on the units it directly influences, which is itself measured
recursively in the same way up to the output layer. The matrix defining this
metric is obtained by well-known equations related to the Gauss–Newton
approximation of the Hessian.

2.2 Intrinsic metrics and their computation by backpropaga-
tion

Here we rewrite the definition of neural networks in the language of differential
manifolds and Riemannian geometry; this allows us to define metrics directly
in an intrinsic way.

Consider a neural-like network made of units influencing each other. The
activity of each unit 𝑘 takes values in a space 𝒜𝑘 which we assume to be a
differentiable manifold (typically R without a preferred origin and scale, but
we allow room for multidimensional activations). Suppose that the activation
of the network follows

𝑎𝑘 = 𝑓𝑘
𝜃𝑘

(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘
) (51)

where 𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘
are the units pointing to 𝑘, and where 𝑓𝑘

𝜃𝑘
is a function

from 𝒜𝑖1×· · ·×𝒜𝑖𝑛𝑘
to 𝒜𝑘, depending on a parameter 𝜃𝑘 which itself belongs

to a manifold Θ𝑘. Here we have no special, always-activated unit coding for
biases: the biases are a part of the parameters 𝜃𝑘.

We shall also assume that the output units in the network are interpreted
through a final decoding function to produce an object 𝜔 = 𝜔((𝑎𝑘)𝑘∈ℒout)
relevant to the initial problem, also assumed to belong to a differentiable
manifold.

To implement any gradient ascent over the parameters 𝜃, we first need a
(Riemannian) metric on the parameter space. Such a metric can be defined by
choosing a parametrization by R𝑑 and deciding that the elementary vectors
of R𝑑 are orthogonal, but this is not intrinsic: different parametrizations will
lead to different learning trajectories.

In this setting, an object is said to be intrinsic if it does not depend
on a choice of parametrization of any of the manifolds involved (activities,
parameters, final output). Hopefully, casting the activities as elements in
an abstract manifold, and writing intrinsic algorithms that will not depend
on how this manifold is represented as numbers, allows the algorithms to be
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agnostic as to any physical interpretation of these activities (activation levels,
activation frequencies, log-frequencies, synchronized activity of a group of
neurons...)

We assume that we are given a meaningful Riemannian metric on the
final output 𝜔: that is, we know how to measure the size of a change in the
output. For instance, if 𝜔 describes a probability distribution over a target
variable 𝑦, we can use the Fisher metric over 𝜔 (usually simpler to work
with than the Fisher metric over the whole network parameter space). In
the case 𝜔 is a Gaussian of fixed variance centered on the output values, this
coincides with a Euclidean norm on these values.

Then there are several possibilities to define intrinsic Riemannian metrics
on parameter space. The most direct one is the Fisher metric: the output is
seen as a function of all parameters, and the norm of a change of parameter
𝛿𝜃 (over all parameters at once) is the norm of the change it induces on the
output. This is not scalable: for a neural network with 𝑛 units, 𝑛out output
units, and 𝑑 incoming edges per unit, processing each data sample takes
𝑂(𝑛2𝑑2 + 𝑛2𝑛out), compared to 𝑂(𝑛𝑑) for backpropagation.

A more scalable version is to break down the change of parameter into
a sum of changes of incoming parameters to each unit and take the Fisher
metric at each unit independently. This is the unitwise Fisher metric. As we
will see, it scales well to sparsely connected networks if the output layer is
not too large: processing each data sample takes 𝑂(𝑛𝑑2 + 𝑛out𝑛𝑑).

An even simpler version is the backpropagated metric, defined by back-
wards induction from the output layer: the norm of a change of parameter
on the output layer is the norm of the change it induces on the final result,
and the norm of a change of parameter at an internal unit is the sum of the
norm of the resulting changes at the units it influences directly. Processing
each data sample takes 𝑂(𝑛𝑑2).

Quasi-diagonal reduction (Section 2.3) further produces simplified intrin-
sic metrics in which the 𝑂(𝑛𝑑2) terms reduce to 𝑂(𝑛𝑑).

Notation. In what follows, we use the standard objects of differential
geometry but try to present them in an intuitive way; Appendix C gives
a fully formal treatment. The notation 𝛿𝑎, 𝛿𝜃, 𝛿𝜔 denotes tangent vectors
on the corresponding manifolds (intuitively, differences between two very
close values of 𝑎 or 𝜃 or 𝜔). The notation 𝜕𝑎𝑖

𝜕𝑎𝑘
denotes the differential

(total derivative) of the activity 𝑎𝑖 seen as a function of 𝑎𝑘. In a basis it is
represented as the Jacobian matrix of partial derivatives of the components of
𝑎𝑖 w.r.t. those of 𝑎𝑘 (if activities are more than 1-dimensional). In particular,
for a numerical function 𝑓 , 𝜕𝑓

𝜕𝜃 is represented as a row vector, and for an
infinitesimal change (tangent vector) 𝛿𝜃 we have 𝛿𝑓 = 𝜕𝑓

𝜕𝜃 𝛿𝜃. The various
metrics involved are (0, 2)-tensors, but we use standard matrix notation for
them. With this convention a metric gradient descent on 𝜃 takes the form
𝜃 ← 𝜃 −𝑀(𝜃)−1 𝜕𝑓

𝜕𝜃

⊤.
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Definition 13 (Natural metric, unitwise natural metric,
backpropagated metric). Let ‖𝛿𝜔‖2 =

∑︀
Ω𝑖𝑗 𝛿𝜔𝑖𝛿𝜔𝑗 = 𝛿𝜔⊤Ω𝛿𝜔 be a

metric on the final output of the network, given by the symmetric, positive-
definite matrix Ω. We define three metrics on the parameter set.

∙ The natural metric on the parameter set 𝜃 = (𝜃𝑘) is defined as follows.
Let 𝑥 be an input in the dataset 𝒟 and let 𝜔(𝑥) be the final output of
the network run with input 𝑥 and parameter 𝜃. Let 𝛿𝜃 be a variation
of 𝜃 and let 𝛿𝜔(𝑥) be the resulting variation of 𝜔(𝑥). Let

‖𝛿𝜃‖2nat,𝑥 := ‖𝛿𝜔(𝑥)‖2 (52)

and then define the natural metric by

‖𝛿𝜃‖2nat := E𝑥∈𝒟 ‖𝛿𝜃‖2nat,𝑥 (53)

In matrix form, we have 𝛿𝜔(𝑥) = 𝜕𝜔(𝑥)
𝜕𝜃 𝛿𝜃 where 𝜕𝜔

𝜕𝜃 is the Jacobian
matrix of 𝜔(𝑥) as a function of 𝜃, so that the natural metric is given
by the matrix

‖𝛿𝜃‖2nat = E𝑥∼𝒟𝛿𝜃⊤𝜕𝜔(𝑥)
𝜕𝜃

⊤
Ω 𝜕𝜔(𝑥)

𝜕𝜃
𝛿𝜃 (54)

The natural metric is given by a matrix of size dim 𝜃 =
∑︀

𝑘 dim 𝜃𝑘.

∙ The unitwise natural metric on the parameter set 𝜃 is

‖𝛿𝜃‖2u-nat :=
∑︁

𝑘

‖𝛿𝜃𝑘‖2nat (55)

where 𝑘 runs over the units of the network and 𝛿𝜃𝑘 is the variation of
the incoming parameters to unit 𝑘. This metric is given by keeping only
the block-diagonal terms incoming to each unit in the matrix defining
the natural metric.
In case 𝜔 is a probability distribution and the metric Ω on 𝜔 is the
Fisher metric, we also call ‖𝛿𝜃‖nat and ‖𝛿𝜃‖u-nat the Fisher metric and
unitwise Fisher metric.

∙ The backpropagated metric on 𝜃 is defined as follows. Let 𝑥 be an
input in the data. We first define a metric on each of the activities 𝑎𝑘,
depending on the input 𝑥, working from the output layer backwards.
Given a change 𝛿𝑎𝑘out in the activity at an output unit 𝑘out, let 𝛿𝜔(𝑥)
be the corresponding change in the final output and set

‖𝛿𝑎𝑘out‖
2
bp,𝑥 := ‖𝛿𝜔(𝑥)‖2 (56)
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The metric on internal units 𝑘 is defined as follows: Given a change
𝛿𝑎𝑘 in the activity of unit 𝑘, let 𝛿𝑎𝑖 be the resulting changes in the
activities of units 𝑘 → 𝑖 directly influenced by 𝑘. Define by induction
from the output layer

‖𝛿𝑎𝑘‖2bp,𝑥 :=
∑︁

𝑖, 𝑘→𝑖

‖𝛿𝑎𝑖‖2bp,𝑥 (57)

Given a change 𝛿𝜃𝑘 of the incoming parameters to unit 𝑘, let 𝛿𝑎𝑘,𝑥 be
the change of activity of unit 𝑘 resulting from the change 𝛿𝜃𝑘, when
the network is run on input 𝑥. Define the backpropagated metric by

‖𝛿𝜃𝑘‖2bp := E𝑥∈𝒟 ‖𝛿𝑎𝑘,𝑥‖2bp,𝑥 (58)

and
‖𝛿𝜃‖2bp :=

∑︁
𝑘∈ℒ
‖𝛿𝜃𝑘‖2bp (59)

Another metric, the outer product (OP) metric, can be defined from
slightly different ingredients. It corresponds to an often-used variant of the
natural gradient (e.g., [APF00, LMB07]), in which the expectation under
the current probability distribution is replaced with a similar term involving
only the desired target 𝑦 for each input 𝑥 (more details in Section 2.5). It
can readily be computed by backpropagation from (62).

Whereas the metrics above depend on the actual output 𝜔(𝑥) for each
input 𝑥, together with a metric on 𝜔, but not on any target value for 𝑥, the
OP metric depends on a loss function ℓ(𝜔(𝑥), 𝑦(𝑥)) encoding the deviation
of 𝜔(𝑥) from a desired target 𝑦(𝑥) for 𝑥; but not on a choice of metric for 𝜔.

Definition 14 (Outer product metric). For each input 𝑥 in the
dataset 𝒟, let 𝜔(𝑥) be the final output of the network run with input 𝑥
and parameter 𝜃. Let ℓ(𝜔(𝑥), 𝑦(𝑥)) be the loss function measuring how 𝜔(𝑥)
departs from the desired output 𝑦(𝑥) for 𝑥.

The outer product metric is defined as follows. Let 𝛿𝜃 be a variation of 𝜃
and let 𝛿ℓ𝑥 be the resulting variation of ℓ(𝜔(𝑥), 𝑦(𝑥)). Define

‖𝛿𝜃‖2op := E𝑥∈𝒟(𝛿ℓ𝑥)2 (60)

In matrix form, this metric is

‖𝛿𝜃‖2op = E𝑥∼𝒟𝛿𝜃⊤ 𝜕ℓ

𝜕𝜃

⊤𝜕ℓ

𝜕𝜃
𝛿𝜃 (61)

where 𝜕ℓ
𝜕𝜃 is the row vector of partial derivatives (the differential) of the loss

function. Thus this metric is given by the matrix

E𝑥∼𝒟
𝜕ℓ

𝜕𝜃

⊤𝜕ℓ

𝜕𝜃
(62)
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hence its name.
The unitwise outer product metric is defined by

‖𝛿𝜃‖2u-op :=
∑︁

𝑘

‖𝛿𝜃𝑘‖2op (63)

where 𝑘 runs over the units of the network and 𝛿𝜃𝑘 is the variation of the
incoming parameters to unit 𝑘. This metric is given by keeping only the
block-diagonal terms incoming to each unit in the matrix defining the outer
product metric.

The OP metric has been used simply under the name “natural gradient”
in [APF00, LMB07], which can lead to some confusion because it is distinct
from the natural metric using the true Fisher information matrix (see the
discussion in [PB13]). Moreover the OP metric makes sense for optimization
situations more general than the natural gradient, in which the loss function
is not necessarily of the form ln 𝑝𝜃 for a probabilistic model 𝑝. For these two
reasons we adopt a purely descriptive name8.

The OP metric is characterized, among all possible metrics, by a unique
property: it provides a gradient step for which progress is most evenly
distributed among all data samples.

Proposition 15 (OP gradient equalizes the gain over the
samples). Let 𝐿 := E𝑥∈𝒟ℓ𝑥 be the average loss with ℓ𝑥 the loss on input 𝑥.
The direction 𝛿𝜃 given by the gradient of 𝐿 computed in the outer product
metric (Def. 26) has the following property: Among all directions 𝛿𝜃 yielding
the same infinitesimal increment 𝛿𝐿 at first order, it is the one for which
the increment is most evenly spread over the data samples 𝑥 ∈ 𝒟, namely,
Var𝑥∈𝒟 𝛿ℓ𝑥 = E𝑥∈𝒟(𝛿ℓ𝑥 − 𝛿𝐿)2 is minimal.

The proof is given in the Appendix. The unitwise OP metric does not,
in general, satisfy this property: instead, it minimizes the variance, over
a random data sample 𝑥 ∈ 𝒟 and a random unit 𝑘 in the network, of the
contribution to 𝛿ℓ𝑥 of the change 𝛿𝜃𝑘 at unit 𝑘, so that it tries to spread 𝛿𝐿
uniformly both over data samples and units.

Remark 16 (Metric for output parameters). The case when
the decoding function 𝜔((𝑎𝑘)𝑘∈ℒout) depends on additional “output parame-
ters” 𝜗 (e.g., softmax output with variable coefficients Pr(𝑘) = e𝜗𝑘𝑎𝑘/(

∑︀
𝑘′ e𝜗𝑘′ 𝑎𝑘′ ))

can be recovered by considering 𝜔 as an additional output unit to the net-
work, so that 𝜗 becomes the parameter of the activation function of 𝜔. In

8 The outer product metric is distinct from the “outer product (or Levenberg–Marquardt)
approximation” of the Hessian of the loss function [Bis06, 5.4.2]. The latter can be obtained
from the natural metric (54) in which the output metric Ω is replaced with the Hessian
of the loss function ℓ𝑥 w.r.t. 𝜔. It depends on the parametrization of 𝜔. For exponential
families in the canonical parametrization it coincides with the Fisher metric.
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particular, applying the definitions above, the metric Ω on 𝜔 induces a metric
on 𝜗 by

‖𝛿𝜗‖2bp = ‖𝛿𝜗‖2nat = 𝛿𝜗⊤
(︃
E𝑥∈𝒟

𝜕𝜔

𝜕𝜗

⊤
Ω 𝜕𝜔

𝜕𝜗

)︃
𝛿𝜗 (64)

given by the matrix E𝑥∈𝒟
𝜕𝜔
𝜕𝜗

⊤Ω 𝜕𝜔
𝜕𝜗 . So 𝜗 can be trained by gradient descent

in this metric.

For the Fisher metric, the following is well-known.

Proposition 17 (Invariance). The natural metric, unitwise natural
metric, backpropagated metric, and plain and unitwise outer product metrics
are intrinsic: ‖𝛿𝜃‖nat, ‖𝛿𝜃‖u-nat, ‖𝛿𝜃‖bp, ‖𝛿𝜃‖op, and ‖𝛿𝜃‖u-op do not depend
on a choice of parametrization for the activations 𝑎𝑘 and for the parameter
𝜃𝑘 at each unit 𝑘.

Proof. These metrics have been defined without any reference to parametriza-
tions, directly by defining the norm of a tangent vector 𝛿𝜃; see Appendix C
for a more formal treatment. Consequently the value of the norm ‖𝛿𝜃‖ is
the same expressed in any coordinate system [GHL87, 2.1].

The natural metric actually has stronger invariance properties than the
unitwise natural metric: it does not depend on a change of parametrization
of the whole parameter 𝜃 = (𝜃𝑘) that would mix the various components.
As such, the unitwise natural metric depends on a choice of decomposition
of the network into units, while the natural metric is only a function of the
input-output relationship of the whole network. The same holds for the OP
and unitwise OP metrics.

Remark 18 (Unitwise metrics as change in activation pro-
file). We saw above that the metric used to define a gradient represents
a “cost” of moving in certain directions. All three unitwise metrics (unit-
wise natural, backpropagated, and unitwise OP) share a common property:
these metrics decompose as a sum, over the units 𝑘, of terms of the form
‖𝛿𝜃𝑘‖2 = E𝑥∈𝒟 𝑐𝑥,𝑘 ‖𝛿𝑎𝑘(𝑥)‖2 where 𝛿𝑎𝑘(𝑥) is the resulting change of activ-
ity at 𝑘 on input 𝑥, and 𝑐𝑥,𝑘 is a weight (different for these three metrics)
estimating the influence of 𝑘 on the output. Thus, the “cost” of a change at
unit 𝑘 according to these metrics, is an average square norm of the resulting
change in activation profile 𝑎𝑘(𝑥) over 𝑥 in the dataset. This is related to
the best-fit interpretation of these metrics (Section 3.3).

Computing the metrics. These metrics can be explicitly computed as
follows.

The outer product metric is the easiest to compute: the terms 𝜕ℓ
𝜕𝜃 are

directly computed by ordinary backpropagation, namely, 𝜕ℓ
𝜕𝜃𝑘

= 𝜕ℓ
𝜕𝑎𝑘

𝜕𝑎𝑘
𝜕𝜃𝑘
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where 𝜕ℓ
𝜕𝑎𝑘

(= 𝑏𝑘) is computed by backpropagation and 𝜕𝑎𝑘
𝜕𝜃𝑘

is obtained from
the activation function at unit 𝑘. Then the matrix defining the metric is
E𝑥∈𝒟

𝜕ℓ
𝜕𝜃

⊤𝜕ℓ
𝜕𝜃 , or, for the unitwise version, E𝑥∈𝒟

𝜕ℓ
𝜕𝜃𝑘

⊤ 𝜕ℓ
𝜕𝜃𝑘

at each unit 𝑘.
To compute the natural and unitwise natural metrics, it is enough to

compute the Jacobian matrix 𝜕𝜔
𝜕𝜃 . This can be done by performing one

backpropagation for each component of the output layer, for each input
𝑥 ∈ 𝒟, as follows.

Definition 19 (Backpropagation transfer rates). Let 𝑘out be
an output unit and let 𝑘 be any unit in the network. The backpropagation
transfer rate 𝐽𝑘out

𝑘 from 𝑘out to 𝑘 is the dim(𝑎𝑘out)× dim(𝑎𝑘) matrix defined
by ⎧⎪⎪⎨⎪⎪⎩

𝐽𝑘out
𝑘out

:= Iddim(𝑎𝑘out )

𝐽𝑘out
𝑘 := 0 for 𝑘 ̸= 𝑘out in the output layer ℒout

𝐽𝑘out
𝑘 :=

∑︀
𝑗, 𝑘→𝑗 𝐽𝑘out

𝑗
𝜕𝑎𝑗

𝜕𝑎𝑘
for non-output units 𝑘

(65)

where 𝜕𝑎𝑗

𝜕𝑎𝑘
is the Jacobian matrix of the activation function from unit 𝑘 to

unit 𝑗. Then we have 𝐽𝑘out
𝑘 = 𝜕𝑎𝑘out

𝜕𝑎𝑘
.

This depends on an input 𝑥: the activation state of the network has to be
computed by forward propagation before these quantities can be computed.

Typically the activities are one-dimensional, not multidimensional, so
that each 𝐽𝑘out

𝑘 is just a number, not a matrix. In this case, all the transfer
rates 𝐽𝑘out

𝑘 can be computed by performing 𝑛out distinct backpropagations
each initialized with a single 1 on the output layer.

Since the influence of the parameter 𝜃𝑘 on the output goes through the
activity of unit 𝑘, the unitwise natural metric at 𝑘 can be computed from a
single number (if activities are one-dimensional) measuring the influence of
unit 𝑘 on the output, the Fisher modulus.

Definition 20 (Fisher modulus). Let 𝑥 be an input. Let 𝑘 be a
unit in the network. Let Ω be the metric on the final output 𝜔. The Fisher
modulus Φ𝑘(𝑥) of 𝑘 on input 𝑥 is the dim(𝑎𝑘)× dim(𝑎𝑘) matrix given by

Φ𝑘(𝑥) :=

⎛⎝ ∑︁
𝑘out∈ℒout

𝜕𝜔

𝜕𝑎𝑘out
𝐽𝑘out

𝑘

⎞⎠⊤

Ω

⎛⎝ ∑︁
𝑘out∈ℒout

𝜕𝜔

𝜕𝑎𝑘out
𝐽𝑘out

𝑘

⎞⎠ (66)

For each input 𝑥, the Fisher modulus is an intrinsic metric on 𝑎𝑘: for a given
input 𝑥, the norm

‖𝛿𝑎𝑘‖2F-mod := 𝛿𝑎⊤
𝑘Φ𝑘𝛿𝑎𝑘 (67)

does not depend on any choice of parametrization.
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Note that 𝜕𝜔
𝜕𝑎𝑘out

depends on the output layer interpretation but not on
any parameter 𝜃. Thus, since the transfer rates 𝐽 can be computed by
backpropagation, the Fisher modulus only involves known quantities.

Proposition 21 (Computation of the unitwise natural met-
ric). The unitwise natural metric at unit 𝑘 is given by

‖𝛿𝜃𝑘‖2u-nat = E𝑥∈𝒟 ‖𝛿𝑎𝑘(𝑥)‖2F-mod (68)

= E𝑥∈𝒟 𝛿𝜃⊤
𝑘

𝜕𝑎𝑘

𝜕𝜃𝑘

⊤
Φ𝑘

𝜕𝑎𝑘

𝜕𝜃𝑘
𝛿𝜃𝑘 (69)

where 𝛿𝑎𝑘(𝑥) is the variation of 𝑎𝑘(𝑥) induced by 𝛿𝜃, and 𝜕𝑎𝑘
𝜕𝜃𝑘

is the Jacobian
matrix of the activation function at 𝑘. Thus the matrix defining the unitwise
natural metric at unit 𝑘 is

𝐹 (𝑘) = E𝑥∈𝒟
𝜕𝑎𝑘

𝜕𝜃𝑘

⊤
Φ𝑘

𝜕𝑎𝑘

𝜕𝜃𝑘
(70)

Proof. By definition of the transfer rates 𝐽 we have 𝐽𝑘out
𝑘 = 𝜕𝑎𝑘out

𝜕𝑎𝑘
. Thus∑︀

𝑘out∈ℒout
𝜕𝜔

𝜕𝑎𝑘out
𝐽𝑘out

𝑘 = 𝜕𝜔
𝜕𝑎𝑘

so that

Φ𝑘 = 𝜕𝜔

𝜕𝑎𝑘

⊤
Ω 𝜕𝜔

𝜕𝑎𝑘
(71)

hence
𝜕𝑎𝑘

𝜕𝜃𝑘

⊤
Φ𝑘

𝜕𝑎𝑘

𝜕𝜃𝑘
= 𝜕𝑎𝑘

𝜕𝜃𝑘

⊤ 𝜕𝜔

𝜕𝑎𝑘

⊤
Ω 𝜕𝜔

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝜃𝑘
= 𝜕𝜔

𝜕𝜃𝑘

⊤
Ω 𝜕𝜔

𝜕𝜃𝑘
(72)

which, after averaging over the dataset, is the definition of the unitwise
natural metric at 𝑘.

An analogous formula can be defined for the full (rather than unitwise)
Fisher matrix, by defining a Fisher modulus Φ𝑘𝑘′ indexed by two units, and
using unit 𝑘′ on the left and 𝑘 on the right in (66). Then the block of entries
of the Fisher matrix corresponding to parameters 𝜃𝑘 and 𝜃𝑘′ is

E𝑥∈𝒟
𝜕𝑎𝑘′

𝜕𝜃𝑘′

⊤
Φ𝑘𝑘′

𝜕𝑎𝑘

𝜕𝜃𝑘
(73)

(see also Proposition 27).

The unitwise Fisher metric is costly to compute when the output layer
is large. We can define another intrinsic metric for the activation of unit 𝑘,
simply by backpropagating the metric of the output layer.

The changes in the output induced by a change of 𝜃𝑘 all transit through
the activation of unit 𝑘. So if we have an intrinsic metric ‖𝛿𝑎𝑘‖2 for the
activation of unit 𝑘, we can immediately define an intrinsic metric for 𝜃𝑘, by
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looking at the resulting change 𝛿𝑎𝑘 = 𝜕𝑎𝑘
𝜕𝜃𝑘

𝛿𝜃𝑘 induced by a change 𝛿𝜃𝑘, and
defining the norm of 𝛿𝜃𝑘 to be the norm of the resulting 𝛿𝑎𝑘. If the metric
on 𝑎𝑘 is given, in some parametrization of 𝑎𝑘, by ‖𝛿𝑎𝑘‖2 = 𝛿𝑎⊤

𝑘𝑔𝑘𝛿𝑎𝑘 where
𝑔𝑘 is a symmetric, positive-definite matrix of size (dim 𝑎𝑘)× (dim 𝑎𝑘), then
defining ‖𝛿𝜃𝑘‖ to be the norm of this 𝛿𝑎𝑘,

‖𝛿𝜃𝑘‖ :=
⃦⃦⃦⃦

𝜕𝑎𝑘

𝜕𝜃𝑘
𝛿𝜃𝑘

⃦⃦⃦⃦
(74)

yields

‖𝛿𝜃𝑘‖2 =
(︂

𝜕𝑎𝑘

𝜕𝜃𝑘
𝛿𝜃𝑘

)︂⊤
𝑔𝑘

(︂
𝜕𝑎𝑘

𝜕𝜃𝑘
𝛿𝜃𝑘

)︂
(75)

in other words, the matrix defining this metric is 𝜕𝑎𝑘
𝜕𝜃𝑘

⊤
𝑔𝑘

𝜕𝑎𝑘
𝜕𝜃𝑘

.
The unitwise Fisher metric is obtained from the Fisher modulus by this

construction. We now define another intrinsic modulus playing the same role
for the backpropagated metric.

Proposition 22 (Backpropagated modulus and computa-
tion of the backpropagated metric). Let 𝑥 be an input. Let
𝑘 be a unit in the network. Let Ω be the metric on the final output 𝜔. The
backpropagated modulus 𝑚𝑘(𝑥) at 𝑘 is the dim(𝑎𝑘)× dim(𝑎𝑘) matrix given
by

𝑚𝑘(𝑥) :=

⎧⎨⎩
𝜕𝜔
𝜕𝑎𝑘

⊤Ω 𝜕𝜔
𝜕𝑎𝑘

for 𝑘 in the output layer∑︀
𝑗, 𝑘→𝑗

𝜕𝑎𝑗

𝜕𝑎𝑘

⊤
𝑚𝑗

𝜕𝑎𝑗

𝜕𝑎𝑘
for 𝑘 an internal unit

(76)

Then, for each input 𝑥, the backpropagated metric on 𝑎𝑘 is given by the
backpropagated modulus:

‖𝛿𝑎𝑘‖2bp,𝑥 = 𝛿𝑎⊤
𝑘𝑚𝑘𝛿𝑎𝑘 (77)

and so the backpropagated metric on 𝜃𝑘 is given by the matrix E𝑥∈𝒟
𝜕𝑎𝑘
𝜕𝜃𝑘

⊤
𝑚𝑘

𝜕𝑎𝑘
𝜕𝜃𝑘

,
namely,

‖𝛿𝜃𝑘‖2bp = E𝑥∈𝒟 𝛿𝜃⊤
𝑘

𝜕𝑎𝑘

𝜕𝜃𝑘

⊤
𝑚𝑘

𝜕𝑎𝑘

𝜕𝜃𝑘
𝛿𝜃𝑘 (78)

Proof. Immediate from the definition of the backpropagated metric and
𝛿𝑎𝑖 = 𝜕𝑎𝑖

𝜕𝑎𝑘
𝛿𝑎𝑘 and 𝛿𝑎𝑘 = 𝜕𝑎𝑘

𝜕𝜃𝑘
𝛿𝜃𝑘.

Like the Fisher modulus, the backpropagated modulus is a single number
when activities are one-dimensional. The cost of its computation is the same
as one backpropagation pass.

The equation defining the backpropagated modulus is well-known: it is
related to the so-called Gauss–Newton approximation to the Newton method
(see for instance [LBOM96], Section 7), which consists in computing the
Hessian of the loss function and throwing away all terms involving the second
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derivative of the activation function (those could result in non–positive-
definite terms, in which case the Newton method is ill-behaved), with the
additional approximation that cross-terms between different units are also
thrown away. Here we see that no approximation is involved: we do not
throw away annoying terms, we simply define an intrinsic metric. There
is actually no meaningful notion of the Hessian of a function on manifolds
[GHL87, paragraph 3.37] unless additional structure (affine, Riemannian) is
given or we are at a critical point of the function; the annoying terms above
are precisely the terms that prevent such a notion to exist. So one could
even say, in the context of differential geometry, that the Newton method is
an approximation of the backpropagated metric rather than the other way
round.

The backpropagated modulus and the Fisher modulus are related: If one
tries to write a backpropagated equation to compute the Fisher modulus Φ𝑘

in terms of the Fisher modulus at units pointed by 𝑘, one finds a quadratic
(instead of linear) backpropagation equation with terms involving pairs of
units. Keeping only the terms involving a single unit yields the equation
defining the backpropagated modulus.

2.3 Quasi-diagonal reduction of a unitwise metric

The unitwise Fisher metric, backpropagated metric, and unitwise OP metric,
still involve a full matrix on the incoming parameter space at each unit, and
are thus not adapted if network connectivity is large. We now introduce two
metrics enjoying lesser invariance properties than the above, but quicker to
compute.

Given an intrinsic metric ‖𝛿𝜃𝑘‖ on 𝜃𝑘 (such as the unitwise Fisher or
backpropagated metric), we are going to define a simpler one, ‖𝛿𝜃𝑘‖qd. The
inverse of the matrix defining this metric will be quasi-diagonal, with the only
non-zero diagonal terms being those between a weight and the bias. This will
allow for quick gradient steps costing no more than classical backpropagation.

This relies on the affine structure in neural networks: this simplification
makes sense in a somewhat more restricted setting than the general setting
above. Suppose that the activation function

𝑎𝑘 = 𝑓𝑘
𝜃𝑘

(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘
) (79)

can be written as a composition of a fixed, non-linear activation function 𝜙
and a quantity 𝑦𝑘 that is an affine function of 𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘

:

𝑎𝑘 = 𝜙(𝑦𝑘,𝜃𝑘
(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘

)) (80)

such that when 𝜃𝑘 ranges over its values, 𝑦𝑘,𝜃𝑘
ranges over all possible affine

functions of 𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘
. For this to make sense, we now have to assume

that the activities 𝑎𝑘 live in an affine space. So let us go back to activities
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with values in R, but without any preferred origin and scale for activities:
we look for invariance under replacement of 𝑎𝑖 with 𝛼𝑖𝑎𝑖 + 𝛽𝑖 and likewise
for 𝑦𝑖.

In any given parametrization (choice of origin and basis) of 𝑎𝑖 and 𝑦𝑘 we
can write

𝑦𝑘 =
∑︁

𝑖, 𝑖→𝑘

𝑤𝑖𝑘𝑎𝑖 + 𝑤0𝑘 (81)

for some values 𝑤𝑖𝑘; specifying the parameter 𝜃𝑘 is equivalent to specifying
these quantities.

But this decomposition will change if we change the affine parametrization
of activities: if 𝑎′

𝑖 = 𝛼𝑖𝑎𝑖 + 𝛽𝑖 and 𝑦′
𝑘 = 𝛾𝑘𝑦𝑘 + 𝛿𝑘 the relation becomes

𝑦′
𝑘 = 𝛿𝑘 +

∑︀
𝑖 𝛾𝑘𝑤𝑖𝑘𝛼−1

𝑖 (𝑎′
𝑖 − 𝛽𝑖) + 𝛾𝑘𝑤0𝑘 =

∑︀
𝑖(𝛾𝑘𝑤𝑖𝑘𝛼−1

𝑖 )𝑎′
𝑖 + (𝛾𝑘𝑤0𝑘 + 𝛿𝑘 −∑︀

𝑖 𝑤𝑖𝑘𝛼−1
𝑖 𝛽𝑖) so that the new weights are 𝑤′

𝑖𝑘 = 𝛾𝑘𝑤𝑖𝑘𝛼−1
𝑖 and the new bias

is 𝑤′
0𝑘 = 𝛾𝑘𝑤0𝑘 + 𝛿𝑘 −

∑︀
𝑖 𝑤𝑖𝑘𝛼−1

𝑖 𝛽𝑖. In particular we see that there is no
intrinsic “separation” between the bias and the weights; but that there is a
separation between 𝑤𝑖𝑘 and 𝑤𝑖′𝑘 for different incoming units 𝑖 and 𝑖′. This
is formalized as follows.

Let 𝛿𝜃𝑘 be a change of parameter 𝜃𝑘. For 𝑖 ̸= 0, let 𝛿𝑤𝑖𝑘 be the resulting
change of 𝑤𝑖𝑘 in a given parametrization, and let 𝛿𝑤′

𝑖𝑘 be the resulting change
in another parametrization. If 𝛿𝑤𝑖𝑘 = 0, then we have 𝛿𝑤′

𝑖𝑘 = 0 as well in any
other affine parametrization, since 𝑤′

𝑖𝑘 = 𝛾𝑘𝑤𝑖𝑘𝛼−1
𝑖 yields 𝛿𝑤′

𝑖𝑘 = 𝛾𝑘𝛿𝑤𝑖𝑘𝛼−1
𝑖 .

Note that this does not depend on the input 𝑥 either9. Thus, having 𝛿𝑤𝑖𝑘 = 0
is a property of 𝛿𝜃𝑘 that does not depend on the chosen affine parametrization
of activities: it is an intrinsic property of the change of parameter 𝛿𝜃𝑘. Say
that a change of parameter 𝛿𝜃𝑘 does not involve unit 𝑖 if 𝛿𝑤𝑖𝑘 vanishes.

For the bias the situation is different: the expression 𝑤′
0𝑘 = 𝛾𝑘𝑤0𝑘 + 𝛿𝑘 −∑︀

𝑖 𝑤𝑖𝑘𝛼−1
𝑖 𝛽𝑖 giving the bias in a parametrization from the bias in another

parametrization is more complex, and so the fact that 𝛿𝑤0𝑘 = 0 does depend
on the parametrization. This is where the metric ‖𝛿𝜃𝑘‖ we are trying to
simplify comes into play.

Say that a change of parameter 𝛿𝜃𝑘 is pure bias if it does not involve
any unit 𝑖 incoming to 𝑘, i.e., if 𝛿𝑤𝑖𝑘 = 0 for all 𝑖 ̸= 0. This is an intrinsic
condition. Say that 𝛿𝜃𝑘 is bias-free if it is orthogonal, in the metric ‖𝛿𝜃𝑘‖ we
are trying to simplify, to all pure-bias vectors. Being bias-free is an intrinsic
condition, because by assumption the metric ‖𝛿𝜃𝑘‖ is intrinsic. Being bias-free
does not simply mean 𝛿𝑤0𝑘 = 0; let us work it out in coordinates.

Let 𝐴𝑖𝑖′ be the symmetric matrix defining the metric ‖𝛿𝜃𝑘‖ in a given
parametrization. The associated scalar product is

⟨𝛿𝜃𝑘, 𝛿𝜃′
𝑘⟩ =

∑︁
𝑖

∑︁
𝑖′

𝐴𝑖𝑖′ 𝛿𝑤𝑖𝑘𝛿𝑤′
𝑖′𝑘+

∑︁
𝑖

𝐴0𝑖(𝛿𝑤0𝑘𝛿𝑤′
𝑖𝑘+𝛿𝑤′

0𝑘𝛿𝑤𝑖𝑘)+𝐴00𝛿𝑤0𝑘𝛿𝑤′
0𝑘

(82)
9This relies on the affine form (81) of 𝑦𝑘. If 𝑦𝑘 is not affine in (80), having a constant

𝜕𝑦𝑘/𝜕𝑎𝑖 is not a well-defined notion and may depend on the input.
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with 𝐴0𝑖 = 𝐴𝑖0.
In particular, if the only non-zero component of 𝛿𝜃𝑘 is 𝛿𝑤𝑖𝑘, then its

scalar product with a pure bias 𝛿𝑤′
0𝑘 will be 𝐴0𝑖𝛿𝑤′

0𝑘𝛿𝑤𝑖𝑘. On the other
hand, if to 𝛿𝜃𝑘 we add a bias component 𝛿𝑤0𝑘 = −𝐴−1

00 𝐴0𝑖𝛿𝑤𝑖𝑘, then the
scalar product with any pure bias will vanish. Such a 𝛿𝜃𝑘 is thus bias-free.

In the case when the parameter 𝜃𝑘 allows to represent all affine functions
of the incoming activations, we can decompose a variation 𝛿𝜃𝑘 of 𝜃𝑘 into
components 𝛿𝜃𝑘𝑖 each involving only one incoming unit 𝑖, and a pure bias
component 𝛿𝜃𝑘0. This decomposition is unique if we impose that each
𝛿𝜃𝑘𝑖 is bias-free. Explicitly, if in some parametrization we have 𝛿𝜃𝑘 =
(𝛿𝑤0𝑘, 𝛿𝑤1𝑘, . . . , 𝛿𝑤𝑛𝑘𝑘) this decomposition is

𝛿𝜃𝑘𝑖 = (−𝐴−1
00 𝐴0𝑖𝛿𝑤𝑖𝑘, 0, . . . , 𝛿𝑤𝑖𝑘, 0, . . . , 0) (83)

and
𝛿𝜃𝑘0 = (𝛿𝑤0𝑘 +

∑︁
𝑖

𝐴−1
00 𝐴0𝑖𝛿𝑤𝑖𝑘, 0, . . . , 0) (84)

The decomposition 𝛿𝜃𝑘 = 𝛿𝜃𝑘0 +
∑︀

𝑖 𝛿𝜃𝑘𝑖 is intrinsic.
We can then define a new intrinsic metric on 𝛿𝜃𝑘 by setting

‖𝛿𝜃𝑘‖2qd := ‖𝛿𝜃𝑘0‖2 +
∑︁

𝑖

‖𝛿𝜃𝑘𝑖‖2 (85)

which is readily computed:

‖𝛿𝜃𝑘‖2qd = 𝐴00

(︃
𝛿𝑤0𝑘 +

∑︁
𝑖

𝐴−1
00 𝐴0𝑖𝛿𝑤𝑖𝑘

)︃2

+
∑︁

𝑖

(𝐴𝑖𝑖𝛿𝑤2
𝑖𝑘 − 2𝐴0𝑖(𝐴−1

00 𝐴0𝑖𝛿𝑤𝑖𝑘)𝛿𝑤𝑖𝑘 + 𝐴00(𝐴−1
00 𝐴0𝑖𝛿𝑤𝑖𝑘)2)

= 𝐴00𝛿𝑤2
0𝑘 + 2

∑︁
𝑖

𝐴0𝑖𝛿𝑤0𝑘𝛿𝑤𝑖𝑘 +
∑︁
𝑖,𝑖′

𝐴−1
00 𝐴0𝑖𝐴0𝑖′ 𝛿𝑤𝑖𝑘𝛿𝑤𝑖′𝑘

+
∑︁

𝑖

(𝐴𝑖𝑖 −𝐴−1
00 𝐴2

0𝑖)𝛿𝑤2
𝑖𝑘

(86)
Thus, this metric is defined by a matrix 𝐴 given by 𝐴00 = 𝐴00, 𝐴0𝑖 = 𝐴0𝑖

and 𝐴𝑖𝑖′ = 𝐴−1
00 𝐴0𝑖𝐴0𝑖′ + 1𝑖=𝑖′(𝐴𝑖𝑖 −𝐴−1

00 𝐴2
0𝑖).

Definition 23. Quasi-diagonal reduction is the process which, to an
intrinsic metric defined by a matrix 𝐴 in affine coordinates, associates the
metric defined by the matrix

𝐴 := diag(𝐴) + 𝐴−1
00 (𝑣 ⊗ 𝑣)− diag(𝐴−1

00 (𝑣 ⊗ 𝑣)) (87)

where
𝑣 = (𝐴00, . . . , 𝐴0𝑖, . . .) (88)
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The quasi-diagonal backpropagated metric is the quasi-diagonal metric
obtained from the backpropagated metric. The quasi-diagonal Fisher metric
is the one obtained from the unitwise Fisher metric. The quasi-diagonal OP
metric is the one obtained from the unitwise OP metric.

The reasoning in this section can be summarized as follows.

Proposition 24. Assume that the activation function is a fixed non-
linear function composed with an affine function. Then the quasi-diagonal
reduction 𝐴 of an intrinsic metric 𝐴 is intrinsic.

Importantly, the matrix 𝐴 = diag(𝐴) + 𝐴−1
00 (𝑣 ⊗ 𝑣)− diag(𝐴−1

00 (𝑣 ⊗ 𝑣))
is the sum of a diagonal matrix and a rank-1 matrix. This allows for easy
inversion, resulting in a quasi-diagonal inverse matrix.

Proposition 25 (Quasi-diagonal gradient step). Let 𝐴 be the
quasi-diagonal reduction of 𝐴. Let 𝑏 = (𝑏0, . . . , 𝑏𝑖, . . .) and 𝑤 = 𝐴−1𝑏. Then
𝑤 is given by

𝑤𝑖 = 𝑏𝑖𝐴00 − 𝑏0𝐴0𝑖

𝐴𝑖𝑖𝐴00 −𝐴2
0𝑖

for 𝑖 ̸= 0 (89)

𝑤0 = 𝑏0
𝐴00
−
∑︁
𝑖 ̸=0

𝐴0𝑖

𝐴00
𝑤𝑖 (90)

Thus, only the entries 𝐴00, 𝐴𝑖𝑖 and 𝐴0𝑖 of the original matrix 𝐴 need to
be known in order to implement gradient descent using the quasi-diagonal
metric defined by 𝐴.

Note that if the original matrix 𝐴 is positive-definite, we have 𝐴00 > 0
and 𝐴00𝐴𝑖𝑖 > 𝐴2

0𝑖 (by the Cauchy–Schwarz inequality applied to the first and
𝑖-th basis vectors), so that the solution 𝑤 above is well-defined and unique.

2.4 Intrinsic gradients

Thanks to these intrinsic metrics we can define intrinsic gradient directions
in parameter space. Given a dataset 𝒟 of inputs 𝑥 and corresponding targets
𝑦, the average loss function is

𝐿𝜃 := E𝑥∈𝒟ℓ𝜃(𝑦) (91)

where we put a subscript 𝜃 to make explicit its dependency on the parameters
of the network. Given an intrinsic metric ‖·‖, the differential

𝐺 = −𝜕𝐿𝜃

𝜕𝜃
(92)

of the average loss with respect to the full parameter set 𝜃, defines a gradient
direction ∇𝜃𝐿 by the usual definition: it is the only tangent vector such that
for any 𝛿𝜃 we have

𝐿𝜃+𝛿𝜃 = 𝐿𝜃 + ⟨∇𝜃𝐿, 𝛿𝜃⟩+ 𝑂(‖𝛿𝜃‖2) (93)
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where ⟨·, ·⟩ is the scalar product associated with the norm ‖·‖. In a parametriza-
tion where ‖·‖2 is given by a symmetric, positive definite matrix 𝐴, the
gradient is given by

∇𝜃𝐿 = 𝐴−1 𝜕𝐿

𝜕𝜃
= −𝐴−1𝐺 (94)

The gradient ∇𝜃𝐿 is an intrinsic tangent vector on the parameter set.

Definition 26. The natural gradient, unitwise natural gradient, back-
propagated metric gradient, OP gradient, unitwise OP gradient, and their
quasi-diagonal reductions, respectively, are the following update rule for 𝜃:

𝜃 ← 𝜃 − 𝜂∇𝜃𝐿 (95)

where ∇𝜃𝐿 = 𝐴−1 𝜕𝐿
𝜕𝜃 is the gradient of the average loss function 𝐿 computed

with 𝐴 the natural metric, unitwise natural metric, backpropagated met-
ric, OP metric, unitwise OP metric, and their quasi-diagonal reductions,
respectively.

The algorithms of Section 1 are the application of these updates to
ordinary neural networks, written out with [0; 1]-valued activities and sigmoid
activation function. More details on how this works out are given below
(Section 2.5).

This update is intrinsic only under all affine reparametrizations of the
parameter 𝜃. Indeed, even if the tangent vector ∇𝜃𝐿 giving the direction
of the gradient is fully intrinsic, adding a tangent vector to a parameter 𝜃
is not an intrinsic operation (if two parametrizations differ by a non-affine
transformation, then the additions will not amount to the same).

On the other hand, the ideal limit when the learning rate 𝜂 tends to 0 is
intrinsic: the trajectories of the differential equation

d𝜃(𝑡)
d𝑡

= −∇𝜃(𝑡)𝐿 (96)

are intrinsic trajectories in parameter space for the unitwise natural gradient
and backpropagated metric.

For the quasi-diagonal algorithms, invariance is always restricted to affine
reparametrizations, since this is the setup in which they are well-defined.

2.5 The Fisher matrix for neural networks

The general definitions above depend on the choice of a metric on the output
𝜔 of the network. When this metric is the Fisher metric on the output layer,
applying the general definitions above to ordinary neural networks leads to
the algorithms of Section 1. This is mostly by direct computation and we
do not reproduce it fully. Let us however discuss the Fisher metric in more
detail.
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For each input 𝑥, the network defines a probability distribution 𝜔 on the
outputs 𝑦. This probability distribution depends on the parameters of the
network. Thus, for each input 𝑥, we can define a datum-wise Fisher matrix
on the parameter set:

𝐹 (𝑥)𝑤𝑖𝑗𝑤𝑖′𝑗′ = E𝑦|𝑥
𝜕ℓ(𝑦)
𝜕𝑤𝑖𝑗

𝜕ℓ(𝑦)
𝜕𝑤𝑖′𝑗′

(97)

where as above ℓ(𝑦) = ln 𝜔(𝑦) and where E𝑦|𝑥 denotes expectation for 𝑦
following the distribution 𝜔 defined by the input 𝑥.

The dataset together with the network define a probability distribution
on pairs (𝑥, 𝑦), by first choosing at random an input 𝑥 in the dataset, then
running the network on this input. The Fisher matrix associated with this
distribution on pairs (𝑥, 𝑦) is the average of the datum-wise Fisher matrix
over the dataset

𝐹 = E𝑥∈𝒟𝐹 (𝑥) (98)

(see [AN00], Section 8.2), or more explicitly

𝐹𝑤𝑖𝑗𝑤𝑖′𝑗′ = E𝑥∈𝒟E𝑦|𝑥
𝜕ℓ(𝑦)
𝜕𝑤𝑖𝑗

𝜕ℓ(𝑦)
𝜕𝑤𝑖′𝑗′

(99)

Exact Fisher matrix versus one-sample Fisher matrix. One possible
way to train neural networks using the natural gradient is to estimate the
Fisher matrix by taking an input 𝑥 in the dataset, taking a random output
𝑦 for this input, and add the term 𝜕ℓ(𝑦|𝑥)

𝜕𝑤𝑖𝑗

𝜕ℓ(𝑦|𝑥)
𝜕𝑤𝑖′𝑗′

to the current estimate of
the Fisher matrix (with a discount factor for older contributions in an online
setting). This leads to the Monte Carlo natural gradient with 𝐾 samples 𝑦
per input 𝑥:

𝐹𝑤𝑖𝑗𝑤𝑖′𝑗′ = E𝑥∈𝒟
1
𝐾

𝐾∑︁
𝑘=1

𝜕ℓ(𝑦𝑘)
𝜕𝑤𝑖𝑗

𝜕ℓ(𝑦𝑘)
𝜕𝑤𝑖′𝑗′

(100)

where each 𝑦𝑘 is drawn according to the output probability distribution 𝜔
defined by the output for input 𝑥. Even 𝐾 = 1 can lead to reasonable results
(Section 4).

An important variant uses for 𝑦 the actual target value for input 𝑥,
instead of taking 𝑦 as a random sample given by the activations of the output
layer:

𝐹𝑤𝑖𝑗𝑤𝑖′𝑗′ = E𝑥∈𝒟
𝜕ℓ(𝑦(𝑥))

𝜕𝑤𝑖𝑗

𝜕ℓ(𝑦(𝑥))
𝜕𝑤𝑖′𝑗′

(101)

with 𝑦(𝑥) the target for 𝑥: this is just the outer product (OP) metric of
Definition 14. It is not an unbiased estimate of the Fisher metric; still,
hopefully when the network converges towards the desired targets, the law
of 𝑦 taken from the output distribution converges to the actual target and
the two variants get close. This variant has been present for a long time in
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studies on natural gradient (as is clear, e.g., from Equation (14) in [APF00])
and is elaborated upon in [LMB07]. As pointed out in [PB13], the two
variants are often confused.

These two variants are both intrinsic. The OP variant, contrary to the
true natural gradient, depends on the targets and not only on the network
and inputs.

Both the true natural gradient, its Monte Carlo approximation, and
its “one-sample”/OP variant give rise to a unitwise version and to a quasi-
diagonal version (Section 2.3). For a network with 𝑛 units and at most 𝑑
incoming connections per unit, the algorithmic cost of processing each data
sample is 𝑂(𝐾𝑛2𝑑2) for the Monte Carlo natural gradient, 𝑂(𝐾𝑛𝑑2) for its
unitwise version and 𝑂(𝐾𝑛𝑑) for its quasi-diagonal reduction. Algorithmic
cost for the OP metric is the same with 𝐾 = 1.

In Section 4 we compare performance of the unitwise natural gradient,
Monte Carlo unitwise natural gradient with 𝐾 = 1, and unitwise OP natural
gradient. We will see that although the OP metric and the one-sample
(𝐾 = 1) Monte Carlo natural gradient look similar, the latter can perform
substantially better.

Exact Fisher matrix computation. It is possible compute the exact
Fisher matrix (rather than using a single value for 𝑦) by using the Fisher
modulus and backpropagation transfer rates. The latter can be computed by
doing 𝑛out backpropagations for each input. This is of course more convenient
than computing the expectation E𝑦|𝑥 by summing over the (in the Bernoulli
case) 2𝑛out possible outcomes for 𝑦.

The backpropagation transfer rates 𝐽𝑘out
𝑘 from Definition 2 simply imple-

ment the general Definition 19 for ordinary neural networks. In Section 1,
the unitwise natural gradient was obtained from these transfer rates through
the Fisher modulus. Here we reproduce the corresponding formula for all
terms of the Fisher matrix, not only the terms of the unitwise Fisher matrix
incoming to a given unit, so we introduce a Fisher modulus indexed by pairs
of units.

Proposition 27 (Exact Fisher matrix for neural networks).
Let 𝑥 be an input for the network. Compute the transfer rates 𝐽𝑘out

𝑘 as in
Definition 2. Depending on output layer interpretation, set for each pair of
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units 𝑘 and 𝑘′:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ𝑘𝑘′(𝑥) :=
∑︀

𝑘out∈ℒout 𝐽𝑘out
𝑘 𝐽𝑘out

𝑘′ (square-loss)

Φ𝑘𝑘′(𝑥) :=
∑︀

𝑘out∈ℒout

𝐽
𝑘out
𝑘

𝐽
𝑘out
𝑘′

𝑎𝑘out (1−𝑎𝑘out ) (Bernoulli)
Φ𝑘𝑘′(𝑥) := 1

𝑆

∑︀
𝑘out∈ℒout e𝑎𝑘out 𝐽𝑘out

𝑘 𝐽𝑘out
𝑘′ (softmax)

− 1
𝑆2

(︁∑︀
𝑘out∈ℒout e𝑎𝑘out 𝐽𝑘out

𝑘

)︁ (︁∑︀
𝑘out∈ℒout e𝑎𝑘out 𝐽𝑘out

𝑘′

)︁
where 𝑆 :=

∑︀
𝑘out∈ℒout e𝑎𝑘out

Φ𝑘𝑘′(𝑥) := 4
𝑆

∑︀
𝑘out∈ℒout 𝐽𝑘out

𝑘 𝐽𝑘out
𝑘′ (spherical)

− 4
𝑆2

(︁∑︀
𝑘out∈ℒout 𝑎𝑘out𝐽

𝑘out
𝑘

)︁ (︁∑︀
𝑘out∈ℒout 𝑎𝑘out𝐽

𝑘out
𝑘′

)︁
where 𝑆 :=

∑︀
𝑘out∈ℒout 𝑎2

𝑘out
(102)

Then the entry of the datum-wise Fisher matrix 𝐹 (𝑥) associated with
parameters 𝑤𝑖𝑘 and 𝑤𝑗𝑘′ (including biases with 𝑖 = 0 or 𝑗 = 0) is

𝐹 (𝑥)𝑤𝑖𝑘𝑤𝑗𝑘′ = 𝑎𝑖𝑎𝑗𝑟𝑘𝑟𝑘′Φ𝑘𝑘′ (103)

and thus the corresponding entry in the Fisher matrix is

𝐹𝑤𝑖𝑘𝑤𝑗𝑘′ = E𝑥∈𝒟 𝑎𝑖𝑎𝑗𝑟𝑘𝑟𝑘′Φ𝑘𝑘′ (104)

The proof is given in the Appendix and is a more or less straightforward
application of the results of the previous section, together with an explicit
computation of the Fisher metric on the output in the Bernoulli, square-loss,
and classification interpretations.

So it is possible to compute the full Fisher matrix by performing 𝑛out
independent backpropagations for each sample input. The Fisher matrix 𝐹 ,
being the average of 𝐹 (𝑥) over the dataset, may be approximated by the
standard online or small-batch techniques using samples from the dataset.

For a network with only one hidden layer, this simplifies and no additional
backpropagations are needed. Indeed, the backpropagation transfer rates of
the input layer are never used, and on the hidden layer are given by

𝐽𝑘out
𝑘 = 𝑤𝑘𝑘out𝑟𝑘out (105)

from which the Fisher modulus can be immediately computed. This is the
case treated in [Kur94] (for the Bernoulli interpretation).

3 Some properties of unitwise algorithms and their
quasi-diagonal approximations

3.1 Performance improvement at each step

A common feature of all gradient-based algorithms in any metric is that
the objective function improves at each step provided the learning rate is
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small enough. Consequently this holds for the unitwise natural gradient,
backpropagated metric gradient, and their quasi-diagonal reductions.

Proposition 28. Suppose that training has not reached a local optimum,
i.e., that the gradient vector 𝐺 of Section 1 does not vanish. Suppose
that the metric considered is non-degenerate (i.e., respectively, that the
matrices 𝐹 (𝑘) or 𝑀 (𝑘) are invertible, or that the denominators in the quasi-
diagonal algorithms do not vanish), so that the algorithms considered are
well-defined. Suppose that the chosen interpretation 𝜔 of the output layer
depends smoothly on the output layer activities.

Then there exists a value 𝜂𝐶 of the learning rate such that, for any
learning rate 𝜂 < 𝜂𝐶 , the value of the loss function strictly decreases after
one step of the unitwise natural gradient, backpropagated metric gradient,
or their quasi-diagonal reductions.

As usual, the value of 𝜂𝐶 depends on the current state of the network
and thus may change over the course of training.

3.2 Invariance properties

The algorithms presented in Section 1 are the implementation of the gradients
and metrics defined in Section 2, written out using [0; 1]-valued activities
and the logistic activation function. We could have written them out, for
instance, using [−1; 1]-valued activities and the tanh activation function, and
the learning trajectory would be the same—provided, of course, that the
initialization was done so that both implementations of the network behave
the same at startup. We present a more precise formulation of this property.

Imagine that the inputs of the network are subjected to simple transfor-
mations such as scaling (𝑎𝑖 ← 𝛼𝑖𝑎𝑖 for 𝑖 in the input layer) or 0/1 inversion
(𝑎𝑖 ← 1− 𝑎𝑖). There is a simple way to change the parameters of subsequent
units so that the final activation of the network stays the same, namely,
𝑤𝑖𝑗 ← 𝑤𝑖𝑗/𝛼𝑖 for scaling and 𝑤𝑖𝑗 ← −𝑤𝑖𝑗 , 𝑤0𝑗 ← 𝑤0𝑗 + 𝑤𝑖𝑗 for 0/1 inversion.
So clearly the expressivity of a neural network is not sensitive to such changes.

However, training will behave differently. For instance, if we apply one
step of backpropagation training to the scaled inputs with the scaled network,
the coefficients of units which have been scaled down (𝛼𝑖 < 1) will evolve
more slowly and conversely for 𝛼𝑖 > 1. The final output of the network
after the update will be different. (Hence the common practice of rescaling
the activities of units.) The same goes for 0/1 inversion in a slightly more
complicated way: evolution of the bias depends on the activity of input units,
and the weights from input units with activity close to 0 will evolve faster
than those with activity close to 1, as seen on Figure 1.

We would like the following invariance for a training procedure: If we
start with two networks 𝑁 and 𝑁 ′ which are fed inputs 𝑥 and 𝑥′ with 𝑥′

obtained from a simple transformation of 𝑥, and if the parameters of 𝑁 ′
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are set such that initially its output is the same as 𝑁 , then we would like
the outputs of 𝑁 and 𝑁 ′ to stay the same after one step of the training
procedure.

This is not satisfied by backpropagation. However, for any affine trans-
form of the activities of any unit, this is satisfied by the natural gradient,
unitwise natural gradient, unitwise outer product gradient, backpropagated
metric gradient, and their quasi-diagonal reductions.

The sigmoid and tanh networks correspond to each other by the following
rewriting, thanks to tanh(𝑥) = 2 sigm(2𝑥)−1: if 𝑎𝑘 = sigm(

∑︀
𝑖→𝑘 𝑤𝑖𝑘𝑎𝑖+𝑤0𝑘)

and 𝑎′
𝑘 = tanh(

∑︀
𝑖→𝑘 𝑤′

𝑖𝑘𝑎′
𝑖 + 𝑤′

0𝑘) (and interpretation of the output layer
in the tanh case is done by putting back the activities in [0; 1] via 𝑎′ ↦→
1/2 + 𝑎′/2), then the two networks will behave the same if we set 𝑤𝑖𝑘 = 4𝑤′

𝑖𝑘

(𝑖 ̸= 0) and 𝑤0𝑘 = 2𝑤′
0𝑘 − 2

∑︀
𝑖 ̸=0 𝑤′

𝑖𝑘.

Definition 29. Let 𝑘 be an input or internal unit. Call (𝛼, 𝛽, 𝛾)-affine
reparametrization of unit 𝑘 the following operation: Replace the activation
of unit 𝑘

𝑎𝑘 = 𝑓𝑘
𝜃𝑘

(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘
) (106)

where 𝜃𝑘 = (𝑤0𝑘, (𝑤𝑖𝑘)𝑖→𝑘), with

𝑎′
𝑘 = 𝛼𝑓𝑘

𝛾 𝜃′
𝑘
(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘

) + 𝛽 (107)

where 𝜃′
𝑘 = (𝑤′

0𝑘, (𝑤′
𝑖𝑘)𝑖→𝑘). Send 𝑎′

𝑘 instead of 𝑎𝑘 to the next layer of the
network, with weights modified as follows:

𝑤′
𝑘𝑗 = 𝑤𝑘𝑗/𝛼, 𝑤′

0𝑗 = 𝑤0𝑗 − 𝑤𝑘𝑗𝛽/𝛼 (108)

for all units 𝑗 such that 𝑘 → 𝑗, and 𝑤′
𝑖𝑘 = 𝑤𝑖𝑘/𝛾 for all units 𝑖 with

𝑖 → 𝑘 (including 𝑖 = 0), so that the final outputs before and after the
reparametrization are the same.

The passage from sigm to tanh consists in applying the (2,−1, 2)-reparametrization
to all units. We have restricted the definition to non-output units to simplify
notation; for output units a corresponding reparametrization of the output
interpretation has to be done.

The following result is an immediate consequence of the intrinsic definition
of the algorithms. It is only part of the invariance properties of the objects
from Section 2. In particular, in the limit of small learning rates (𝜂 → 0),
the trajectories (96) of the unitwise natural gradient, backpropagated metric
gradient, and unitwise OP gradient, are invariant under all smooth one-to-one
reparametrization and not only affine ones.

Proposition 30 (Invariance under affine reparametriza-
tion of activities). Consider a network obtained from an initial net-
work by applying any number of (𝛼, 𝛽, 𝛾)-affine reparametrizations to any
number of units (where 𝛼, 𝛽 and 𝛾 may depend on the unit).
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Then, after one step of the unitwise natural gradient, backpropagated
metric gradient, Monte Carlo unitwise natural gradient, unitwise OP gradient,
or their quasi-diagonal reductions, the final outputs of the non-reparametrized
and reparametrized networks are the same.

Consequently, the learning trajectories, and performance, of the two
networks with these corresponding initializations are the same.

This may seem a simple thing, but we should keep in mind that this
property is not satisfied by backpropagation, or by quasi-Newton methods if
the latter use diagonal approximations of the Hessian.

In particular, the algorithms presented here are insensitive to shifting
and scaling of all units in the network. Traditionally, it is recommended to
normalize the activities on input units so that they average to 0 over the
dataset and have a prescribed variance: the algorithms here automatically do
the same in an implicit way, for all (not only input) units. As a consequence,
units with low activation levels get updated as fast as highly activated units.
(Note that as discussed after the definition of the quasi-diagonal algorithms,
these averages and variances are computed according to non-uniform weights
on the dataset given by the Fisher modulus or backpropagated modulus.)

Still the invariance above only applies if the two networks considered have
corresponding initializations. For instance, if the initial weights are random
with a variance set to 1 whatever the data, obviously the initial behavior
of the network will be sensitive to scaling of its input. So these methods
do not remove the need for traditional recommendations for initializing the
weights (either by normalizing the data and then taking weights of size 1, or
by taking initial weights depending on the variance or covariance matrix of
the data).

The unitwise gradients (natural, backpropagated metric, OP, and Monte
Carlo natural), but not their quasi-diagonal reductions, have a further, more
interesting invariance property: invariance under affine recombination of the
signals a unit receives from its various incoming units. For instance, if we
start with zero weights, an internal unit will evolve in the same way if it
receives 𝑓 and 𝑓 + 𝜀𝑔 (where 𝑓 and 𝑔 are seen as function of the input 𝑥) as
if it receives 𝑓 and 𝑔. This is especially useful if 𝑔 is correlated to the desired
output.

Proposition 31 (Invariance under affine recombination of
incoming signals). Consider a neural network and define a new one
in the following way. Let 𝑘 be a non-input unit in the network, with 𝑛𝑘

incoming units, and let 𝜙 : R𝑘 → R𝑘 be an invertible affine map. Define a
new network by replacing the activation function at unit 𝑘

𝑎𝑘 = 𝑓𝑘
𝜃𝑘

(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘
) (109)

40



with
𝑎𝑘 = 𝑓𝑘

𝜙*(𝜃𝑘)(𝜙(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘
)) (110)

still parametrized by 𝜃𝑘, where 𝜙*(𝜃𝑘) results from applying the dual10 inverse
affine transformation 𝜙* to 𝜃𝑘, so that initially the responses of the original
and reparametrized networks are the same.

Then, after one step of the unitwise natural gradient, backpropagated
metric gradient, Monte Carlo natural gradient, or unitwise OP gradient, with
respect to 𝜃𝑘, the final outputs of the non-reparametrized and reparametrized
networks are the same.

Consequently, the learning trajectories, and performance, of the two
networks with these corresponding initializations are the same.

Once more, this is not simply 𝜙 in one place cancelling out 𝜙−1 in another:
indeed, backpropagation or quasi-Hessian methods do not have this property,
and neither do the quasi-diagonally-reduced algorithms.

Proof. This comes as a consequence of the best-fit interpretation (Proposi-
tion 32) below.

It also follows from the intrinsic constructions by noting that, unlike the
quasi-diagonal reductions, the construction of these gradients never breaks
down the 𝑛𝑘-tuple of incoming activities into its components from each
incoming unit; thus, contrary to the quasi-diagonal reductions, we could
have written the unitwise natural and backpropagated metrics in a setting
where activation functions are given by 𝑎𝑘 = 𝑓𝑘

𝜃𝑘
(𝑔(𝑎𝑖1 , . . . , 𝑎𝑖𝑛𝑘

)) where 𝑔 is
a fixed, parameterless map with values in a manifold.

3.3 Best-fit interpretation

The unitwise natural gradient, backpropagated metric gradient, and unitwise
OP gradient (but not their quasi-diagonal reductions) share an interpretation
as a least-squares regression problem at each unit. Namely, the backpropa-
gated value 𝑏𝑘(𝑥, 𝑦) on input 𝑥 and target 𝑦 indicates how the activity of unit
𝑘 should change on input 𝑥. Seeing 𝑏𝑘 as a function of the input 𝑥, unit 𝑘
has to use the activities of incoming units 𝑖 (also seen as functions of 𝑥) and
combine them using the weights 𝑤𝑖𝑘, to match 𝑏𝑘(𝑥, 𝑦) as close as possible
for each 𝑥. This idea is presented in [Kur94] in a more specific setting. This
is also relevant to the behavior of the algorithms when the matrices 𝐹 and
𝑀 defining the metrics are singular or close to singular, as we will see.

Proposition 32 (Intrinsic gradients as best fit to 𝑏). Let 𝑘
be a non-input unit in the network. For 𝑥 in the dataset 𝒟, let 𝑏𝑘(𝑥) be the

10𝜃𝑘 is an affine form over the 𝑛𝑘-tuple of incoming activities. 𝜙* is defined, axiomatically,
by the property that applying 𝜙*(𝜃𝑘) to the activities transformed by 𝜙, is the same as
applying 𝜃𝑘 to the untransformed activities. Decomposing 𝜃𝑘 = (𝑤0𝑘, (𝑤𝑖𝑘)𝑖→𝑘), the affine
matrix defining 𝜙* is the transpose of the inverse of the affine matrix defining 𝜙.
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backpropagated value (4) obtained on input 𝑥 and the corresponding target
𝑦.

Consider the solution 𝜆 = (𝜆𝑖) to the following weighted least-squares
problem:

𝜆 = arg min

⎧⎨⎩∑︁
𝑥∈𝒟

(︃∑︁
𝑖

𝜆𝑖𝑎𝑖(𝑥)− 𝑏𝑘(𝑥)
𝑟𝑘(𝑥)Φ𝑘(𝑥)

)︃2

𝑊𝑥

⎫⎬⎭ (111)

where 𝑖 runs over the incoming units to 𝑘 (including 𝑖 = 0 with 𝑎0 ≡ 1),
Φ𝑘(𝑥) is the Fisher modulus (Definition 3), and the weights are

𝑊𝑥 := 𝑟𝑘(𝑥)2Φ𝑘(𝑥) (112)

Then the unitwise natural gradient step (21) is given by 𝜆, namely, the
update is 𝑤𝑖𝑘 ← 𝑤𝑖𝑘 + 𝜂𝜆𝑖 at each unit 𝑘.

The same holds for the backpropagated metric gradient using the back-
propagated modulus 𝑚𝑘 (Definition 7) instead of the Fisher modulus Φ𝑘.

The same holds for the unitwise OP gradient using 𝑏𝑘(𝑥)2 instead of the
Fisher modulus Φ𝑘.

Thus, the gradient step depends on the linear span of the incoming
activities (𝑎𝑖(𝑥))𝑖→𝑘, seen as functions over the dataset (which, by the way,
proves Proposition 31 above). This is why the gradient step is the same
whether the unit receives signals 𝑓(𝑥) and 𝑔(𝑥) or 𝑓(𝑥) and 𝑓(𝑥)+𝜀𝑔(𝑥). Thus,
these algorithms perform an implicit orthonormalization of the incoming
signals at each unit (not only input units) in the network.

Proof. A direct application of the well-known formula for the solution of the
weighted least-squares problem (111), with the choice of weight (112), yields
exactly the updates (20) and (30).

Non-invertibility and regularization of the matrices. In several sit-
uations the matrices 𝐹 and 𝑀 used to define the unitwise natural update
and backpropagated metric update can be singular.

This is the case, for instance, if one input unit is uniformly set to 0 over
all elements in the dataset: obviously such a unit is not informative, and the
corresponding term will vanish both in the metric and in the gradient. This
is also the case when, e.g., two units incoming to the same unit are perfectly
correlated. Correlation in the activation profiles happens systematically in
case the size of the dataset is smaller than the number of incoming parameters
at a given unit.

The linear regression viewpoint limits, in theory, the seriousness of these
issues: this only means the linear regression problem has several solutions
(one can add any quantity to a non-informative weight), and any of them
will do as an update. Indeed, for instance, the matrix 𝑀 in Definition 9
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is of the form 𝐴𝐴⊤, and 𝑀−1 is applied to the vector 𝐺 which is of the
form 𝐴𝑌 , thus 𝐺 always lies in the image of 𝐴 and thus the linear system is
underdetermined, not overdetermined. From the gradient ascent viewpoint
this means the matrix 𝑀 will be singular but the gradient term 𝜕𝐿/𝜕𝑤 will
vanish in the corresponding directions.

Numerically, however, the issue must be dealt with. One can use the
Moore–Penrose pseudoinverse of 𝑀 (or 𝐹 in the Fisher matrix case), ob-
tained by adding 𝜀. Id to 𝑀 or to 𝐹 with very small 𝜀. This is a standard
regularization technique. It has the advantage of producing a well-defined
update when 𝜀→ 0, asymptotically independent of 𝜀.

Thus, if a formal definition is needed, one can decide to use the Moore–
Penrose pseudoinverse for 𝑀−1 and 𝐹 −1 in the definition of the updates.
However, this formally breaks the invariance properties: the Moore–Penrose
pseudoinverse selects, among the several possible solutions (𝜆𝑖) to an under-
determined least squares problem, the one with smallest norm

∑︀
𝜆2

𝑖 , and
this is not intrinsic.

4 A first experimental comparison
Although the main focus of this article is theoretical, we performed a light
set of experiments to ensure that the suggested methods are viable. The
companion article [Oll13] contains more in-depth experiments with recurrent
networks and complex symbolic sequences.

To test the influence of the different methods, we chose a very simple
problem in which a perfect solution is expected to be found. A sparsely
connected network with 5 layers of size 100, 30, 10, 30, and 100 was built,
and 16 random length-100 binary strings were fed to the input layer, with
the target equal to the input (auto-encoding). Ideally the network learns to
encode each of the 16 samples using 4 bits on the middle layer (thus with
room to spare) and uses the bottom layer parameters to rewrite the output
from this. This is purely an optimization task without a learning aspect, as
there is no generalization to be done and no underlying pattern. The focus
is on which methods are able to converge to a good solution.

The sparsely connected network is built at random in each instance as
follows. Each of the 100 units in the input layer is linked to 5 randomly
selected nodes in the first hidden layer. Each of the 30 units in the first
hidden layer is linked to 5 random nodes in the middle hidden layer. The
scheme is reversed for the bottom part of the model: each of the 100 output
units is linked to 5 random nodes in the last hidden layer, and each unit in
the last hidden layer is linked to 5 random nodes of the middle hidden layer.

For each instance, the dataset is made of 16 random binary strings of
length 100. The target for each input is identical to the input. We use
Bernoulli interpretation of the output.
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Note that this setting is adverse for the unitwise and quasi-diagonal nat-
ural gradients, which require a small output layer; this must be remembered
in the comparisons below.

To test the influence of parametrization on non-invariant algorithms, and
to check invariance of the invariant ones, each algorithm was implemented
both using sigm(𝑥) and tanh(𝑥) as the activation function.

The methods tested are: backpropagation; unitwise natural gradient;
quasi-diagonal natural gradient; unitwise OP gradient; Monte Carlo unitwise
or quasi-diagonal natural gradient with one sample (𝐾 = 1 in (100)); back-
propagated metric gradient; quasi-diagonal backpropagated metric gradient;
diagonal Gauss–Newton ([LBOM96, SZL13]; equivalent to keeping only the
diagonal terms in the quasi-diagonal backpropagated metric gradient); and
a batch version of Adagrad/RMSprop [DHS11] in which the learning rate
for each gradient component is divided by the root mean square of this
component over the samples.

Since the sample size is small, the algorithms were run in batch mode.

Regularization. The algorithms were taken directly from Section 1. To all
methods except backpropagation, we added a regularization term of 10−4 Id
to the various matrices involved, to stabilize numerical inversion. This value
is not so small; values such as 10−7 seemed to affect performance. This is
probably due to the small sample size (16 samples): each sample contributes
a rank-1 matrix to the various metrics. Larger sample sizes would probably
need less regularization.

Initialization. For the tanh activation function, all the weights were ini-
tialized to a centered Gaussian random variable of standard deviation 1/

√︀
𝑑𝑗

with 𝑑𝑗 the number of units pointing to unit 𝑗, and the biases set to 0. For
the sigmoid activation function, the initialization was the corresponding
one (using Eqs. 46 and 47) so that initially the responses of the networks
are the same: namely, each weight was set to a centered Gaussian random
variable of standard deviation 4/

√︀
𝑑𝑗 , and then the bias at unit 𝑘 was set

to −
∑︀

𝑖 𝑖→𝑘 𝑤𝑖𝑘/2. This initialization has the property that if the incoming
signals to a unit are independent, centered about 1/2 (sigmoid) or 0 (tanh)
and of variance 𝜎 with 𝜎 not too large, then the output of the unit is also
centered of variance ≈ 𝜎. (The factor 4 in the sigmoid case compensates
for the derivative 1/4 of the sigmoid function at 0.) See the argument in
[GB10]11.

Learning rate. A simple adaptive method was used for the learning rate.
All methods based on gradients in a metric have a guarantee of improvement

11The other initialization suggested in [GB10], with weights of magnitude
√︀

6/(𝑑𝑗 + 𝑑′
𝑗)

with 𝑑′
𝑗 the number of edges from 𝑗, did not make any significant difference in our setup.
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at each step if the learning rate is small enough. So in the implementation,
if a step was found to make the loss function worse (in a batch mode, thus
summed over all samples), the step was cancelled and the learning rate
was divided by 2. If the step improves the loss function, the learning rate
is increased by a factor 1.1. The initial learning rate was set to 0.01; in
practice the initial value of the learning rate is quickly forgotten and has
little influence.

Unfortunately this scheme only makes sense in batch mode, but it has the
advantage of automatically selecting learning rates that suit each method,
thus placing all methods on an equal footing.

Execution time and number of iterations. First, 10, 000 steps of back-
propagation were performed on the whole dataset, in batch mode. The
resulting running time was set aside and converted to an equivalent number
of iterations for all of the other algorithms. This is a very rough way to
proceed, since the running times can depend on the implementation details12,
and vary from run to run (because floating point operations do not take the
same time depending on the numbers they are operating on, especially when
both very small and very large values are involved).

Most of all, the different methods scale in different ways with the network,
and so the network used here may not be representative of other situations. In
particular this auto-encoder setting with 100 output units puts the unitwise
natural gradient and quasi-diagonal natural gradient at a disadvantage (on
the same time budget they must perform 𝑛out backpropagations per sample),
compared to, e.g., a classification setting.

Nevertheless, we give in Table 4 the numbers of iterations giving roughly
equal running time for each method.

The natural gradient was also tested (using the exact full Fisher matrix
as obtained from Proposition 27). The computational cost is very high and
only 10 iterations take place in the allotted time, too few for convergence.
Thus we do not report the associated results.

Results. In Table 2, we report the average loss per sample, in bits, and its
standard deviation, at the end of the allocated number of training iterations.
These values can be interpreted as representing the average number of bits
of an output that the model did not learn to predict correctly (out of 100).
The results of the implementations using sigmoid and tanh activation are
reported separately.

Performance as a function of time is plotted in Figure 3.
The statistics were made using 20 independent runs for each method.

12We tried to implement each method equally carefully.
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Method Number of iterations
Backpropagation (sigmoid) 10,000
Backpropagation (tanh) 10,000
Natural gradient 9 to 10
Unitwise natural gradient 2,100 to 2,300
Quasi-diagonal natural gradient 2,800 to 3,100
Backpropagated metric 4,200 to 4,300
Quasi-diagonal backpropagated metric 7,400 to 7,500
Monte Carlo unitwise natural gradient (𝐾 = 1) 2,800 to 2,900
Monte Carlo quasi-diagonal natural gradient (𝐾 = 1) 3,900 to 4,000
Unitwise OP gradient 4,000 to 4,100
Diagonal Gauss–Newton 7,700 to 7,800
AdaGrad 8,000 to 8,100

Table 1: Number of iterations resulting in approximately equal execution
times for our problem

Method Average loss (bits) ± std-dev
sigmoid tanh

Non-invariant:
Backpropagation 35.9± 2.1 24.7± 2.2
Diagonal Gauss–Newton 11.6± 2.5 3.5± 2.0
AdaGrad 51.1± 3.3 25.3± 2.0

Invariant:
Unitwise natural gradient 0.9± 1 1.4± 1.8
Quasi-diagonal natural gradient 3.5± 1.2 3.4± 1.6
Backpropagated metric 0.8± 0.8 0.3± 0.5
Quasi-diagonal backpropagated metric 1.9± 1.2 1.5± 1.3
Monte Carlo unitwise natural gradient 12.9± 1.5 14.1± 2.2
Monte Carlo quasi-diagonal natural gradient 7.9± 2.3 10.1± 2.5
Unitwise OP gradient 24.7± 2.5 28.5± 3.4

Table 2: Average loss per sample (bits) after an execution time equivalent to
10, 000 backpropagation passes, computed over 20 independent runs, together
with standard deviation over the runs
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Figure 3: Performance over time of all algorithms involved. For better
readability the trajectories of the invariant algorithms have been plotted only
in tanh implementation (Figs. 2 and 4 show them in sigmoid implementation
for completeness). Average over 20 runs.
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Interpretation. These results are mainly illustrative: the situation con-
sidered here may not be representative because of the small sample size and
network size involved.

Still, it is clear that for problems of this size, the more elaborate algorithms
are very competitive. Only the tanh implementation of the diagonal Gauss–
Newton method comes close to the invariant algorithms (while its performance
in sigmoid implementation is not as good).

As can be expected, the invariant algorithms have similar performance
in sigmoid or tanh implementation: trajectories match each other closely
(Figure 4). The variations are caused, first, by random initialization of
the dataset and weights in each run, and second, by the inclusion of the
regularization terms 𝜀 Id, which breaks invariance. If the effect of the latter
is isolated, by having the same initialization in tanh and sigmoid implemen-
tations, the trajectories coincide for the first few iterations but then start to
differ, without affecting overall performance.

In this setting, the natural gradient, in its unitwise and quasi-diagonal
versions, seems to perform slightly worse than the backpropagated metric
methods. This might be an effect of the large output layer size (which directly
affects their computational complexity) combined with a given computation
time budget. Per iteration instead of computation time, the natural gradient
methods perform better than the backpropagated metric methods, and
we expect them to be more competitive for smaller output sizes, e.g., in
classification tasks.

The two algorithms based on squared gradients, Adagrad and the unitwise
OP gradient, both perform rather poorly in this setting. Adagrad differs
from the unitwise OP gradient by using a diagonal approximation and
introducing square roots, which breaks invariance, while the unitwise OP
gradient is invariant and is meant to approximate the natural gradient. This
is a surprise, as, for instance, methods close to the OP gradient have been
found to perform well, e.g., in [LMB07], or in [Oll13] for recurrent networks.
The small size of the dataset in our setting is not enough to explain this
problem, as it does not seem to affect the other methods. This may be related
to the large dimensionality of the output layer compared to the number
of samples in our experiment (in contrast to [LMB07] or [Oll13]), which
damages the one-sample OP metric approximation of the natural gradient
and could result in low-rank OP matrices. Indeed, reasoning on the full
(whole-network) metric, the OP gradient contributes a matrix of rank 1 for
each data sample (see (101)); on the other hand, the exact Fisher matrix
contributes a sum of 𝑛out matrices of rank 1 for each data sample as can be
seen from (102)–(103). Thus from a theoretical viewpoint the quality of the
one-sample OP approximation of the natural gradient is likely to depend on
output dimensionality.

Lack of invariance is striking for some algorithms, such as the diagonal
Gauss–Newton method: its performance is very different in the sigmoid
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Figure 4: Double-checking invariance: Comparison of the trajectories of the
invariant algorithms in tanh and sigmoid implementations

49



 0

 10

 20

 30

 40

 50

 60

 70

 80
L

o
s
s
 (

b
it
s
)

Computation time (arbitrary units)

sigm diag Gauss-Newton
tanh diag Gauss-Newton

sigm quasi-diag BPM
tanh quasi-diag BPM

Figure 5: Effect of introducing a few non-diagonal terms: Comparison of
the diagonal Gauss–Newton and the quasi-diagonal backpropagated metric
methods

and tanh interpretations (Figure 5). The quasi-diagonal backpropagated
metric method only differs from diagonal Gauss–Newton by the inclusion
of a small number of non-diagonal terms in the update. This change brings
the sigmoid and tanh implementations in line with each other, improving
performance with respect to the best of the two diagonal Gauss–Newton
implementations. In settings where the activities of units (especially internal
units, since the input can always be centered) are not as well centered as here,
we expect the quasi-diagonal backpropagated metric method to outperform
the tanh diagonal Gauss–Newton implementation even more clearly. Thus
the quasi-diagonal backpropagated metric is arguably “the invariant way” to
write the diagonal Gauss–Newton algorithm.

In conclusion, although this experiment is a small-scale one, it clearly
emphasizes the interest of using invariant algorithms.

Conclusions
∙ It is possible to write invariant training algorithms for neural networks

that do not have the scalability issues of the natural gradient. For
a network with 𝑛 units, 𝑛out output units, and at most 𝑑 incoming
connections per unit, we have provided four invariant algorithms for
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which the cost of processing a data sample is respectively 𝑂(𝑛𝑑), 𝑂(𝑛𝑑2),
𝑂(𝑛𝑑𝑛out) and 𝑂(𝑛𝑑2 + 𝑛𝑑𝑛out). The slower methods are closer to the
natural gradient and have stronger invariance properties.

∙ All of these algorithms are mathematically motivated by building
Riemannian metrics on the activity and parameter space of neural
networks, treated as manifolds.

∙ The outer product metric encountered in the literature is also naturally
interpreted in this framework. It has a unique property of spreading
improvement most uniformly across the samples at each step.

∙ In a small-scale experiment involving an auto-encoding task with three
hidden layers, invariant methods substantially outperform non-invariant
methods. Lack of invariance is clear for some commonly used methods.

∙ The quasi-diagonal backpropagated metric is close to the diagonal
Gauss–Newton method [LBOM96, SZL13] but crucially differs by the
inclusion of a few well-chosen non-diagonal terms. While performance
of the Gauss–Newton method can change substantially from sigmoid
to tanh implementation, the quasi-diagonal backpropagated metric is
invariant and improves performance with respect to diagonal Gauss–
Newton in any implementation.
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Appendix

A Proof of Proposition 27

The Fisher metric depends, of course, on the interpretation of the output
layer as a probability distribution 𝜔. The final output 𝜔 is a probability
distribution over the values of 𝑦 in the target space, parametrized by the
activities 𝑎𝑘 of the output units 𝑘. If the output activities change by 𝛿𝑎𝑘,
the probability distribution 𝜔 will change as well. The norm of this change
in Fisher metric is

‖𝛿𝜔‖2nat = E𝑦∼𝜔(𝛿 ln 𝜔(𝑦))2 (113)

=
∑︁

𝑘,𝑘′∈ℒout

E𝑦∼𝜔
𝜕 ln 𝜔(𝑦)

𝜕𝑎𝑘

𝜕 ln 𝜔(𝑦)
𝜕𝑎𝑘′

𝛿𝑎𝑘𝛿𝑎𝑘′ (114)
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thus stemming from the matrix

𝐹𝑘𝑘′ := E𝑦∼𝜔
𝜕 ln 𝜔(𝑦)

𝜕𝑎𝑘

𝜕 ln 𝜔(𝑦)
𝜕𝑎𝑘′

(115)

over the output layer.
In the Bernoulli interpretation, for each component 𝑘 of the output layer,

the random variable 𝑦𝑘 is a Bernoulli variable with parameter 𝑎𝑘. In the
square-loss interpretation, each 𝑦𝑘 is a Gaussian random variable with mean
𝑎𝑘 and variance 1. In the two classification interpretations, 𝑦 is a discrete
random variable which takes value 𝑘 with probability 𝜔𝑘 = e𝑎𝑘/(

∑︀
𝑗∈ℒout e𝑎𝑗 )

or 𝜔𝑘 = 𝑎2
𝑘/(
∑︀

𝑗∈ℒout 𝑎2
𝑗 ).

Let us compute the Fisher metric in the space 𝜔 in each case. In the
Bernoulli case, we have 𝜔(𝑦) =

∏︀
𝑘∈ℒout(1𝑦𝑘=1𝑎𝑘 + 1𝑦𝑘=0(1 − 𝑎𝑘)). Conse-

quently
𝜕 ln 𝜔(𝑦)

𝜕𝑎𝑘
= 1𝑦𝑘=1

𝑎𝑘
− 1𝑦𝑘=0

1− 𝑎𝑘
= 𝑦𝑖 − 𝑎𝑘

𝑎𝑘(1− 𝑎𝑘) (116)

Since under the distribution 𝜔 we have E𝑦𝑘 = 𝑎𝑘 and Var 𝑦𝑘 = 𝑎𝑘(1 − 𝑎𝑘)
(with 𝑦𝑘 and 𝑦𝑗 independent for 𝑘 ̸= 𝑗) we find

𝐹𝑘𝑘′ = 1𝑘=𝑘′

𝑎𝑘(1− 𝑎𝑘) (117)

for 𝑘 and 𝑘′ in the output layer.
In the Gaussian case we have 𝜔(𝑦) =

∏︀
𝑘

e−(𝑦𝑖−𝜔𝑘)2/2
√

2𝜋
so that 𝜕 ln 𝜔(𝑦)

𝜕𝜔𝑘
=

𝑦𝑖 − 𝜔𝑘. Since under the distribution 𝜔 we have E𝑦𝑘 = 𝜔𝑘 and Var 𝑦𝑘 = 1
we find 𝐹 = Id hence

𝐹𝑘𝑘′ = 1𝑘=𝑘′ (118)

for 𝑘 and 𝑘′ in the output layer.
In the softmax case the probability to have 𝑦 = 𝑗 is 𝜔(𝑦) = e𝑎𝑗 /𝑆 with

𝑆 =
∑︀

𝑖∈ℒout e𝑎𝑖 . Thus 𝜕 ln 𝜔(𝑦)/𝜕𝑎𝑘 = 1𝑘=𝑗−e𝑎𝑘/𝑆. Taking the expectation
over 𝑦 (i.e., over 𝑗) we find

𝐹𝑘𝑘′ =
∑︁

𝑗∈ℒout

e𝑎𝑗

𝑆

(︂
1𝑗=𝑘 −

e𝑎𝑘

𝑆

)︂(︂
1𝑗=𝑘′ − e𝑎𝑘′

𝑆

)︂
(119)

= e𝑎𝑘

𝑆
1𝑘=𝑘′ − e𝑎𝑘

𝑆

e𝑎𝑘′

𝑆
− e𝑎𝑘′

𝑆

e𝑎𝑘

𝑆
+

⎛⎝∑︁
𝑗

e𝑎𝑗

𝑆

⎞⎠ e𝑎𝑘

𝑆

e𝑎𝑘′

𝑆
(120)

= e𝑎𝑘

𝑆
1𝑘=𝑘′ − e𝑎𝑘e𝑎𝑘′

𝑆2 (121)

Similarly, in the spherical case the probability to have 𝑦 = 𝑗 is 𝜔(𝑦) =
𝑎2

𝑗/𝑆 with 𝑆 =
∑︀

𝑖∈ℒout 𝑎2
𝑖 . Thus 𝜕 ln 𝜔(𝑦)/𝜕𝑎𝑘 = 2(1𝑘=𝑗

𝑎𝑗
− 𝑎𝑘

𝑆 ). Taking the
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expectation over 𝑦 we find

𝐹𝑘𝑘′ = 4
∑︁

𝑗∈ℒout

𝑎2
𝑗

𝑆

(︃
1𝑗=𝑘

𝑎𝑗
− 𝑎𝑘

𝑆

)︃(︃
1𝑗=𝑘′

𝑎𝑗
− 𝑎𝑘′

𝑆

)︃
(122)

= 4𝑎2
𝑘

𝑆

1
𝑎𝑘

1
𝑎𝑘′

1𝑘=𝑘′ − 4𝑎2
𝑘

𝑆

1
𝑎𝑘

𝑎𝑘′

𝑆
− 4𝑎2

𝑘′

𝑆

1
𝑎𝑘′

𝑎𝑘

𝑆
+ 4

⎛⎝∑︁
𝑗

𝑎2
𝑗

𝑆

⎞⎠ 𝑎𝑘

𝑆

𝑎𝑘′

𝑆

(123)

= 4
𝑆
1𝑘=𝑘′ − 4𝑎𝑘𝑎𝑘′

𝑆2 (124)

These give the expression of the Fisher matrix 𝐹𝑘𝑘′ for 𝑘 and 𝑘′ in the
output layer. This is enough to compute the full Fisher matrix, as follows.

Let 𝑥 be an input for the network. Given a variation 𝛿𝜃 of the network
parameters 𝜃, let 𝛿𝑎𝑖 be the resulting variation of unit 𝑖, and let 𝛿𝜔 be the
resulting variation of the final output 𝜔. We have 𝛿𝜔 =

∑︀
𝑘∈ℒout

𝜕𝜔
𝜕𝑎𝑘

𝛿𝑎𝑘. The
datum-wise Fisher metric on 𝜃 is

‖𝛿𝜃‖2nat = ‖𝛿𝜔‖2nat (125)
=

∑︁
𝑘,𝑘′∈ℒout

𝐹𝑘𝑘′ 𝛿𝑎𝑘𝛿𝑎𝑘′ (126)

For each 𝑘 in the output layer, we have 𝛿𝑎𝑘 =
∑︀

𝑖
𝜕𝑎𝑘
𝜕𝜃𝑖

𝛿𝜃𝑖 where the sum
runs over all units 𝑖 in the network. For each 𝑖 we have 𝜕𝑎𝑘

𝜕𝜃𝑖
= 𝜕𝑎𝑘

𝜕𝑎𝑖

𝜕𝑎𝑖
𝜕𝜃𝑖

= 𝐽𝑘
𝑖

𝜕𝑎𝑖
𝜕𝜃𝑖

.
Plugging this into the above yields

‖𝛿𝜃‖2nat =
∑︁

𝑖

∑︁
𝑖′

∑︁
𝑘∈ℒout

∑︁
𝑘′∈ℒout

𝐹𝑘𝑘′𝐽𝑘
𝑖 𝐽𝑘′

𝑖′
𝜕𝑎𝑖

𝜕𝜃𝑖

𝜕𝑎𝑖′

𝜕𝜃𝑖′
(127)

so that the term of the Fisher matrix corresponding to 𝛿𝜃𝑖 and 𝛿𝜃𝑖′ is∑︀
𝑘∈ℒout

∑︀
𝑘′∈ℒout 𝐹𝑘𝑘′𝐽𝑘

𝑖 𝐽𝑘′
𝑖′

𝜕𝑎𝑖
𝜕𝜃𝑖

𝜕𝑎𝑖′
𝜕𝜃𝑖′

.
For standard neural networks we have 𝛿𝜃𝑖 = (𝛿𝑤𝑗𝑖)𝑗, 𝑗→𝑖 and moreover

𝜕𝑎𝑖
𝜕𝑤𝑗𝑖

= 𝑎𝑗𝑟𝑖.
Plugging into this the expression for 𝐹𝑘𝑘′ yields the results in Proposi-

tion 27.

B Proof of Proposition 15

Let 𝑣 be an infinitesimal variation of the parameter 𝜃. Let 𝑣𝑖 be the coordi-
nates of 𝑣 in some coordinate system. At first order, the increment in the
average loss function along 𝑣 is E𝑥∈𝒟

∑︀
𝑖

𝜕ℓ𝑥
𝜕𝜃𝑖

𝑣𝑖.
Let us abbreviate 𝜕𝑖ℓ𝑥 = 𝜕ℓ𝑥

𝜕𝜃𝑖
. The matrix defining the OP metric is

𝑀𝑖𝑗 = E𝑥∈𝒟𝜕𝑖ℓ𝑥𝜕𝑗ℓ𝑥. The corresponding gradient direction is 𝑀−1E𝑥∈𝒟𝜕ℓ𝑥.
Let 𝑚 = E𝑥∈𝒟

∑︀
𝑖 𝜕𝑖ℓ𝑥𝑣𝑖 be the change in loss function associated with 𝑣.

The variance, when 𝑥 runs over the dataset, of the gain in the loss function
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for 𝑥 is E𝑥∈𝒟 ((
∑︀

𝑖 𝜕𝑖ℓ𝑥𝑣𝑖)−𝑚)2 = E𝑥∈𝒟(
∑︀

𝑖 𝜕𝑖ℓ𝑥𝑣𝑖)2−𝑚2. For fixed average
gain 𝑚, this is minimal when E𝑥∈𝒟(

∑︀
𝑖 𝜕𝑖ℓ𝑥𝑣𝑖)2 is minimal.

This is a smooth convex function of 𝑣, whose minimum we have to find over
the hyperplane {𝑣, E𝑥∈𝒟

∑︀
𝑖 𝜕𝑖ℓ𝑥𝑣𝑖 = 𝑚}. The minimum of a positive-definite

quadratic functional
∑︀

𝑖𝑗 𝐴𝑖𝑗𝑣𝑖𝑣𝑗 over a hyperplane
∑︀

𝑖 𝐵𝑖𝑣𝑖 = 𝑚, is found at
𝑣 = 𝜆𝐴−1𝐵 for some constant 𝜆. Here we have 𝐵𝑖 = E𝑥∈𝒟𝜕𝑖ℓ𝑥, and expand-
ing E𝑥∈𝒟(

∑︀
𝑖 𝜕𝑖ℓ𝑥𝑣𝑖)2 = E𝑥∈𝒟((

∑︀
𝑖 𝜕𝑖ℓ𝑥𝑣𝑖)(

∑︀
𝑗 𝜕𝑗ℓ𝑥𝑣𝑗)) =

∑︀
𝑖𝑗 E𝑥∈𝒟𝜕𝑖ℓ𝑥𝜕𝑗ℓ𝑥𝑣𝑖𝑣𝑗

yields 𝐴𝑖𝑗 = E𝑥∈𝒟𝜕𝑖ℓ𝑥𝜕𝑗ℓ𝑥 = 𝑀𝑖𝑗 . Consequently, for any value of 𝑚, the
optimal 𝑣 is a multiple of the OP gradient direction 𝑀−1E𝑥∈𝒟𝜕ℓ𝑥.

C Definition of the metrics in the formalism of differential
geometry

Let ℒ be the neural network (directed acyclic finite graph of units); for 𝑘 ∈ ℒ,
let the activities of unit 𝑘 belong to a manifold 𝒜𝑘. Let the activation function
for unit 𝑘 be 𝑓𝑘 : (Θ𝑘 ×

∏︀
𝑖→𝑘𝒜𝑖)→ 𝒜𝑘, (𝜃𝑘, (𝑎𝑖)𝑖→𝑘) ↦→ 𝑓𝜃𝑘

((𝑎𝑖)𝑖→𝑘) where
Θ𝑘 is the manifold of the parameters of unit 𝑘. Let ℒin ⊂ ℒ and ℒout ⊂ ℒ
be the input and output layers, respectively; let 𝒳 be the space to which the
inputs belong, and let 𝜄 : 𝒳 →

∏︀
𝑘∈ℒin 𝒜𝑘 be the input encoding. Let 𝒪 be

the manifold to which the outputs belong, and let 𝜔 :
∏︀

𝑘∈ℒout 𝒜𝑘 → 𝒪 be
the output interpretation.

The values of 𝑎𝑘 and of the output 𝜔 can be seen as functions of the
parameter 𝜃 = (𝜃𝑘) ∈

∏︀
𝑘 Θ𝑘 and the input 𝑥, by using the induction rela-

tions defined by the network: 𝑎𝑘(𝜃, 𝑥) := 𝜄(𝑥)𝑘 for 𝑘 ∈ ℒin, 𝑎𝑘(𝜃, 𝑥) :=
𝑓𝑘(𝜃𝑘, (𝑎𝑖(𝜃, 𝑥))𝑖→𝑘) for 𝑘 ̸∈ ℒin, and by abuse of notation, 𝜔(𝜃, 𝑥) :=
𝜔((𝑎𝑘(𝜃, 𝑥))𝑘∈ℒout).

Let Ω be the output metric: a Riemannian metric on the output manifold
𝒪, which to every vector 𝛿𝜔 tangent to 𝒪 at point 𝜔 ∈ 𝒪, associates its
square norm Ω𝜔(𝛿𝜔, 𝛿𝜔) in a bilinear way. An important example is the
Fisher metric when 𝒪 is a space of probability distributions.

Let Θ :=
∏︀

𝑘 Θ𝑘 be the parameter manifold. We are going to define
the natural metric, unitwise natural metric, and backpropagated metric as
Riemannian metrics on Θ.

If 𝜙 : 𝐸 → 𝐹 is a linear map between vector spaces 𝐸 and 𝐹 , and 𝑔 is a
bilinear form on 𝐹 , we define the bilinear form 𝑔 ∘ 𝜙 on 𝐸 by

𝑔 ∘ 𝜙 : (𝑒, 𝑒′) ↦→ 𝑔(𝜙(𝑒), 𝜙(𝑒′)) (128)

for any two vectors 𝑒, 𝑒′ ∈ 𝐸. If 𝑔 is positive-semidefinite then so is 𝑔 ∘ 𝜙.
We denote by 𝑇𝑝𝑀 the tangent space to a manifold 𝑀 at a point 𝑝 ∈𝑀 .

Recall [GHL87, 1.36] that if ℎ : 𝑀 →𝑀 ′ is a smooth map between manifolds,
its differential 𝜕ℎ

𝜕𝑝 (𝑝) at point 𝑝 ∈𝑀 is a linear map from 𝑇𝑝𝑀 to 𝑇ℎ(𝑝)𝑀
′.

Let 𝜃 ∈ Θ. For an input 𝑥, let 𝜕𝜔
𝜕𝜃 (𝜃, 𝑥) be the differential of the network

output 𝜔(𝜃, 𝑥) with respect to 𝜃: this is a linear map from 𝑇𝜃Θ to 𝑇𝜔(𝜃,𝑥)𝒪.
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Define the natural metric 𝑔nat as the bilinear form on 𝑇𝜃Θ for each 𝜃
given by

𝑔nat := 1
#𝒟

∑︁
𝑥∈𝒟

(︂
Ω𝜔(𝜃,𝑥) ∘

𝜕𝜔

𝜕𝜃
(𝜃, 𝑥)

)︂
(129)

where 𝑥 ranges over inputs in the dataset 𝒟. By construction, this metric
does not depend on any choice of parametrization and is thus intrinsic.

The unitwise natural metric is defined in a likewise manner except that
it first breaks down the tangent vector 𝛿𝜃 ∈ 𝑇𝜃Θ into its components along
each unit 𝑘 using that Θ =

∏︀
𝑘 Θ𝑘 and thus 𝑇𝜃Θ =

⨁︀
𝑘 𝑇𝜃𝑘

Θ𝑘. The effect is
to make the components 𝛿𝜃𝑘 orthogonal. Namely:

𝑔u-nat(𝛿𝜃, 𝛿𝜃) :=
∑︁

𝑘

𝑔𝑘
nat(𝛿𝜃𝑘, 𝛿𝜃𝑘) (130)

where 𝛿𝜃 =
⨁︀

𝑘 𝛿𝜃𝑘, and where

𝑔𝑘
nat := 1

#𝒟
∑︁
𝑥∈𝒟

(︂
Ω𝜔(𝜃,𝑥) ∘

𝜕𝜔

𝜕𝜃𝑘
(𝜃, 𝑥)

)︂
(131)

is the natural metric on Θ𝑘, with 𝜕𝜔
𝜕𝜃𝑘

(𝜃, 𝑥) the differential of the network
output with respect to 𝜃𝑘, which is a linear map from 𝑇𝜃𝑘

Θ𝑘 to 𝑇𝜔(𝜃,𝑥)𝒪.
The backpropagated metric is defined by backward induction in the

directed acyclic graph ℒ. First, for each input 𝑥 and each unit 𝑘, let us
define a bilinear form 𝑔𝒜𝑘

bp,𝑥 on the tangent space 𝑇𝑎𝑘(𝜃,𝑥)𝒜𝑘 to the activity
at 𝑘. On the output layer let us set

𝑔𝒜𝑘
bp,𝑥 := Ω𝜔(𝜃,𝑥) ∘

𝜕𝜔

𝜕𝑎𝑘
((𝑎𝑗(𝜃, 𝑥))𝑗∈ℒout) for 𝑘 ∈ ℒout (132)

where 𝜕𝜔
𝜕𝑎𝑘

((𝑎𝑗(𝜃, 𝑥))𝑗∈ℒout) is the differential of the output interpretation
function 𝜔 :

∏︀
𝑗∈ℒout 𝒜𝑗 → 𝒪 with respect to 𝑎𝑘, which is a linear map from

𝑇𝑎𝑘(𝜃,𝑥)𝒜𝑘 to 𝑇𝜔(𝜃,𝑥)𝒪. Then this is backpropagated through the network:
for each 𝑘 we define a bilinear form on 𝑇𝑎𝑘(𝜃,𝑥)𝒜𝑘 by

𝑔𝒜𝑘
bp,𝑥 :=

∑︁
𝑖, 𝑘→𝑖

𝑔𝒜𝑖
bp,𝑥 ∘

𝜕𝑓𝑖

𝜕𝑎𝑘
(𝜃𝑖, (𝑎𝑗(𝜃, 𝑥))𝑗→𝑖) for 𝑘 ̸∈ ℒout (133)

with 𝑓𝑖 : Θ𝑖 ×
∏︀

𝑗→𝑖𝒜𝑗 → 𝒜𝑖 the activation function of unit 𝑖. (If a unit
is both an output unit and influences some other units, we add the two
contributions.) This is transferred to a metric on Θ𝑘 via

𝑔Θ𝑘
bp,𝑥 := 𝑔𝒜𝑘

bp,𝑥 ∘
𝜕𝑓𝑘

𝜕𝜃𝑘
(𝜃𝑘, (𝑎𝑗(𝜃, 𝑥))𝑗→𝑘) (134)

Finally, letting again 𝛿𝜃 =
⨁︀

𝑘 𝛿𝜃𝑘 be a tangent vector to Θ, define the
backpropagated metric by

𝑔bp(𝛿𝜃, 𝛿𝜃) := 1
#𝒟

∑︁
𝑥∈𝒟

∑︁
𝑘

𝑔Θ𝑘
bp,𝑥(𝛿𝜃𝑘, 𝛿𝜃𝑘) (135)
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which is a metric on Θ.
Note that these metrics may be non-positive definite (e.g., if a parameter

has no influence on the output).
Since these metrics have been defined using only intrinsic objects without

choosing a parametrization of any of the manifolds Θ𝑘, they are intrinsic (for
a given output metric Ω). Consequently, when working in explicit coordinates,
the value of the norm of 𝛿𝜃 is invariant with respect to any change of variables
for each 𝜃𝑘 (diffeomorphism of Θ𝑘). The natural metric has the additional
property that it is invariant under changes of variables mixing the parameters
of various units: its invariance group is Diff(

∏︀
𝑘 Θ𝑘) whereas the invariance

group is the smaller group
∏︀

𝑘 Diff(Θ𝑘) for the unitwise natural metric and
backpropagated metric.
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