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Our aim here is to present, within the limited scope of the author’s knowledge, the
state of the art of random groups. The decision to write such a survey arose from
consideration of the rapidly growing number of publications on the subject, which,
from a bunch of theorems, is slowly shaping into a theory. A whole section has been
devoted to the statement of open problems of various difficulty.

The goal was not to track down the origins of the generic way of thinking in group
theory or neighboring fields, but to review the results in that branch of mathematics
which treats of the groups obtained from random presentations. In particular, and
mainly because of the author’s incompetence on these matters, the asymptotic theory
of finite groups and properties of random elements therein are not covered.

The information presented here has deliberately been limited to the works available
to the author as of January 31%, 2005, except for bibliographical references to then un-
published manuscripts, which have been updated for the reader’s convenience.
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The roots of all current mathematical work related to random groups lie unques-
tionably in Misha Gromov’s fertile mind, and can be traced back to his seminal 1987
paper [Gro87] on hyperbolic groups. In order to illustrate the importance of his newly
defined [Gro78, Gro83] class of groups, he stated (without proof) that “most” groups
with a fixed number of generators and relations and “long enough” relation length are
hyperbolic (see § I.1.).

He later substantiated his thoughts on the subject in Chapter 9 of [Gro93], where
the density model of random groups is defined and the intuition behind it thoroughly
discussed. This model allows a sharp control of the quantity of relations put in a ran-
dom group, and has proven very fruitful over the years, especially since the properties
obtained vary with density (cf. §1.2.).

The subject received considerable attention from the general mathematical commu-
nity (see e.g. [Ghy03, Pan03]) when Gromov published his Random walk in random
groups [Gro03] (elaborating on the equally renowned Spaces and questions [Gro00]), in
which he uses random methods to build a group with “wild” geometric properties
linked to the Baum-Connes conjecture with coefficients (§ IIL.2. below), although these
partially random groups have no pretention at all to model a “typical” group.

The first motivation for the study of random groups is the following somewhat
philosophical question: “What does a typical group look like?” This theme is addressed
in § I., Models of typical groups, where known properties of those are discussed. The
word “typical” here is used as a convenient loose term interpolating between “ran-
dom”, which entails a probabilistic setting, and “generic”, rather implying a topologi-
cal framework. The latter is specifically developed in § 1.4., where some results on the
space of all marked groups are presented.

A slightly different approach is to look at properties of “typical” elements in a given
group, either for themselves or in order to achieve certain goals. This is the theme of
§II., Typical elements in a group. For example, a lot of “unrelated” “typical” elements
in a hyperbolic group can be killed without harming too much the group (§ II.1.); this
intuition has been present since the very beginning of hyperbolic group theory. Also,
considering that typical relations in a presentation do not exhibit any special structure
led to a sharp evaluation of the number of different one-relator groups (§ I1.3.).

But random groups now have found applications to other fields of mathematics. In-
deed, the use of random ingredients in constructions specifically designed to achieve
certain goals allows to prove existence of groups with new properties, which are coun-
terexamples to open questions, such as Gromov’s celebrated group (§ IIL.2.) whose
Cayley graph admits no uniform embedding into the Hilbert space, or a bunch of new
groups with property (7') and somewhat unexpected properties (§ IIL.3.). Though these
groups cannot pretend to be good candidates for “typicality”, they are definitely of in-
terest to people in and outside of group theory.

Yet for the author, the primary appeal of the field is still the study of properties of
“typical” groups for themselves, rather than the applications just discussed. This is, of
course, a matter of (philosophical?) taste.

Acknowledgements. Iwould like to thank Goulnara Arzhantseva, Yves de Cornulier,
Thomas Delzant, Etienne Ghys, Misha Gromov, Frédéric Haglund, Ilya Kapovich, Ri-
chard Kenyon, Pierre Pansu, Bruno Sévennec, Alain Valette and Dani Wise for their
help and comments with preparing this text.
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I. Models of typical groups

Terminology (hopefully standard). Here and throughout the text, F},, is the free group

generated by the m letters ay, ..., a, and their inverses. We always assume m > 2.
When we say that a group is generated by elements ay, ..., a,,, we allow use of the
inverses afﬂ.

A word is a finite word on the set of 2m letters S = {a1, ..., am, al_l, conarty Tfwis
a word, we denote its length by |w]|.

If (r1,...,7%,...) is a (finite or infinite) sequence of words, the group presented
by (S|r1,...,7k,...) is the quotient of F},, by the normal subgroup generated by
Tl,...,Tk,.... We will call the a;’s generators and the ;s relators.

A word is said to be reduced if it does not contain a subword of the form aia;l or
a; ‘a;, and cyclically reduced if moreover the last letter is not the inverse of the first one.
Words in a group presentation can always be assumed to be reduced.

To each presentation is associated a standard 2-complex whose fundamental group
is the group considered: it is constructed by taking a bouquet of m circles each labelled
by a generator, and by attaching a disk for each relator along the path labeled by the
relator. The Cayley 2-complex is the universal cover of this complex; its vertices are the
elements of the group, its edges correspond to multiplication by the generators, and its
faces are labeled by relators. The Cayley graph is the same without the faces.

We refer to [GhH90], [Sho91a], [CDP90], [Ghy90] or [BH99] for definitions and basic
properties of hyperbolic! groups. We call a hyperbolic group non-elementary if it is
neither finite nor quasi-isometric to Z. We will call hyperbolicity the property of being
non-elementary hyperbolic.

The models. Basically there are three models of random groups. The quite straight-
forward few-relator model (Def. 1) allows for only a fixed number of relators, of bounded
length; small cancellation, hence hyperbolicity, is easily shown to be generic in this
model. It is now subsumed as density 0 in the density model. The few-relator model
with various lengths (Def. 4), which allows very different relator lengths, is more diffi-
cult technically because several scales are involved. The density model (Def. 7) allows
a clear-cut quantitative approach on the number of relators that can be put before the
group collapses; this model has been preferentially focussed on recently because var-
ious values of the density parameter involved seem to have different, rather concrete
geometrical meanings.

The topological approach of the space of marked groups (§ 1.4.), though not a model of
random groups itself, may be a nice framework to interpret some of these results in.

Another would-be model, maybe the most natural of all, the temperature model, which
is kind of a density model at all relator lengths simultaneously, is addressed as an open
question in § IV.k. since there still are no results about it.

I.1. Forerunners: few-relator models

The statement that most groups are hyperbolic is statistical. It means that out of all
possible group presentations, asymptotically most of them define hyperbolic groups.

'We choose to stick to this simpler term, rather than having to choose between §-hyperbolic and word-
hyperbolic. Although the latter is seemingly favored in the literature, it puts the emphasis on the combi-
natorial aspect of the definition, whereas the geometric definition involving thinness of triangles proved
just as much relevant (if not more) in subsequent developments. Hyperbolicity of groups definitely has
several interpretations and the word used should not bias our minds.
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Here the asymptotics are taken with respect to the length of the relators involved.

Maybe the simplest statement expressing the overwhelming weight of hyperbolic
presentations consists in considering the set of all presentations with a fixed number of
relators and a bounded relator length, as in the following model.

DEFINITION 1 (FEW-RELATOR MODEL OF RANDOM GROUPS) —
Let Ry, ¢ be the set of all group presentations with k relators of length at most ¢

Rie={(a1,...,am | 71,...,7%), i reduced, |r;| < ¢ Vi}

Let P be a property of a presentation. We say that P occurs with overwhelming
probability in this model if the share of presentations in Ry, which have property P
tends to 1 as ¢ tends to infinity.

The following proposition was more or less implicit in the original formulation of
small cancellation theory. Let us simply recall that C’()) for A > 0 is the condition that
no two relators in a presentation share a common subword of length at least A times
the infimum of their lengths (we refer to [LS77] for small cancellation theory). When
A < 1/6 this implies hyperbolicity ([Gro87], 0.2.A).

PROPOSITION 2 - For any k, for any A > 0, the C'()\) small cancellation property
occurs with overwhelming probability in the few-relator model of random groups. In
particular, hyperbolicity occurs with overwhelming probability in this model, as well
as torsion-freeness and cohomological dimension 2.

Of course, the overwhelming probability depends on k and A: for very small \’s, it
is necessary to take larger ¢ for the share to become close to 1.

Note also that since the number of possible relators of length ¢ grows exponentially
with ¢, a random relator of length at most ¢ actually has length between ¢(1 — ¢) and ¢,
so that in this model all relators have almost the same length.

This proposition appears in [Gro87], 0.2.A (in the notation thereof, this is the case
in [Ch91, Ch95]. The proof is straightforward. Take e.g. k£ = 2. The number of couples
of reduced relators of length at most ¢ behaves like (2m — 1)25, whereas the number
of couples of relators sharing a common subword of length A/ behaves roughly like
(2m — 1)2=7, So the share of couples of relators having a common subword of length
M, for some A\ > 0, is exponentially small when ¢ — oo, so that the C’(\) condition is
satisfied.

REMARK 3 — The few-relator model of random groups appears as the 0-density case of
the density model.

For this reason, results known to hold in this model are discussed below in § I.2.
In [Gro87], 0.2.A, Gromov immediately notes that it is not necessary to assume that

all relators have lengths of the same order of magnitude to get hyperbolicity. This
yields to the next model, which is technically much more difficult.

DEFINITION 4 (FEW-RELATOR MODEL WITH VARIOUS LENGTHS) —
Given k integers (1, . .., Uy, let

Rir,t, ={(01,. . am | 11,...,7%), r; reduced, |r;| = £;}

be the set of presentations with k relators of prescribed lengths.
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Let P be a property of a presentation. We say that P occurs with overwhelming
probability in this model if for any € > 0 there exists an ¢ such that, if min ¢; > ¢, then
the share of presentations in Ry, ¢, ... s, which have property P is greater than1 — e.

In general, the small cancellation condition C’(\) is not satisfied in this model. In-
deed, as soon as e.g. /5 is exponentially larger than ¢;, very probably the relator r; will
appear as a subword of the relator rs.

Once again however, hyperbolicity occurs with overwhelming probability. This is
stated without proof in [Gro87], 0.2.A, and is referred to as “Théoreme sans preuve”
in [GhH90]. A little bit later, proofs were given independently by Champetier [Ch91,
Ch95] (in the case k£ = 2) and Ol’shanskii [OlIs92].

THEOREM 5 — With overwhelming probability, a random group in the few-relator
model with various lengths is non-elementary hyperbolic, torsion-free, of cohomolog-
ical dimension < 2.

A few more results are known in this model. For k = 2, the boundary of the group is
a Menger curve [Ch95] (see also § 1.3.d.). Also the rank is the one expected [CS98] (and
in particular the cohomological dimension in the previous theorem is actually 2):

THEOREM 6 — With overwhelming probability, a random group in the few-relator
model with various lengths has the following property: the subgroup generated by
any m — 1 generators chosen among ay, . . ., G, is free of rank m — 1.

Moreover, thanks to a theorem of Champetier [Ch93] the spectral radius of the ran-
dom walk operator associated to ay, ..., a,, (see definition in § I.3.f.) is arbitrarily close
to the smallest possible value v/2m — 1/m [CS98]. Using similar spectral bounds, it is
proven in [CV96] that for £ = 1 (one relator), the semi-group generated by ay,...,an,
is free.

Let us stress that contrary to the few-relator, one-length model, the few-relator model
with various lengths is not subsumed in the density model below. It might, however,
be recovered as an iterated random quotient at density 0 (see § I1.2.), but the technical
details needed to get this are still unclear.

I.2. Gromov’s density

By the time Champetier and Ol’shanskii had proven his first statement, Gromov had
already invented another model, the density model ([Gro93], Chapter 9 entitled Finitely
presented groups: density of random groups and other speculations). A continuous density
parameter now controls the quantity of relators put in the random presentation. The
sharpness of the notion is revealed through a phase transition theorem: if density is
less than 1/2, then the random group is very probably infinite hyperbolic, whereas it is
trivial at densities above 1/2.

DEFINITION 7 (DENSITY MODEL OF RANDOM GROUPS) —
Let F;,, be the free group on m > 2 generators ay, . .., a,,. For any integer { let Sy C F,
be the set of reduced words of length ¢ in these generators.

Let 0 < d < 1. A random set of relators at density d, at length ¢ is a (2m — 1)“-
tuple of elements of Sy, randomly picked among all elements of Sy (uniformly and
independently).

A random group at density d, at length ¢ is the group G presented by (ay, ... ,am | R)
where R is a random set of relators at density d, at length /.

We say that a property of R, or of G, occurs with overwhelming probability at den-
sity d if its probability of occurrence tends to 1 as ¢ — oo, for fixed d.
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REMARK 8 — Slight variants of this historical definition exist, sometimes leading to
more nicely expressed statements, e.g. replacing the sphere S, with the ball B, of words
of length < /. They are discussed in § 1.2.

Of course, the main point in this definition is the number (2m — 1)% of relators taken,
which is actually quite large. Note that the set S, contains about (2m—1)¢ words, so that
density is measured logarithmically (a fact we will meet again in § II.). The intuition
behind this and the strong analogy with usual dimension and intersection theory are
very nicely explained in [Gro93] (see also [Ghy03]): for a finite set X, the density of A C
X defined as d(A) = log #A/log #X has, for “generic” A, lots of expected properties
of a dimension (e.g. for the dimension of an intersection).

The basic idea is that d? is the “dimension” of the random set of relators R (the set Sy
itself being considered of dimension ¢ because we have ¢ independent letter choices to
make to specify an element in it).

Classically, the dimension of a set (subspace in a vector space, algebraic submani-
fold) is the maximal number of “independent equations” that we can impose so that
there still exists an element in the set satisfying them. For words, an “equation” will
mean prescribing some letter in the word. Now consider e.g. a set of 2% random words
of length ¢ in the two letters a and b; a simple counting argument shows that very
probably, one of these words will begin with roughly d/ letters a (but not much more),
meaning that this random set has “dimension” d¢. More precisely:

PROPOSITION 9 — Let R be a random set of relators at density d, at length . Let 0 <
a < d. Then with overwhelming probability the following occurs: Any reduced word
of length o appears as a subword of some word in R.

Note that by a trivial cardinality argument, if & > d there exists a reduced word of
length o not appearing as a subword of any word in R.

Let us show on another example the strength (and correctness) of dimensional rea-
soning: Let us compute the probability that there exist two relators in R sharing a com-
mon subword of length o/. The dimension of R is d/, so that the dimension of the set of
couples Rx Ris 2d¢. Now sharing a common subword of length L imposes L equations,
so that the “dimension” of the set of couples of relators sharing a common subword of
length o/ is 2d¢ — ol. So if d < a/2 this dimension will tend to —oo as £ — oo, implying
that there will be no such couple of relators; conversely if d > «/2 there will exist such
a couple because dimension will be positive. What we have “shown” is:

PROPOSITION 10 — Leta > 0 and d < «/2. Then with overwhelming probability, a
random set of relators at density d satisfies the C'(«) small cancellation condition.

Conversely, if d > «/2, then with overwhelming probability a random set of relators
at density d does not satisfy the C'(«)) small cancellation condition.

A rigorous proof ([Gro93], 9.B) is obtained by a simple counting argument, which in
fact amounts to raising (2m — 1) to the exponents given by the various “dimensions”
of the sets involved.

The phase transition. The striking phase transition theorem then proven by Gromov
in [Gro93] is as follows.

THEOREM 11 — Let G be a random group at density d.
e Ifd < 1/2, then with overwhelming probability G is infinite, hyperbolic, torsion-

free, of geometric dimension 2.
e Ifd > 1/2, then with overwhelming probability G is either {e} or Z/2Z.



MODELS OF TYPICAL GROUPS 7

This calls for a few comments: Of course Z/2Z occurs for even ¢. What happens at
exactly d = 1/2 is unknown and even the right way of asking the question is unclear
(see § IV.a. for an elaboration on this). Note that Proposition 10 already implies the
conclusion for d < 1/12, for then the presentation satisfies the good old C’(1/6) small
cancellation condition.

We include a proof of this theorem in § V. The argument appears in [Gro93], p. 273—
275; it suffers from omission of the case when a van Kampen diagram comprises the
same relator several times. The proof of a similar-looking statement (Theorem 29 in the
triangular model, see § 1.3.g.) in [Zuk03] suffers from a similar but more subtle flaw
(see § V). A somewhat lengthy proof is given in [O1104].

This theorem generalizes to random quotients of torsion-free hyperbolic groups (§ II.1.
and § I1.2.).

The reason for density 1/2 is the following: Recall the probabilistic pigeon-hole prin-
ciplez, which states that if in IV holes we put much more than VN pigeons then we
will put two pigeons in the same hole (very probably as N — oo, provided that the
assignment was made at random). In other words, a generic set of density more than
1/2 does self-intersect.

Density 1/2 is the case when the cardinal of the set of relators R is more than the
square root of the cardinal of the set Sy of words of length /. In particular, this means
that we very probably picked twice the same relator in R. A fortiori, very probably
there are two relators 7, € R differing just at one positioni.e. 7 = waiﬂ, ro = wajEl
with |w| = ¢ — 1. But in the group G = F,,,/(R), we have by definition r; =g r2 =¢
e, so that aiil = ajﬂ. Since there are only a finite number of generators, this will
eventually occur for every value of i and j and every sign of the exponent, so that in G
any generator will be equal to any other and to its inverse, implying that the group has
< 2 elements.

This proves the trivial part of the theorem.

Variations on the model. Several points in the definition above are left for interpreta-
tion. First, let us stress that it is not crucial to take relators of length exactly ¢: choosing
lengths between ¢ and ¢ + o(¢) would do as well. This even has several advantages: it
kills the odd Z/2Z in Theorem 11 and avoids matters of divisibility by 3 in the prop-
erty (T') theorem (Theorem 27).

Actually the most natural setting is perhaps to choose at random words of length at
most ¢ (“ball variant”) instead of exactly /. Since the number of words grows exponen-
tially, most words so taken will be of length close to /¢, but since the number of words
taken is exponential too, some words will be shorter (at density d the shortest word
will have length approximately (1 — d)¢). This variant simplifies the statements of The-
orems 11, 27 and 38, is more natural for random quotients (§ II.), and the validity of all
random group theorems proven so far seems to be preserved. In this text we chose to
keep the historical Definition 7, in order to quote the literature without change; but e.g.
for a textbook on random groups, the ball variant might be preferable.

There is a slight difference between choosing N times a random word and having
a random set of N words, since some word could be chosen several times. But for
d < 1/2 the probability that a word is chosen twice is very small and the difference
is negligible; anyway this does not affect our statements, so both interpretations are
valid.

A k.a. the birthday paradox: in a class of more than 23 pupils there is a good chance that two of them
share the same birthday. This is a simple combinatorial exercise.
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Numbers such as (2m — 1)% are not necessarily integers. We can either take the

integer part, or choose two constants C; and C, and consider taking any number of
words between C;(2m — 1)% and Cy(2m — 1)%. Once more this does not affect our
statements at all.

One may hesitate between choosing reduced or cyclically reduced words. Once
again this does not matter.

Section 4 of [Ol1104] (in particular Remark 8) contains an axiomatic framework which
allows to handle such a loose model and not to reprove all the theorems for each vari-
ant.

In all theorems stated in this text, not only does “with overwhelming probability”
mean that the share of groups not having the property under consideration tends to
0 as ¢ — oo, but actually the decay is exponential, that is, there exists a constant c
(depending on everything except ¢) such that this share is less than exp(—cf).

A very natural generalization of the density model is the temperature model, de-
scribed in § IV.k.

REMARK 12 (ON DENSITY 0) — The intuition makes it clear that the only thing that
matters is the exponent of growth of the number of relators. Thus, although it would
follow from Definition 7 that a random set of relators at density 0 consists of one relator,
we often use “density 0” to refer to a situation when the number of relators grows
subexponentially with their lengths, e.g. the case of a constant number of relators (the
few-relator model of Def. 1—but not the one of Def. 4).

I.3. Critical densities for various properties

A bunch of properties are now known to hold for random groups. This ranges from
group combinatorics (small cancellation properties) to algebra (freeness of subgroups)
to geometry (boundary at infinity, growth exponent, CAT(0)-ness) to probability (ran-
dom walk in the group) to representation theory on the Hilbert space (property (T),
Haagerup property). Some of the properties studied here are intrinsic to the group,
others depend on a marked set of generators or on the standard presentation through
which the random group was obtained.

Most interesting is the fact that some intrinsic properties vary with density (prop-
erty (T'), Haagerup property), thus proving that different densities can provide non-
isomorphic groups (see § IV.b. for a discussion on this problem).

I.3.a. Van Kampen diagrams and small cancellation properties. These are the most
immediate properties one gets for a random group. They are properties of the presen-
tation, not of the abstract group.

Recall that, given a group presentation, a piece is a word which appears as a subword
of two different relators in the presentation, or as a subword at two different positions
in the same relator (relators are considered as cyclic words and up to inversion). For
a > 0, the most often used C’(«) condition states that the length of any piece is less
than o times the infimum of the lengths of the relators on which it appears. For an
integer p, the C'(p) condition holds if no relator is the union of less than p pieces. The
B(2p) condition holds if the union of p consecutive pieces always makes less than half
a relator. We have the implications C’'(1/2p) = B(2p) = C(2p + 1). The T'(p) small
cancellation condition is totally irrelevant for groups with lots of relators.

Conditions C'(1/6), C(7) or B(6) imply hyperbolicity. Elementary counting argu-
ments [OW-b] yield the following more erudite version of Proposition 10:
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PROPOSITION 13 — With overwhelming probability:

e The C'(«) condition occurs if d < «/2 and fails for d > /2.
e The C(p) condition occurs if d < 1/p and fails for d > 1/p.
e The B(2p) condition occurs if d < 1/(2p + 2) and fails ford > 1/(2p + 2).

These conditions being understood for the standard presentation from which the
random group was obtained.

In particular, using the C(7) condition, this proposition proves Theorem 11 up to
density 1/7. Note also that as d approaches 1/2, we have arbitrarily large cancellation
(which refutes the expression “small cancellation on average” sometimes applied to
this theory—we indeed measure cancellation on average, but it is not small).

Hyperbolicity of random groups is proven through isoperimetry of van Kampen
diagrams (see § V. for what we need on van Kampen diagrams, [LS77, Ols91a, Rot95]
for definitions and [Sho91a] for the link with hyperbolicity). Various, closely related
formulations of this inequality for random groups appear in [Gro93, Ch91, Ols92, Ch95,
01104, Oll-f]. We give the most recent one from [Oll-f], which is sharp and, combined
with a result in [Ch94], gives a nice estimate for the hyperbolicity constant:

THEOREM 14 — For every ¢ > 0, with overwhelming probability, every reduced van
Kampen diagram D in a random group at density d, at length ¢ satisties

|0D| = (1 —2d —¢) ¢ |D|
where |0D| is the boundary length and | D| the number of faces of D.
Consequently, the hyperbolicity constant § of the random group satisfies

4¢
<
1—2d
and the length of the smallest relation in the group is at least {(1 — 2d — ¢).

This theorem of course implies Theorem 11. The argument is given in § V.

The isoperimetric constant is optimal in the sense that, with overwhelming probabil-
ity, there exists a two-face van Kampen diagram D satisfying |0D| < (1 —2d +¢) ¢ |D|,
which is just the failure of the C’(2d + ¢) small cancellation property (Prop. 10). For
the hyperbolicity constant, clearly ¢ is the right order of magnitude but the real depen-
dency on d when d — 1/2 is unclear.

Closely related to small cancellation are Dehn’s algorithm (see [LS77]), which holds
for a group presentation when every reduced cyclic word representing the identity
in the group has a subword which is more than half a subword of a relator in the
presentation; and its stronger version, Greendlinger’s Lemma (see [LS77] too), which
holds when every reduced van Kampen diagram with at least two faces has at least two
faces having more than half their length on the boundary of the diagram (in one piece).
Every hyperbolic group admits some finite presentation satisfying Dehn’s algorithm
([Sho91a], Theorem 2.12). However, for the standard presentation of a random group,
a phase transition occurs at 1/5 [Oll-f]:

THEOREM 15 — With overwhelming probability, if d < 1/5 the standard presentation
of a random group at density d satisties Dehn’s algorithm and Greendlinger’s Lemma.
Ifd > 1/5, with overwhelming probability it does not satisfy any of the two.

This property is the last remnant of combinatorial small cancellation when density
increases. It is crucial in the proof of Theorems 32 and 33 about action on a cube com-
plex and failure of property (7).
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I.3.b. Dimension of the group. A consequence of the isoperimetric inequality hold-
ing for any reduced van Kampen diagram is that the Cayley 2-complex associated to
the presentation is aspherical [Gro93, Ol104], so that the group has geometric (hence
cohomological) dimension 2 as stated in Theorem 11. The Euler characteristic of the
group is thus simply 1 — m + (2m — 1)%.

In particular, since this Euler characteristic is positive for large ¢, we get the following
quite expected property (at least for d > 0, but this also holds at density 0 thanks to
Theorem 18):

PROPOSITION 16 — With overwhelming probability, a random group in the density
model is not free.

Consideration of the Euler characteristic also implies that, for fixed m, the “dimen-
sion” d/ of the set of relations of the group is well-defined by its algebraic structure.

I.3.c. Algebraic properties at density 0: rank, free subgroups. When density is 0
(i.e. in the few-relator model, see Def. 1 and Remark 12), random groups keep lots of
algebraic properties of a free group. In a certain sense, there are “no more” relations
holding in the group than those explicitly put in the presentation. Several theorems in
this direction are proven by Arzhantseva and Ol’shanskii, using a technique of repre-
sentation of subgroups of a group by labelled graphs (or finite automata) introduced
by Stallings [Sta83], technique which will be discussed more in § III.1. Arzhantseva
and Ol’shanskii are able to extract, from failure of freeness in subgroups of a random
group, a “too small” representation of one of the relators, which never occurs for ran-
dom relators.

It is clear that some (all?) of these theorems do not hold at all densities. But they
probably extend to small positive values of d, the determination of which is an inter-
esting problem.

The first such theorem [AO96] is the following:

THEOREM 17 — With overwhelming probability in the few-relator model of random
groups with m generators and n relators, any subgroup generated by m — 1 elements
is free.

This is not true at all densities (see § IV.d.). When the m — 1 generators of the sub-
group are chosen among the m standard generators of the group, this is a particular
case of Theorem 6.

The group itself is not free and more precisely [Ar97]:

THEOREM 18 — In the few-relator model of random groups with n > 1 relators, no
finite-index subgroup of the group is free.

As a corollary of these two theorems, we see that the rank of the random group in
the few-relator model is exactly m, which, once again, does not hold at all densities (cf.
§1vd.).

Reusing the methods of Arzhantseva and Ol’shanskii, Kapovich and Schupp prove
that there is “only one” m-tuple generating the group. Recall [LS77] that for a m-tuple
of elements (g1, ..., ¢gn) in a group, a Nielsen move consists in replacing some g; with
its inverse, or interchanging two g;’s, or replacing some g; with g;g; for some i # j.
Obviously these moves do not change the subgroup generated by the m-tuple. The
theorem [KS05] reads:

THEOREM 19 — With overwhelming probability, in a random few-relator group G, any
m-tuple of elements generating a non-free subgroup is Nielsen-equivalent in G to the
standard m-tuple of generators w.r.t. which the random presentation was taken.
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In particular, any automorphism of G lifts to an automorphism of F,,.

More properties of free groups are kept by random few-relator groups. In a free
group, any subgroup is free; any finitely generated subgroup is quasiconvex; any non-
trivial finitely generated normal subgroup has finite index ([LS77], Prop. 1.3.12); the
intersection of any two finitely generated subgroups is finitely generated (Howson's
Theorem, [LS77], Prop. 1.3.13). These properties are generalized as follows in [Ar97,
Ar98]:

THEOREM 20 — Let L > 1 be an integer. With overwhelming probability, a random
few-relator group satisfies the following properties.

Any subgroup of rank at most L and of infinite index is free.

Any subgroup of rank at most L is quasiconvex.

Any non-trivial normal subgroup of rank at most L has finite index.

The intersection of any two subgroups of rank at most L is quasiconvex and
finitely generated.

The overwhelming probability depends on L. For example, it is not clear whether
all infinite-index subgroups are free or not.

The last point follows from the second one, noting that, in a finitely generated group,
the intersection of two quasiconvex subgroups is quasiconvex and quasiconvex sub-
groups are finitely generated (see the nice [Sho91b]).

The results mentioned so far deal with properties of subgroups in the random group.
One can wonder how subgroups of the free group are mapped to the random group.
A theorem in this direction is the following [Ar00]:

THEOREM 21 — Let hq, ..., hj, be elements of the free group F,,, generating a subgroup
H of infinite index. Then with overwhelming probability, the map from F},, to a random
few-relator group is injective on H.

Conversely, it is easily seen that subgroups of finite index do not embed.
Of course this holds for elements hy, ..., hy fixed in advance: it cannot be true that the
quotient map is injective on all subgroups...

1.3.d. Boundary and geometric properties of the Cayley graph. We refer to [GhH90,
CDP90, BH99] for the notion of boundary of a hyperbolic space.

Since the dimension of a random group is 2 (§ 1.3.b.), by Corollary 1.4 of [BM91], the
dimension of its boundary is 1. Champetier ([Ch95], Theorem 4.18) proves that at small
density, the boundary is the most general object of dimension 1:

THEOREM 22 — Letd < 1/24. Then with overwhelming probability, the boundary of a
random group is a Menger curve. In particular the group is one-ended.

The bound 1/24 is probably not sharp. Let us recall that the Menger curve is the
universal object in the category of compact metric spaces of dimension 1, see [And58];
it is (almost) characterized as the 1-dimensional, locally connected, locally non-planar
continuum without local cut points (the boundary of a one-ended hyperbolic group
never has cut points, see [Swa96]).

One-endedness probably holds at any density, but between 1/24 and 1/3 no sim-
ple criterion seems to apply. For d > 1/3, using Serre’s theory of groups acting on
trees [Ser77, HV89] it is a corollary of Theorem 27 on property (T'):

PROPOSITION 23 — Let d > 1/3. Then with overwhelming probability, a random
group is one-ended.
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At density 0, the Cayley graph of the group is not planar [AC04] (planarity of Cayley
graph and complexes is an old story, see discussion in [AC04]). The result actually
holds for generic C’(1/8) small cancellation groups and so:

THEOREM 24 — Letd < 1/16. With overwhelming probability, the Cayley graph (w.r.t.
the standard generating set) of a random group at density d is not planar.

Actually the technique used in [AC04] allows to embed subdivisions of lots of finite
graphs into the Cayley graph of a small-density random group.

I.3.e. Growthexponent. The growthexponentofagroup presentationG = (ay,...,an | R)
measures the rate of growth of balls in the group. Let By, be the set of elements
of the group G which can be written as a word of length at most L in the gener-

ators ai’,...,a!. If G is the free group Fj,, the number of elements of By, is 1 +

' m
Zizl(Zm) (2m — 1)2~1 which is the number of elements at distance < L of the origin in
the valency-2m regular tree. The thing that matters here is the exponential growth rate

of the balls,
. 1
g = ngréo 7 logy,,,—1 #BL

(the limit exists thanks to the relation # B,/ < #Br #By/). This quantity is the
growth exponent of the group G w.r.t. the generating set a1, ..., a,,. Itis at most 1, and
equal to 1 if and only if G is the free group F;,, on these generators. See [Har00] (chap-
ters VI and VII), [GH97] or [Ver00] for some surveys and applications related to growth
of groups.

Actually, the growth exponent of a random group at any density d < 1/2 is arbitrar-
ily close to that of a free group with the same number of generators [Oll-d]. Of course,
by Theorem 14 a random group behaves like a free group up to scales ¢(1 — 2d), but
growth is an asymptotic invariant taking into account the non-trivial geometry of the
group at scale /, so it is somewhat surprising that the growth exponent is large inde-
pendently of the density d (except if d > 1/2 where of course it drops to 0). Computing
the growth exponent was initially an attempt to build a continuous quantity depending
on density.

THEOREM 25 — Lete > 0 and 0 < d < 1/2. Then with overwhelming probability, the
growth exponent of a random group at density d lies in the interval [1 — ;1) (w.r.t. the
standard generating set).

Note that non-sharp bounds for the growth exponent can be obtained from the spec-
tral estimates discussed in § 1.3.f. (see discussion in [Oll-d]).

When d < 1/12 the random group satisfies the C’(1/6) small cancellation condi-
tion, and in this case this result is related to a theorem of Shukhov [Shu99] stating that
C’(1/6) groups with long enough relators and “not too many” relators have growth
exponent close to 1. Shukhov’s “not too many” relators condition is strikingly reminis-
cent of a density condition.

I.3.f. Random walk in a typical group. A group together with a generating set de-
fines a random walk, which consists in starting at e and, at each step, multiplying by
one of the generators or its inverse, chosen at random (this is the simple random walk
on the Cayley graph). A foundational paper of this theory is that of Kesten [Kes59], see
also [Gri80, GH97, Woe00] for some reviews.

One quantity containing a lot of information about the random walk is the spectral
radius of the random walk operator (see [Kes59]). Let P; be the probability that at time
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t, the random walk starting at e is back at e. The spectral radius of the random walk is
defined as
p= lim (Pt)l/t
t—00
t even
(the limit exists thanks to the property P, > FP;Py). One restricts oneself to even

t because there might be no odd-length path from e to e in the Cayley graph. This
quantity is at most 1 (a value achieved if and only if the group is amenable [Kes59]),

and at least —V2;”1_1 where m is the number of generators (achieved if and only if the
group is free on these generators).

Just as for the growth exponent, it came out as a surprising fact that the spectral
radius of the random walk on a random group does not depend on density [Ol105a],
except of course when d > 1/2 where it suddenly jumps to 1. Once again this cannot
be interpreted simply by saying that random groups are free up to scale ¢(1 — 2d),
because the spectral radius is an asymptotic invariant taking into account the non-
trivial geometry at scale /.

THEOREM 26 — Lete > 0and 0 < d < 1/2. Let p(Fy,) = —sznlfl be the spectral radius
of the random walk on the free group F,.

Then with overwhelming probability, the spectral radius of the random walk on a
random group at density d lies in the interval (p(F,); p(F) + €).

At density 0 this follows from a theorem of Champetier [Ch93], which, as mentioned
earlier (§ I.1.), also holds in the few-relator model with various lengths.

Consequently, the growth exponent of the kernel of the map F,,, — G (the cogrowth
exponent of G) is less than 1/2 + ¢, thanks to a formula by Grigorchuk ([Gri80, Ch93,
Ol1l04]). This answers Gromov’s question 9.B.(c) in [Gro93]: normal closures of ran-
dom sets of density < 1/2 generated by random large elements in F},, have “density”
(growth exponent) less than 1/2 + «.

This result also has a nice interpretation in terms of a random walk on an infinite tree
with lots of “zero-length” bridges added at random (in an “equivariant” way). Indeed
the random walk on a random group G can be thought of as a random walk on the
Cayley graph of the free group F},, where elements of F;,, mapping to the same element
of G are linked by a bridge through which the random walk can “instantly” travel. The
theorem then states that adding “lots of” bridges equivariantly does not change the
probability to come back to (a point connected by bridges to) the origin, up till some
density when suddenly any point is connected to the origin by a sequence of bridges.

1.3.g. Property (7') and the triangular model. Kazhdan’s property (T') of a group
has to do with the behavior of unitary actions of the group on the Hilbert space and
basically asks that, if there are unitary vectors which the group action moves by ar-
bitrarily small amounts, then there is a vector fixed by the action. It has proven to
be linked with numerous algebraic or geometric properties of the group. We refer
to [HV89, BHV, Val02a] for reviews and basic properties.

The so-called spectral criterion is a sufficient condition for property (") of a discrete
group, which is an explicitly checkable property of the ball of radius 1 in the Cayley
graph w.r.t. some generating set. The neatest statement is to be found in [Zuk03], see
also [Zuk96, BS97, Pan98, Wan98, Val02a]. Gromov (part 3 of [Gro03]) put this result
in a more general context, which allowed Ghys to write a very simple proof [Ghy03,
Oll-b].
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It happens that in the density model, after suitable manipulations of the presenta-
tion, this criterion is satisfied as soon as d > 1/3. It is not known whether this latter
value is optimal (compare Theorem 32 below and § IV.c.).

THEOREM 27 — Letd > 1/3 and let G be a random group at density d and at lengths
0,0+ 1 and ¢ + 2. Then, with overwhelming probability, G has property (T').

The necessity to take a random quotient at three lengths simultaneously is a technical
annoyance due to the too restrictive definition of the density model, which disappears
if we replace the sphere by the ball in Definition 7 (see Remark 8 and § 1.2.). This results
from the necessity to have some relators of length a multiple of 3, as we explain now.

This theorem is proven using an intermediate random group model better suited to
apply the spectral criterion, the triangular model, which we now define. This model
consists in taking relators of length only 3, but letting the number of distinct generators
tend to infinity. Zuk [Zuk03] wrote a proof that property (7) holds in this model at
density d > 1/3 (Theorem 31); it is then possible to carry the result to the density model
(but actually Theorem 27 seems not to be written anywhere explicitly in the literature).

DEFINITION 28 (TRIANGULAR MODEL) — Let n be an integer and let by, ...,b, be
n distinct symbols. Let W, 3 be the set of words of length 3 in by, ..., b, bfd, =
which are cyclically reduced.

Let0 < d < 1. A random group on n relators at density d in the triangular model
is the group presented by G = (by,...,b, | R3) where R3 is a set of (#ng)d words
taken at random in W, 3.

A property of G is said to occur with overwhelming probability in this model if its
probability of occurrence tends to 1 asn — oo.

Note that #W,, 3 ~ (2n)3 for large n. The density intuition is the same as above: the
number of relators taken is a power of the total number of possibilities.

Actually there is a natural homomorphism from a random group in the triangular
model to a random group in the density model, at the same density. This goes as
follows: Let m be the number of generators used in the density model, let ¢ be a length
which is a multiple of 3, and let W, 03 be the set of all reduced words of length ¢/3 in

the symbols a7}, ..., al. Now take n = SHW! /3 and define a map ¢ from the free
group (by, ..., by) to the free group (a1, ..., a,,) by enumerating all the wordsin W/ , /3
and sending each b; to a distinct such word (and sending inverses to inverse words).

Note that if w € W), 3 then ¢(w) is a word of length £ in the a;’s

Now if G3 = (b1,...,b, | R3) is a random group in the triangular model, we can
define a group G = (ai,...,an | p(R3)), in which the relators will have length ¢. If

G3 is taken at density d, then by definition it consists of (#W,,3)? ~ (2n)>? relators,
so that #¢(Rs) = #R3 ~ (2n)*" = (#W] ,5)>" ~ ((2m - 1)5/3)% = (2m — 1)3%, in
accordance with the density model. Note also that the image of the uniform law on

Wy, 3 is (almost) the uniform law on the set of reduced words of length ¢ in the als

(The “almost” comes from the fact that if w = b;, b;,b;,, then p(w) may not be reduced
at the junction points of ¢(b;;) with o(b;;,,), but the density model is robust to such
slight modification, see § 1.2.).

So, up to this latter technicality, there is a natural homomorphism ¢ : G3 — G from
a random group in the triangular model to a random group in the density model, at the
same density. This means that the triangular model is “less quotiented” than the density
one.

It is possible to prove [Zuk03] quite the same theorem as for the density model:
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THEOREM 29 — If d < 1/2, then with overwhelming probability a random group in
the triangular model, at density d, is non-elementary hyperbolic. If d > 1/2, it is trivial
with overwhelming probability.

But the fact that groups in the triangular model are “bigger” than those in the density
model is especially clear when considering the following proposition.

PROPOSITION 30 — Ifd < 1/3, then with overwhelming probability, a random group
in the triangular model at density d is free.

Of course its rank is (much) smaller than n. This results from the fact that at density
d < 1/3 in the triangular model, the dual graph of any van Kampen diagram is a tree.

Zuk [Zuk03] wrote a proof that in the triangular model, the spectral criterion for
property (7T') is satisfied:

THEOREM 31 — Ifd > 1/3, then with overwhelming probability, a random group in
the triangular model at density d has property (T').

In the triangular model, density 1/3 corresponds to the number of relators being
equal to the number of generators. So typically at d > 1/3 every generator appears a
large number of times in the relators, which is not the case for d < 1/3. Consequently,
the link of e in the Cayley graph will be a random graph with a large number of edges
per vertex. Such graphs have a very large (close to 1) spectral gap and the spectral
criterion for property (7') mentioned above applies.

Actually, as an intermediate step Zuk uses yet another variant of the triangular
model (based on random permutations, see section 7.1 in [Zuk03]), which is rather
artificial for random groups but arises very naturally in the context of random graphs,
a crucial tool of the proof. The transfer to the standard triangular model involves use
of the matching theorem.

Now property (T') is stable under quotients. Using the morphism ¢ : G3 — G
above, Theorem 27 follows from Theorem 31 and from all the details we’ve omitted
(e.g. the necessary modifications to make in order to get a surjective ¢, or handling of
the reduction problems). It seems that actually neither these details nor Theorem 27
itself do appear in the literature.

I.3.h. Testing the triangular model: Gromov vs. the computer. There is an amus-
ing story to be told about the triangular model. In 2001, Richard Kenyon performed
computer experiments to test Gromov’s statement (Theorem 29). He used Derek Holt’s
KBMAG package [Hol95] to test triviality of random groups in the triangular model.
The tests were made up to n = 500 generators using about 2000 relations (which makes
d slightly above 1/3). The results suggested that triviality occurred as soon as d > 1/3,
in contradiction with Theorem 29. Kenyon subsequently reviewed Gromov’s proof of
Theorem 11 given in [Gro93] and pointed out the omission of van Kampen diagrams
featuring the same relator several times (see § V.).

The author performed another series of experiments and analyzed the results by
hand. It turned out that each time the group was trivial at 1/3 < d < 1/2, this was
due to some “exceptional event” whose asymptotic probability should be very small;
but the combinatorial factor counting these events, although bounded, is quite large (a
fact that may be related to the huge constants appearing in the local-global principle,
see discussion in § V.); so the phenomenon should disappear when using larger n. On
the other hand, it was not difficult to correct Gromov’s argument (this led to the proof
of Theorem 11 given in [Ol104]). The observed change of behavior of the algorithm at
d > 1/3 might be related to Proposition 30: at d < 1/3 the group is non-trivial (actually
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free) for trivial reasons, whereas at 1/3 < d < 1/2 the reasons for non-triviality involve
the full strength of hyperbolic theory.

The triangular model has seemingly been less successful than the density model.
Comparing Proposition 30 and Theorem 31, this model may be quite specific to the
study of property (') (but a one-step proof of Theorem 27 using the spectral criterion
applied to a generating set made of words of length ¢/3 is feasible). Moreover the
triangular model does not generalize to a theory of random quotients of given groups
(§I1.1., § I1.2.). On the contrary, in the usual model density controls the occurrence of
several combinatorial and geometric events; we now turn to the description of some
transformations happening at densities 1/6 and 1/5.

I.3.i. Cubical CAT(0)-ness and the Haagerup property. In view of Theorem 27, one
can wonder if 1/3 is the optimal density value for the occurrence of property (7). It is
not true that all random groups have this property: indeed, random groups atd < 1/12
are C’(1/6) small cancellation groups, and, following Wise [Wis04], those do not have
property (7). This happens to be the case up to density at least 1/5 [OW-b]:

THEOREM 32 — Letd < 1/5. Then with overwhelming probability, a random group at
density d has a codimension-1 subgroup. In particular, it does not have property (T').

The codimension-1 subgroup (the existence of which excludes property (7') by a
result in [NR98]) is constructed through a technique developed by Sageev [Sag95], ex-
tended among others by Wise [Wis04], related to actions of the group on cube com-
plexes. When d < 1/6, the construction of [Wis04] fully applies and provides a com-
plete geometrization theorem [OW-b]:

THEOREM 33 — Letd < 1/6. Then with overwhelming probability, a random group
at density d acts freely and cocompactly on a CAT(0) cube complex. Moreover it is
a-T-menable (Haagerup property).

Like property (7), with which it is incompatible, the Haagerup property of a group
has to do with its actions on the Hilbert space. It amounts to the existence of a proper
isometric affine action on the Hilbert space, which is a kind of flexibility excluding
property (T'). We refer to [CCJJVO01] for a fact sheet on the Haagerup property. For
discrete groups, a very nice equivalent definition is the existence of a proper action on
a space with measured walls [CMV04].

The strategy is to construct walls [HP98] in the group. Natural candidates to be walls
are hypergraphs [Wis04], which are graphs built from the Cayley complex as follows:
the vertices of the hypergraphs are midpoints of edges of the Cayley complex, and the
edges of the hypergraphs connect vertices corresponding to midpoints of diametrally
opposite edges in faces of the Cayley complex (assuming that all relators have even
length).

Densities 1/5 and 1/6 come into play as follows. If the group presentation satis-
fies the conclusion of Theorem 15 (kind of Greendlinger’s Lemma), which happens up
to 1/5, then the hypergraphs are trees embedded in the Cayley complex and so are
genuine walls. The stabilizers of these walls provide codimension-1 subgroups, thus
refuting property (") [NR98]. On the contrary it happens that for d > 1/5, there is only
one hypergraph, which passes through every edge of the Cayley complex [OW-b]...

Following Sageev’s [Sag95] original ideas, there is a now standard [NR98, Nic04,
Wis04, CN, HW] correspondence between spaces with walls and cubical complexes.
In our case, below density 1/6 (but not above) the hypergraphs have some convexity
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properties and moreover two given hypergraphs cannot intersect at more than one
point (except for degenerate cases); this allows to show that there are “enough” walls
for the cube complex construction to work [HW], getting a free, cocompact action of
the random group. (It seems likely however that Theorem 33 holds up to density 1/5.)

The Haagerup property follows either from consideration of the cube complex as
in [NR98], or from general properties of groups acting on spaces with walls ([(CMV04],
after a remark of Haglund, Paulin and Valette).

According to Proposition 10, random groups at d < 1/6 satisfy the C'(6) small can-
cellation condition. So an interpretation of Theorem 33 is that “generic” C'(6) groups
have the Haagerup property. It is currently an open question to know whether some
C'(6) groups can have property (7).

This closes our journey through the influence of density on properties of the group.
Space was missing to draw the geometric pictures corresponding to the events consid-
ered; but each time, density allows or forbids the existence of very concrete diagrams
in the Cayley complex with certain metric properties relevant to the question under
study.

I.4. The space of marked groups

A group marked with m elements is a finitely generated group G, together with a m-tuple
of elements ¢1,...,9» € G such that these elements generate G; or, equivalently, a
group G together with a surjective homomorphism F,,, — G.

For fixed m, the space G,, of all groups marked with m elements has a natural topol-
ogy, apparently first introduced in Grigorchuk’s celebrated paper [Gri84], part 6: two
marked groups (G, (¢;)) and (G, (g;)) are close if the kernels of the two maps F,,, — G,
F,, — G’ coincide in a large ball of F,,,, or, equivalently, if some large balls in the Cayley
graphs of G and G’ w.r.t. the two given generating sets are identified by the mapping
gi — g;. This means that the two generating m-tuples have the same algebraic relations
up to some large size.

We refer to [Pau03, Ch00, Gri84] for basic properties of the space G,,. It is compact,
totally discontinuous. Every finite group is an isolated point. The subspaces of Abelian
groups, of torsion-free groups are closed. Finitely presented groups are dense in G,,.
Any finitely presented group has a neighborhood consisting only of quotients of it. The
Minkowski dimension of G,, is infinite [Guy].

Isomorphism of groups defines a natural equivalence relation on G,,. It happens
that this relation is extremely irregular from a measurable point of view, so that it is
not possible to measurably classify finitely generated groups by a real number [Ch91,
ChO00]:

THEOREM 34 — Letm > 2. There exists no Borel map G,, — R constant on the isomor-
phism classes and separating these classes.

Actually this equivalence relation is as irregular as a countable equivalence relation
can be [TV99]. Let X and X’ be Borel sets and let R, R’ be Borel equivalence relations
on X and X' respectively, with countable classes. Say that R is reducible to R’ if there
exists a Borel map f : X — X' such thatz Ry < f(z) R’ f(y). In other words, R’ is
more complex than R. The theorem reads [TV99]:

THEOREM 35 — Any Borel equivalence relation with countable classes is reducible to
the isomorphism relation on Gs.
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A review of the results and uses of this space is beyond the scope of our work. In
fact, it happens that the closure of the isomorphism class of the free group (the limit
groups of Sela [Sel]) is already quite complex [Sel, CGO5]. We focus here on the aspects
linked to the idea of typicality for groups.

The usual notion of topological genericity (Gs-dense sets a la Baire) is not very in-
teresting due to the totally discontinuous nature of the space; e.g. the set of Abelian
groups is open-closed, as is any finite marked group alone, so that generic properties
should hold for all these classes of groups. For these reasons, so far this space has not
be used to define an alternate notion of a “typical” group competing with Gromov’s
probabilistic approach.

Nevertheless, following Champetier we can use our previous knowledge of gener-
icity of torsion-free hyperbolic groups (Theorems 5 and 11) to restrict ourselves to the
closure in G, of those groups, and try to identify generic properties therein. Indeed
this program happens to work very well [Ch91, Ch00]:

THEOREM 36 — Let H!! be the closure in G,, of the subspace of all non-elementary,
torsion-free hyperbolic groups. Then there is a Gs-dense subset X C H!f such that any
group G € X satisfies the following properties:

Its isomorphism class is dense in H .

It is torsion-free.

It is of rank 2.

It is of exponential growth, non-amenable.
It contains no free subgroup of rank 2.

It satisfies Kazhdan'’s property (T').

It is perfect.

It has no finite quotient.

So all these properties can be viewed as generic properties of an “infinitely presented
typical group”.

Note however that such properties do depend on the class of groups we take the
closure of. If, of Theorems 5 and 11, we had only retained the fact that a random group
is non-elementary hyperbolic (and forget it is torsion-free), then we would naturally
have considered the closure H,, in G, of the subspace of non-elementary hyperbolic
groups, in which case we get the following [Ch91, Ch00] (compare [Ols91c]):

THEOREM 37 — There is a Gs-dense subset of H,, consisting only of groups which are
infinite and all elements of which are of torsion.

Infinite torsion groups have long been sought for (Burnside problem dating back to
1902). They were constructed for the first time in 1964 by Adyan and Novikov and
have been the source of an abundant literature since then (see e.g. [Iva98, Gup89] for re-
views). Diagrammatic methods for this problem were introduced by Ol’shanskif [Ols82,
Ols83]. It seems that hyperbolic groups are a natural way towards infinite torsion
groups ([DG], [1096], [Iva94], [Ols93], [Ols91c], chapter 12 of [GhH90], section 4.5.C
of [Gro87]).

The strength of this topological approach compared to the probabilistic one is that it
gives access to infinitely presented groups. The drawback is that it does not provide
by itself a non-trivial notion of generic properties of groups: one has to combine it with
prior knowledge from the probabilistic approach. Once properties known to hold with
overwhelming probability for finitely presented groups are selected (and the result may
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depend on this choice), the closure of these groups in the space G, provides a notion
of genericity for infinitely presented groups. Of course the notions of genericity for
finitely and infinitely presented groups cannot but be mutually incompatible.

Note however that the probabilistic approach does not provide a well-defined notion
of “random group” either since one has to consider a family of probability measures
indexed by the length /¢ of the relators; but at least this defines a notion of a generic
property of finitely presented groups when ¢ — oo.

The temperature model (§ IV.k.), if understood, would solve these problems, notice-
ably by providing a natural family of (quasi-invariant?) probability measures on G,,.
See also § IV.g. for questions arising in this framework.

II. Typical elements in a group

Quoting from [Gro87], 5.5F: “Everything boils down to showing that adding ‘suffi-
ciently random’ relations to a non-elementary word hyperbolic group gives us a word
hyperbolic group again[...]” Considering random elements in a given group is often
a good way to embody the intuition of which properties are true when “nothing par-
ticular happens” and when the elements are “unrelated”. The behavior of random
elements is often the best possible.

We illustrate this on two categories of examples: The first is that typical elements in
a (torsion-free) hyperbolic group can be killed without harming the group too much
(robustness of hyperbolicity), and the probabilistic approach allows to quantify very
precisely the number of elements that can be killed. The second is a sharp counting
of the number of one-relator groups up to isomorphism, the idea being that a random
relator is nicely behaved, implying a rigidity property, and that by definition typical
relators are the most numerous so that it is enough to count only them.

II.1. Killing random elements of a group

IL.1.a. Random quotients by elements in a ball. Theorem 11 states that a random
quotient of the free group is hyperbolic. One can wonder whether a random quotient
of an already hyperbolic group stays hyperbolic, and this is the case. In other words,
hyperbolicity is not only generic but also robust. This is all the more reasonable as,
from a geometric point of view, the intuition is that (torsion-free) hyperbolic groups
supposedly behave like free groups.

The following is Theorem 3 of [Oll04] (up to the benign replacement of spheres by
balls, see § 1.2.), which generalizes the phase transition of Theorem 11 above. As usual
“with overwhelming probability” means “with probability tending to 1 as £ — oo”.

THEOREM 38 — Let Gy be a non-elementary, torsion-free hyperbolic group and let B,
be the set of elements of length at most ¢ w.r.t. some finite generating set.

Let0 < d < 1. Let R C G be a set obtained by picking at random (#Bg)d times an
element in By. Let G = Gy /(R) be the random quotient obtained.

e Ifd < 1/2, then with overwhelming probability G is (non-elementary) hyperbolic.
e Ifd > 1/2, then with overwhelming probability G = {e}.

The explanation of the 1/2 is of course exactly the same as for Theorem 11, namely
the probabilistic pigeon-hole principle, although the proof for d < 1/2 is considerably
more difficult. Note again that the number (#B;)? is quite large. This phenomenon
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seems to be quite robust and general and might be generalized to other subsets in
which the generators are picked, and maybe other classes of groups (§ IV.f.).

The torsion-freeness assumption can be relaxed to a “harmless torsion” one, but it
cannot be completely removed, the obstruction being growth of the centralizers of tor-
sion elements (see Theorem 41 below, § IV.f. and [O1105b]).

We refer to § IV.£. for natural questions and open problems concerning these random
quotients.

From a constructive point of view, it might seem quite difficult to pick random el-
ements uniformly distributed in the ball of a group, compared to the easy genera-
tion of random words as used in Theorems 11 and 40. However, algorithmic prop-
erties of hyperbolic groups are very nice: equality of two elements is decidable in real
time [Hol00], every element can be efficiently [EH] put into a normal form, and there
is an explicit finite automaton enumerating these normal forms (“Markov codings”:
section 5.2 of [Gro87], [GhH90]).

According to Gromov’s quote above, the idea that unrelated elements in a hyper-
bolic group can be killed is quite old. In a deterministic context, this “relative small
cancellation”, presented in section 5.5 of [Gro87] (where Gromov refers to Ol’shanskii’s
paper [Ols83]) was later formalized by Ol’shanskii (section 4 of [Ols93]), Champetier
[Ch94] and Delzant [Del96a]. This theory generalizes the usual small cancellation C’(\)
to elements chosen in a hyperbolic group. But, just as usual small cancellation stops at
density 1/12 for random groups, relative small cancellation is too restrictive and does
not make it up to the maximal number of elements one can kill, hence the interest of
the random point of view.

IL1.b. Growth of random quotients. A theorem stating that the growth exponent
does not change much under such a quotient, generalizing Theorem 25, has been proven
[Oll-d] (we refer to § 1.3.e. for the definition of the growth exponent). Note that by the
results in [AL02], this exponent cannot stay unchanged.

THEOREM 39 — Let Gy be a non-elementary, torsion-free hyperbolic group generated
by the finite set S. Let By be the ball in Gy and g the growth exponent of G, both w.r.t.
S. Let G be a random quotient of Gy by elements of B, at density d as in Theorem 38,
and suppose of course d < 1/2.

Then, for any € > 0, with overwhelming probability the growth exponent of G lies
in the interval (g — €; g).

It is likely [Oll-e] that the spectral radius of the random walk operator on the group
does not change much too (compare Theorem 42).

II.2. Killing random words, and iterated quotients

IL.2.a. Random quotients by words. Theorem 38 describes what happens when quo-
tienting a hyperbolic group by random elements in it. Another possible generalization
of Theorem 11 is to quotient by random words in the generators. Though maybe not
as intrinsic, this model has the advantage that the notion of random quotient becomes
independent of the initial group (within the class of marked groups); in particular, it
allows to study successive random quotients of a group taken w.r.t. one and the same
generating set, as used notably in [Gro03].

Of course, the unavoidable consequence of the model being independent on the ini-
tial group is that the critical density will depend on this group. Actually the critical
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density is equal to the exponent of return to e of the simple random walk w.r.t. the gen-
erating set ay, . .., a,, considered: basically, if this probability behaves like (2m)~* for
large times ¢, the critical density will be «.. The result reads ([O1104], Theorem 4):

THEOREM 40 — Let G be a torsion-free hyperbolic group generated by the elements
A1y oy Q.

Let (w;)ten be the trajectory of a simple random walk in Gy w.r.t. the generators a
and let

+1

7

derit = — tli{& %log2m Pr(wt —Go e) = —logy,, p(GO)
t even

where p is the spectral radius of the random walk operator ([Kes59] or § 1.3.f.). Note
that d.ix > 0 unless G is elementary.

Let0 < d < 1 and let W, be the set of all (2m)* words of length /£ in the a,iil ’s. Let R
be the random set obtained by picking (2m)% times at random a word in W,.

Let G = Gy/(R) be the random quotient so obtained. Then with overwhelming
probability:

o Ifd < duit, then G is (non-elementary) hyperbolic.
o Ifd > duj, then G = {e}.

Once again the spirit of the density model is to kill a number of words equal to some
power d of the total number of words (2m)¢. Note that dy < 1/2, even when Gy is
the free group (the difference with Theorem 11 being that we use plain words instead
of reduced ones). A similar statement holds (Theorem 2 of [Ol104]) if we use reduced
words; in this case 2m is to be replaced with 2m — 1, the critical density is now equal to
1/2 for the free group or to the exponent of return to e of the reduced random walk (i.e.
the random walk with no immediate backtrack) for a non-free hyperbolic group, and a
727 might appear for d > dit and even /.

Theorems 38 and 40 are of course not proven independently. Section 4 of [Ol104]
extracts axioms under which quotients of a hyperbolic group by elements taken under
some probability measure yield a hyperbolic group again. These axioms have to do
with exponents of large deviations of the measure.

There is also a version of Theorem 40 using reduced words instead of plain words
(thus a formal generalization of Theorem 11). In this version (Theorem 2 of [Ol1104])
the critical density is equal to the exponent of return to e of the reduced random walk
in Gy (the random walk with no immediate backtrack), which is equal to 1 minus the
cogrowth exponent of G [O1104].

Lots of open problems concerning random quotients of hyperbolic groups are stated
in §IVL.

I1.2.b. Harmful torsion. As briefly mentioned above, the torsion-freeness assump-
tion can be relaxed to a “harmless torsion” one demanding that the centralizers of tor-
sion elements are either finite, or virtually Z, or the whole group [O1104]. But in [O1105b]
we give an example of a hyperbolic group with “harmful” torsion, for which Theo-
rem 40 does not hold; moreover its random quotients actually exhibit three genuinely
different phases instead of the usual two.

THEOREM 41 — Let Gy = (Fy x Z/27) = F; equipped with its natural generating set,
where » denotes a free product. Let d. be defined as above. Then there exists a density
0 < d.;; < derie such that quotients of Gy by random words at density d > d_.,;, are trivial
with overwhelming probability.
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What happens is that above some density corresponding to the probability with
which the random walk sees the factor Fy x Z/2Z, the factor Z /27 becomes central in
the random quotient, so that above this density random quotients of (Fy x Z/2Z) * F}
actually behave like random quotients of Fg x Z/2Z, which has a lower critical den-
sity. A more careful analysis reveals the presence of two genuinely different phases for
random quotients of (Fy x Z/2Z) = Fy in addition to the trivial phase, depending on
whether or not the Z/2Z factor is central in the quotient. We refer to [Ol105b] for the
details.

IL.2.c. Cogrowth of random quotients, and iterated quotients. Since the critical
density of the initial group is controlled by the spectral radius of the random walk
operator, one might wonder what is the new value of this spectral radius for the ran-
dom quotient (in particular, if it stays small enough, then we can take a new random
quotient at a larger length). The answer from [Oll05a] (using results of [Ch93]), gener-
alizing Theorem 26, is that it stays almost unchanged:

THEOREM 42 — Let G be a torsion-free hyperbolic group generated by the elements
ai,...,am. Let p(Go) be the spectral radius of the random walk operator on Gy w.r.t.
this generating set; let d.it = —log,,, p(Go) and let G be a quotient of Gy by random
words at density d < d as in Theorem 40.

Then, for any € > 0, with overwhelming probability the spectral radius p(G) of the
random walk operator on G w.r.t. ay,. .., an, lies in the interval (p(Go); p(Go) + ¢€).

The same theorem holds for quotients by random reduced words, and, very likely
[Oll-e], for quotients by random elements of the ball as in Theorem 38.

As a corollary, we get that the critical density for the new group G is arbitrarily close
to that for Gy. So we could take a new random quotient of G, at least if we knew that G
is torsion-free. This is not known (§ IV.f.), but the results of [Oll04] imply that if Gy is
of geometric dimension 2 then so is G. So in particular, taking a free group for G and
iterating Theorem 40 we get:

PROPOSITION 43 — Let F,,, be the free group on'm generatorsay, . .., a,. Let ({;);cn be
a sequence of integers. Let d < —log,,, p(F,) and, for each i, let R; be a set of random
words of length {; at density d as in Theorem 40.

Let R = UR; and let G = F,,/(R) be the (infinitely presented) random group so
obtained.

Then, if the ¢;’s grow fast enough, with probability arbitrarily close to 1 the group G
is a direct limit of non-elementary hyperbolic groups, and in particular it is infinite.

It is not easy to follow the details of [O1104, Ol105a, Ch93] closely enough to obtain
an explicit necessary rate of growth for the ¢;’s, although ¢;; > Cst./; is likely to work.

The techniques used in [Gro03] to get iterated quotients are different from those
of [Oll05a] and of more geometric inspiration (see § II1.2. or [GroOla, Oll-a]); in partic-
ular, therein property (7") is used to gain uniform control on the critical densities of all
successive quotients. The drawback is that they only work for very small densities.

II.3. Counting one-relator groups

On a very different topic, consideration of generic-case rather than worst-case behavior
for algorithmic problems in group theory (most notably the isomorphism problem)
led I. Kapovich, Myasnikov, Schupp and Shpilrain, in a series of related papers [KSS,
KS, KS05, KMSS05, KMSS03], to the conclusion that generic elements are often nicely
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behaved. The frontier between properties of one-relator groups and properties of a
typical word in the free group is faint; for this review we selected an application where
the emphasis is really put on the group, namely, evaluation of the number of distinct
one-relator groups up to isomorphism.

The isomorphism problem for finite presentations is generally undecidable (see e.g.
the very nice [Sti82] for an introduction to the word and isomorphism problem, or the
end of chapter 12 of [Rot95]). It has been solved for the class of torsion-free hyperbolic
groups with finite outer automoprhism group ([Sel95], see also [Pau91]), which con-
tains generic one-relator groups since their outer automorphism group is trivial [KSS].
However, having an algorithm for the isomorphism problem does not provide an esti-
mate of the number of isomorphism classes.

For one-relator groups, the basic idea is as follows: Since generic relators are by def-
inition much more numerous than particular relators, if we can show that one-relator
groups with a generic enough relator are mutually non-isomorphic, then we will get a
sharp estimate of the number of isomorphism classes of one-relator groups.

Let I;,(m) be the number of isomorphism classes of one-relator group presentations
(ar,...,am | ) with |r] < £. Of course I;(m) is less than the number of cyclically re-
duced words of length < /; this crude estimate can be improved since taking a cyclic
permutation of r does not change the group. Now the number of cyclically reduced
words of length < ¢ up to cyclic permutation is about (2m — 1)¢/¢. Moreover, some
trivial symmetries (such as exchanging the generators a1, ..., a,, or taking inverses)
decrease this estimate by some explicit factor depending only on m. Actually the esti-
mate found this way is sharp [KS, KSS]:

THEOREM 44 — The number I;(m) of isomorphism classes of one-relator groups on'm
generators, with the relator of length at most ¢, satisties

1 (@2m-1)
m) 2m+1 4

I(m) ~

when ¢ — oo.

Once Theorem 19 is known the result is relatively simple. Indeed, a theorem of
Magnus ([LS77], Prop. I1.5.8) implies that if two elements of the free group generate the
same normal subgroups then they are the same up to conjugation and inversion. If two
generic one-relator groups are isomorphic, then Theorem 19 implies that after applying
some automorphism of the free group, the two relators have the same normal closure,
and thus are essentially the same by Magnus” Theorem. So the isomorphism problem
for generic one-relator groups reduces to the problem of knowing when an element in
the free group is the image of another under some automorphism of the free group.

The orbits of the automorphism group of a free group are well studied and generated
by so-called Whitehead moves ([LS77], 1.4): especially, if two elements lie in the same
orbit and are of minimal length within this orbit, they can be transformed into each
other by means of non-length-increasing Whitehead moves. But for generic elements
it can be easily shown that the action of the Whitehead moves increases length except
for some trivial cases, so that generic elements do not lie in the same orbit.

In other words, a generic element cannot be “simplified” by action of automor-
phisms of the free group. This same minimal representation idea allowed to get an
estimate [KS] of Delzant’s T-invariant for generic one-relator group (this invariant, de-
fined in [Del96b], attempts to measure the minimal possible “complexity” of presenta-
tions of a given group).
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The only (but crucial) place above where one-relatorness plays a role is the use of
the Magnus theorem, which has no known replacement for the case of several relators
(even generic ones). On the other hand, genericity really lies at the core of the argu-
ment: the idea is that for counting matters, particular annoying cases can be discarded
and only the nicest, typical cases can be treated.

III. Applications: Random ingredients in specific constructions

What non-probabilists call “the probabilistic method” is the use of random construc-
tions to prove existence theorems and to build new objects and (counter-)examples.
This is often seen as the only possible justification for the introduction of random tools
in a classical field.

Random groups fit into this scheme. Up to now, the main application of random
groups is the construction by Gromov [Gro03] of a finitely presentable group whose
Cayley graph (quasi-)contains an infinite family of expanding graphs and which con-
tradicts the Baum-Connes conjecture with coefficients [HLS02]. We give the roadmap
to this construction in § III.1. and § II1.2.

A second application (§ II1.3.), using the same tools together with a construction of
Rips [Rip82], allowed in [OW-a] to construct Kazhdan groups whose outer automor-
phism group contains an arbitrary countable group, answering a question of Paulin (in
the list of open problems in [HV89]). As was noted by Cornulier [Cor-b], this implies
in particular that any discrete group with property (T) is a quotient of a torsion-free
hyperbolic group with property (T"). The technique is flexible and provides other ex-
amples of Kazhdan groups with prescribed properties.

Let us insist that groups constructed this way cannot pretend to “typicality”: in each
case the random constructions are twisted in ways specific to the goal to achieve. The
process of building a group containing a family of expanders starts with the choice
of such a family and uses it to define the group; the expanders do not appear out of
the blue in a plain random group (compare the techniques in [AC04], though: it may
be that Cayley graphs of plain random groups contain lots of interesting families of
graphs).

The common tool to both constructions above is Gromov’s powerful and flexible
generalization of small cancellation theory to group presentations arising from labeled
graphs. When everything goes well, the said graph embeds in the Cayley graph of
the group, thus allowing “shaping” of Cayley graphs. Moreover, this extension of
small cancellation is compatible with property (7"), whereas usual small cancellation
is not [Wis04], showing that a really new class of groups is accessible this way.

III.1. Shaping Cayley graphs: graphical presentations

Before we state the results, let us describe this graphical presentation tool. It is dis-
cussed in the last paragraph, “Random presentations of groups”, in [Gro00], and more
thoroughly in sections 1 and 2 of [Gro03]. (The idea of representing subgroups of the
free group by labelled graphs goes back to [Sta83], but therein the emphasis is on the
subgroup and not on the quotient group “presented” by the graph.)

III.1.a. Labelled graphs and group presentations. Let us state some vocabulary ge-
ometrizing group presentations. Let a,...,a, be our usual generators and let B be
the following standard labelled graph: B consists of one single vertex and m oriented
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loops, univocally labelled with the generators ay, . . . a,,. Now a word in the aj! is sim-
ply a path in the labelled graph B. A reduced word is an immersed path P 9 B.

A labelled graph is a graph I' together with a map I' — B, i.e. a graph in which
every edge bears a generator a; with an orientation. It is said to be reduced if this map
is an immersion; this amounts to not having two distinct edges with identical labels
originating (or ending) at the same vertex (this is called “folded” in [Sta83], but this
terminology is less consistent with the case of reduced words, reduced van Kampen
diagrams, etc.).

Gromov’s idea is that to a labelled graph we can associate the group presentation
whose relators are all the words read on cycles of the graph. More precisely, let I' be
a labelled graph and let zy be any basepoint in I'. The labelling ¢ : I' — B defines
amap ¢ : m(I',xg) — Fp, sending a closed path to its label. The group presented
by T is the group G = F,,,/(¢(m1(T"),xz0)) (When I is not connected, this is defined as
G = F,,/(Up(m (I',z;))) taking a basepoint in each connected component). If 7 (I") is
generated by the cycles (¢;)icr then a cheaper presentation for G is

G={(a1,...,am | p(ci)ier)

and note that I can be taken finite if I is finite. Note also that changing the basepoint
amounts to take some conjugate of the image (71 (T")), so that the group defined by T’
is unchanged. We will call I" a graphical presentation for G.

The group G is of course the fundamental group of the 2-complex obtained by gluing
a disk in B along each of the paths ¢(c;) where the ¢; are the simple cycles of I'.

Most importantly, when I' consists of a disjoint union of circles, then we get back the
usual notion of group presentation, with the relators cyclically reduced if and only if
the labelling is reduced.

The Cayley graph Cay(G, (a;)) is itself a labelled graph. By definition of G, the label
of any cycle in I is a relation in G and so can be read on some closed path in the Cayley
graph. Consequently, if we fix a basepoint z; in each connected component of I', and
any basepoint y € Cay(G, (a;)), then there is a unique label-preserving map

v :T'— Cay(G, (a;))

sending each x; to y, which we denote (again!) by ¢ since it commutes with the la-
belling maps to B.

Of course nothing guarantees that in general this map will be injective. It could
happen that G is trivial, for example. But if ¢ is injective, then we have succeeded in
embedding a graph in the Cayley graph of some group. This is what Gromov did with
I' a family of expanders, as we will describe in § II.2. For the moment, we turn to the
description of a small cancellation condition ensuring this injectivity.

IIL.1.b. Graphical small cancellation. The important notion of small cancellation is
that of piece: a piece is a word that can be read twice in the relators of a presentation.

Here this notion generalizes as follows: Let I’ ¥, Bbe alabelled graph. A pieceinI'is a
word P 4, B which can be read at two different places on I', that is, such that there are
two distinct immersions P qu» I 2 Band P Cﬁ r%aB (preserving the labels, of course,
i.e.poi] = poig=1).

What matters for small cancellation is the size of pieces compared to the size of the
relators on which they appear. Here the role of relators is played by cycles in the graph.



26 A JANUARY 2005 INVITATION TO RANDOM GROUPS

So we define the relative length of a piece P to be the maximum of the ratio | P| /|C| over
all immersed cycles C' &= I such that P appears on C'i.e. there exists P 3= C' 9> .

DEFINITION 45 — A labelled graph I satisties the graphical small cancellation condi-
tion Gr'(«) if the relative length of any piece in T is less than a.

It should be clear that when I' is a disjoint union of circles, this reduces to the tra-
ditional C’(«) small cancellation condition. The well-known C’(1/6) theory extends
to the new framework. Similarly one could define the combinatorial Gr(p) condition
asking for no cycle in I' to be the union of fewer than p pieces.

The following is a much simplified version of the statements in section 2.2 of [Gro03]
(see § III.1.e. below for a more general setting). Gromov uses general geometric argu-
ments, but the version presented here is easy to prove using the usual combinatorial
techniques of small cancellation (see [Oll-c] or [Wis]).

THEOREM 46 — LetI' be a labelled graph which is spurless (i.e. with no valency-1
vertex) and reduced. Suppose that I satisfies the Gr'(1/6) graphical small cancellation
condition.

Then the group G defined by the graphical presentationI" enjoys the following prop-
erties:

e IfT is finite, G is hyperbolic; if I is infinite G is a direct limit of hyperbolic groups.

e It is torsion-free, of geometric dimension 2, of Euler characteristic1 — m + b;(I').
In particular if by (I') > m it is infinite and not free.

o The natural map of labelled graphs from I' to the Cayley graph of G (for any
basepoint choice) is an isometric embedding for the graph distances; in particular
it is injective.

e The length of the shortest cycle in the Cayley graph is equal to that in T".

More properties of usual small cancellation still hold, such as asphericity of the
“standard” presentation and a kind of Greendlinger lemma (see details in [Oll-c]).

The reducedness assumption is necessary: otherwise we could add arbitrary long
paths labelled by words which are trivial in the free group, thus arbitrarily decreasing
the relative length of pieces by increasing the length of cycles. Spurs do not change the
group defined by the graph, but might not embed isometrically, unless Gr/(1/8) holds.

The idea of one of the possible proofs is to consider van Kampen diagrams all faces of
which bear a word read on some cycle of the graph, and are “minimal” in the sense that
the word read on the boundary of the union of two adjacent faces is not read on a cycle
of the graph (otherwise we merge the two faces). Such “minimal” diagrams (locally)
satisfy the usual C’(1/6) condition hence a linear isoperimetric inequality (w.r.t. to the
set of relators made of all words read on cycles of the graph), and hyperbolicity follows
by the remark that any cycle in the graph can be written as a concatenation of linearly
many cycles of bounded sizes, so that we can replace this infinite presentation by a
finite one while keeping a linear isoperimetric inequality. Asphericity, cohomological
dimension and isometric embedding of the graph into the Cayley graph require a little
more work. Although this basic idea is simple, there are some delicate topological
details [Oll-c].

[II.l.c. Random labellings are Gr'(1/6). One of the interests of the Gr’ condition
is that random labellings of a graph satisfy it very probably. A random labelling of a
graph is simply the choice, for each edge of the graph, of a generator a; together with
an orientation, picked at random among the 2m such possible choices. Generally this
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does not result in a reduced labelling, but we can reduce the graph by performing the
necessary edge identifications (the “folding” of [Sta83]).

Of course, if there are “too many” cycles in the graph, the group will tend to be
trivial. According to the spirit of the density model (Def. 7), this “too many” has to be
defined with respect to the length of the cycles: the longer the cycles, the more of them
we can put. A way to achieve this is to subdivide the graph, i.e. replace each edge with
100 (say) consecutive edges. For a given unlabelled graph T', we will denote T'/7 its
j-subdivision (each edge is replaced with j edges). Another interpretation of this is to
use edge labels which are length-j words in the generators instead of single generators.
Subdividing amounts to decreasing the “density” of the graph, which decreases the
expected size of pieces (compare equation (x), in section 1.2 of [Gro03] with a density).
The same effect could be achieved by increasing the number m of generators.

We give here an oversimplified version of statements in paragraphs 1.1, 4.6 and 4.8
of [Gro03] (which deal, much more generally, with random quotients of hyperbolic
groups by graphical presentations, see § IIl.1.e.). A proof of this particular case can be
found in [OW-a]. We will need some “bounded geometry” assumptions on the graph,
bounding the valency of vertices and the diameter/girth ratio. The girth of a graph is
defined as the length of the shortest non-trivial cycle in it. It plays the role of the length
of the relators in the density case.

PROPOSITION 47 — For any o > 0, for any number of generators m > 2, forany v € N
and C' > 1/2 there exists an integer jy such that for any j > j the following holds:
For any graph I satisfying the following conditions:

e The valency of any vertex of I is at most v.
e The girth and diameter of I satisfy DiamI" < C girthI' < oo.

then a random labelling of the j-subdivision I'/7, once reduced, satisfies the G’ (@)
condition, with probability arbitrarily close to 1 if girth I is large enough (depending
on a,v,C).

In particular for o < 1/6 the conclusions of Theorem 46 hold.

Moreover, the metric distortion induced by the reduction step is controlled (see the
last section of [Oll-c], or [OW-a]).

III.1.d. Random labellings of expanders entail property (T"). The group defined by
a graphical presentation inherits some spectral properties of the graph, at least when
the labelling is random. In particular, if the Laplacian on the graph has a large enough
spectral gap, then the group defined by a random labelling will have property (7"). Sec-
tion 1.2 of [Gro03] mentions (generalizations of) this, and the whole section 3 of [Gro03]
is devoted to building a general framework encompassing the usual spectral criteria
for property (7') mentioned above in 1.3.g. (see references there). We give only the fol-
lowing statement, a detailed proof of which was written by Silberman ([Sil03], Corol-
lary 2.19):

THEOREM 48 — Givenv € N, \g > 0 and an integer j > 1 there exists an explicit gy
such that if " is a graph with girthT' > go, A\1(I') > ¢ and every vertex of which has
valency between 3 and v, then a random labelling of the j-subdivision I'/7 defines a
group with Kazhdan'’s property (T), with probability tending to 1 as the size of I tends
to infinity.

The idea is as follows: Property (T') is related to how the action of the random walk
operator acts on equivariant functions from the group to unitary representations of it.
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Now in the case of graphical presentations, by construction any equivariant function on
the group (which is determined by its value at e) can be lifted to a “label-equivariant”
function on the graph since cycles in the graph are labelled by relations in the group.
If moreover the labelling was taken at random, then a random walk in the graph “sim-
ulates” a random walk in the group in the sense that the labels encountered by a ran-
dom walk in the graph are plain random words (at short times). So if the graph has a
large spectral gap, it is possible to transfer the spectral inequality to the random walk
operator on the group. The details can be found in [Sil03]. Note that the first step (lift-
ing equivariant functions) follows only from the definition of graphical presentations,
whereas the second one uses the fact that the labelling was random (in some weak,
statistically testable sense).

IIL.1.e. Generalizations: relative graphical presentations and more. A labelled graph
can also be used to define a quotient of an arbitrary marked group, by quotienting the
group by the words read on cycles of the graph. This is a key step used by Gromov in
the wild group construction described below (§I1I.2.).

Just as ordinary small cancellation theory can be extended from quotients of the free
group to quotients of a given hyperbolic group by elements satisfying a “relative small
cancellation” condition ([Del96a], [Ch94], section 4 of [Ols93], section 5.5 of [Gro87]),
an analogue to Theorem 46 holds when the initial group is hyperbolic (maybe with
some restriction on torsion) instead of free.

In [Oll-a] an elementary version of Gromov’s statements is given, which can be
proven using the traditional van Kampen diagram approach of [O1104], combined with
the combinatorial arguments specific to the graphical case as in [Oll-c].

But Gromov proved this in a more general context using “rotation families of groups”,
where purely geometrical arguments can be given. The context is a group G acting
properly and cocompactly by isometries on some hyperbolic space X; we want to study
the quotient of G by a normal subgroup R.

In non-graphical small cancellation theory (relative to a hyperbolic group G), R is
generated by elements (u;) and all their conjugates; to each u; is associated a geodesic
U; in X invariant under u;; a conjugate of u; will be associated to the corresponding
translate of U;. Small cancellation for the family (u;) (relative to G) is equivalent to
the family of all U;’s and their translates not to travel close to each other for a “too
long” time (the time is measured w.r.t. the minimal displacement of the action of the
u;’s on X, namely, less than 1/6 of this displacement; closeness is measured w.r.t. the
hyperbolicity constant of X). For graphical small cancellation, say we have a connected
labelled graph I'; lift its universal cover I to G and take the corresponding orbit U in
X (this is a tree), together with all its translates (the translates correspond to conjugate
lifts of T' to G); if this family of trees in X satisfies the same condition as above (not
travelling close to each other for a long time), then the quotient of G by the labelled
graph will be hyperbolic again. If I is not connected we get as many U;’s as there are
connected components (plus their translates).

In section 2 of [Gro03], Gromov exposes a (difficult to read) general terminology
and conditions for these ideas to work. Elements of proof are scattered in four papers
(section 2 of [Gro03], sections 6-7 of [Gro0Ola], sections 25-32 of [Gro01b], section 10
of [GroO1c]). This framework seems to be quite powerful.

A simpler proof can be given in the case of very small cancellation (with 1/6 replaced
by some tiny constant), using CAT(—1, ¢) spaces. The idea of the proof, very neatly de-
scribed at the beginning of [DG] (see also [Del-b] and Gromov’s papers just cited) and
fully developed later in that paper, is as follows: we have a group G = 7;(X) acting
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properly cocompactly by isometries on a hyperbolic space X, and we want to quotient
G by a normal subgroup R; the quotient is, of course, the fundamental group of the
space X' obtained by gluing disks to X along loops in X corresponding to generators
of the normal subgroup R. The idea is to endow these disks with a metric of con-
stant negative curvature turning them into hyperbolic cones. This allows to check that
X' is locally a CAT(—1,¢) space, and the Cartan-Hadamard theorem (or local-global
principle for hyperbolic spaces) then allows to conclude that the universal cover X' is
globally CAT(—1,¢), hence hyperbolicity of G/R.

This idea of metrizing Cayley complexes, applied in [DG] to the Burnside problem,
looks promising (see § IV.i.).

III.2. Cayley graphs with expanders

In [Gro03] (as announced in [Gro00]), Gromov constructs a finitely generated group
whose Cayley graph “quasi-contains” a family of expanding graphs and which thus
admits no uniform embedding into the Hilbert space. The main idea is to use a graph-
ical presentation arising from a random labelling of these expanders.

Recall (see e.g. [Lub94], [DSV03]) that a family of expanding graphs (or expanders)
is a sequence of graphs (I';);cn of bounded valency, of size tending to infinity, such that
the first eigenvalue of the discrete Laplacian on them is bounded away from 0 when
i — 00. A uniform embedding of metric spaces is a map ¢ such that there exists a
function f : R — R with dist(¢(x), ¢(y)) = f(dist(z,y)) and f(z) — oo when z — .

One of the reasons for the interest in this paper is that, as proven by Higson, V. Laf-
forgue and Skandalis in [HLS02], this implies failure of the Baum-Connes conjecture
with coefficients for this group. The initial stronger motivation was to refute the Novi-
kov conjecture. Introducing these conjectures is beyond the scope of this paper and the
author’s field of competence. We refer the reader to [KL05, Val02b, Ska99, Hig98]. Gro-
mov’s group is a direct limit of hyperbolic groups; for hyperbolic groups, the Novikov
conjecture [CM88, CM90], existence of a uniform embedding into the Hilbert space
[Sel92] and the Baum-Connes conjecture [Laf02, MYO02] hold. For the link between
these last two properties see [Yu00, STYO02].

THEOREM 49 — For any € > 0 there exists a finitely generated, recursively presented
group G, a family of expanders (I';);cn, constants A, B > 0 and maps ¢; sending the
vertices of I'; to vertices of Cay(G) such that

A (dist(z,y) — e Diam I';) < dist(p;(x), pi(y)) < Bdist(z,y)

for any i and z,y € I';, where the distance in I'; is the ordinary graph distance and the
distance in Cay(G) is w.r.t. some fixed finite generating set.

Consequently there exists a finitely presented group admitting no uniform embed-
ding into the Hilbert space.

All the ingredients of the proof can be found in [Gro03], though lots of details are
omitted. Gromov apologizes in the introduction that he chose not to write “a few tech-
nical lemmas, with a sraightforward half-page proof each” but rather to “uncover the
proper context rendering [...] the proofs tautological”, and then adds “A reader may
find it amusing to play the game backwards by reducing the present paper to seven
pages of formal statements and proofs”. This is still waiting to be done, though some
parts of the job are written ([DG], [Oll-a]). Besides, full understanding and exploita-
tion of these “contexts” will doubtlessly be an important source of new results and
techniques.
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The principle of the proof is as follows (and the technical conditions needed for it to
work are stated below in Definition 50 and Theorem 51, extracted from [Oll-a]): Start
with the free group F3 and any family of expanders I';. Put a random labelling on some

subdivision F{j of I'y and let G be the group given by the graphical presentation I';.
According to Proposition 47 and Theorem 46, if j is large enough, G; will be a non-
trivial hyperbolic group. As described in § IIl.1.a., there will be a natural graph map

I’{] — Cay(G1), which is actually a quasi-isometric embedding.

Then consider a random labelling of a subdivision of I'; and let G5 be the quotient of
G1 by the graphical presentation I';. Applying the “relative” version of proposition 47,
as described in § II.1.e., G will be a non-trivial hyperbolic group, provided the girth of
I'; is large compared to the hyperbolicity constant of G (which is of the same order of
magnitude as Diam I'y). Up to taking a subsequence of the family of expanders we can
always suppose that girth I'; > Diam I';_1, which allows to define inductively a hyper-
bolic group G; obtained by quotienting G;_; by a random labelling of (a subdivision

of) I';. The group G; comes with a natural graph map from FZ/ 7 to its Cayley graph.

The group G is then obtained as the direct limit of all G;’s. It is not finitely presented,
but can be recursively presented by replacing randomness by pseudo-randomness. In-
deed, the graphical small cancellation property used here is algorithmically checkable
(even relatively to a given hyperbolic group!), so that we can write a program enu-
merating all labellings of T'y, testing whether they are Gr’'(1/6), stopping at the first
such labelling found (which exists by the randomness argument), then outputting a
presentation for Gy; enumerating all labellings of I'y and testing whether they are in
small cancellation relative to the explicit hyperbolic group G, outputting the first la-
belling of I'; so found, etc. Note that this requires to have a recursive construction for
the expanders I'; too.

This provides a recursive enumeration of the presentation of the limit group G. Then
applying Higman’s embedding theorem (Theorem 12.18 in [Rot95], Theorem IV.7.3
in [LS77]) provides a finitely presented group H in which G embeds. Note that an em-
bedding of a finitely presented group is always a uniform embedding (since there are
only finitely many elements in balls of the image of the initial group), so that H does
not uniformly embed into the Hilbert space if G does not.

The subdivision step amounts to label each edge of I'; with a random word of length
j rather than with a single generator. This allows to reduce “density” of the graphical
presentation, by increasing the relator length (measured by the girth) without changing
the number of relators. It is very important to use the same j for all the I';’s: indeed

we only get a graph map from Fi/ 7 to the Cayley graph of G, which of course induces a
map from the vertices of I'; to Cay(G) with a j times larger Lipschitz constant, so that if
Jj goes uncontrolled then so do the metric properties of the embedding. In other words,
a bounded subdivision of a family of expanders is still a family of expanders but this is
false for unbounded subdivisions.

Another important point is that the “critical density” for non-triviality of random
quotients of the GG;’s could decrease to 0 when i — oo, thus resulting in groups that
are more and more reluctant to adding new relations (forcing to increase j). As results
from Theorem 40, this critical density is controlled by the spectral radius of the random
walk on G;. So it is important to get a uniform control on this spectral radius for all
Gi’s. Actually property (T') of a group entails such a uniform control of the spectral
radii of all of its quotients. So if G; has property (7') we are done, and this results
from Theorem 48. (Another way to proceed is to replace the initial group F» with
a hyperbolic group having property (T'). Yet another, maybe most natural way is to
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use Theorem 42 which states that the spectral radius is almost unaffected by random
quotients.)

The “density” of a graphical presentation is not only controlled by the size of cycles
in the graph but also of course by the number of cycles. Demanding that these graphs
have bounded geometry (valency, diameter/girth ratio) ensures that density remains
bounded.

So, putting all the constraints altogether, we get the following conditions for the con-
struction to work (see [Oll-a]). Note that having a family of expanders is not required
for the process of building the limit group, so that it is possible to get Cayley graphs
containing other interesting families of graphs.

DEFINITION 50 — A sequence (I';);en of finite connected graphs is good for random
quotients if there existsv > 1 and C, C’ > 1 such that, for all i:

e girthI'; — oo,
e DiamI'; < CgirthI;;
e Foranyz € I';,r € N, the ball B(x,r) of radius r inT'; satisfies #B(x,r) < C'v".

THEOREM 51 — Let (I';);cn be a sequence of finite connected graphs which is good for
random quotients.

Then for any € > 0 there exists a finitely generated group G, an increasing sequence
i, of integers, an integer j > 1 and a constant A > 0 such that, for any k € N, there
exists a map of graphs y, : FZ/Z — Cay(G ) from the j-subdivision of I';, to the Cayley
graph of G, which is quasi-isometric in the following sense:

Forany z,y € F{g we have

A (dist(ac,y) — ¢ Diam F{g) < dist (pr(2), ¢r(v)) < dist(z,y)

where the distance in I’Z/}f is the usual graph distance and the distance in Cay(G) is
that w.r.t. a fixed finite generating set.

The group G has some labelling of the union of the Fl/ Z ’s as a graphical presenta-
tion. This presentation is aspherical (in the sense given in [Oll-c]) and turns G, into a
direct limit of hyperbolic groups of geometric dimension 2.

Finally, if the family of graphs I'; is recursive, then this graphical presentation can be
assumed to be recursive.

Note that the size of the fibers ¢, ! (z) is bounded by jv® P#™ ix | so that if #T;, grows
reasonably fast (as is the case for expanders), then the small fiber condition appearing
in [HLS02] is satisfied.

Theorem 49 now follows from the above and the existence of a recursive family of
expanders (e.g. Theorems 7.4.3 and 7.4.12 of [Lub94], or [DSV03]):

THEOREM 52 — There exists a recursively enumerable family of graphs (I';);en such
that:

o #I'; — oo,

inf; A1 (I';) > O (the I'; are expanders);

for all'i, I'; is regular of valency v,

there exist C1,Cy, C3 such that log #I'; < C1 DiamI'; < CygirthI'; < Cslog #17;
for all .
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Besides [Gro03], more information on Gromov’s construction can be found in [Ghy03,
Pan03, Oll-a]. Useful elements of proof appear in [DG, Oll-c, Del-b, Oll-a] and of course
in [Gro03, Gro0Ola, GroOlb, GroOlc]. The link with the Baum-Connes conjecture is
proven in [HLS02].

III.3. Kazhdan small cancellation groups?

A more modest application of Gromov’s random graphical presentations is that they
allow a nice mixture of small cancellation properties and property (T'), using Proposi-
tion 47 together with Theorem 48. This contrasts with ordinary C’(1/6) groups, which
do not have property (T') (unless finite) by a result of Wise (Corollary 1.3 in [Wis04]).

This allows the construction of Kazhdan groups with somewhat unexpected prop-
erties, using the flexibility of small cancellation groups. The main tool here is a short
exact sequence coined by Rips [Rip82]. Namely, for every countable group @, Rips
constructed an exact sequence 1 — N — G — @ — 1 where G is a C'(1/6) group
and the kernel N is finitely generated. Pathologies of () often lift to G’ in some way.
Carefully adding a random graphical presentation to G adorns N with property (T),
namely [OW-a]:

THEOREM 53 — For each countable group @, there is a short exact sequencel — N —
G — Q — 1such that G has a Gr'(1/6) presentation and N has property (T'). Moreover,
G is finitely generated if () is, and G is finitely presented (hence hyperbolic) if () is.

As noted by Cornulier [Cor-b], this easily implies:

COROLLARY 54 — Every countable group with property (T) is a quotient of a Gr'(1/6)
hyperbolic group with property (T).

Indeed, in the exact sequence above, if both ) and N have (T') then G has (T') [HV89].
If @ is finitely presented, then so is G' and thus G is hyperbolic. If @ is not finitely
presented, a theorem of Shalom (Theorem 6.7 in [Sha00]) provides a finitely presented
Kazhdan group fo which @) is a quotient.

Another consequence of Theorem 53 is the following. Paulin asked (open problem 5
at the end of [HV89]) if a Kazhdan group can have an infinite outer automorphism
group (this is impossible for a hyperbolic group by a result of [Pau91]). Actually this
can happen and more precisely [OW-a]:

THEOREM 55 — Every countable group embeds in the outer automorphism group of
some Kazhdan group.

Indeed in the exact sequence above, @ acts on N by conjugation and it happens that
this action is not inner. In particular for finitely presented (), the group N appears as a
subgroup of some hyperbolic group.

Very different examples of Kazhdan groups with infinite outer automorphism groups
were independently constructed by Cornulier [Cor-a] (as a linear group) and later by
Belegradek and Szczepariski [BSz] using relatively hyperbolic groups. Moreover Cor-
nulier’s example is finitely presented, thus positively answering a question in [OW-a].

Using the techniques in [BWO05], it may be possible to show that actually every count-
able group is isomorphic to the outer automorphism group of some Kazhdan group.
For finitely presented groups, this is shown in [BSz] up to finite index.

The main interest of the combined Rips sequence/random graphical presentation
method is its flexibility. Using standard techniques it is straightforward to construct



OPEN PROBLEMS AND PERSPECTIVES 33

new groups with prescribed properties. In [OW-a] two easy examples are given. Recall
a group G is called Hopfian if every surjective homomorphism G — G is injective, and
co-Hopfian if every injective homomorphism G — G is surjective.

THEOREM 56 — There exists a Kazhdan group which is not Hopfian, arising as a finitely
generated subgroup of a Gr'(1/6) infinitely presented group. There exists a Kazhdan
group which is not co-Hopfian, arising as a finitely generated subgroup of a Gr'(1/6)
hyperbolic group.

For comparison, for hyperbolic groups the situation is as follows: Sela proved [Sel99]
that every torsion-free hyperbolic group is Hopfian, and this was extended [Bum04] to
any finitely generated subgroup of a torsion-free hyperbolic group (showing that the
infiniteness of the presentation in the theorem above cannot be removed). Sela again
(final theorem of [Sel97]) proved that a non-elementary torsion-free hyperbolic group is
co-Hopfian if and only if it is freely indecomposable; hence, every Kazhdan hyperbolic
group is co-Hopfian.

Once more, subsequent examples using different techniques are described in [Cor-a]
and [BSz]. Noticeably, Cornulier’s example of a Kazhdan non-Hopfian group (arising
from a p-arithmetic lattice) is finitely presented.

We have attempted to demonstrate that random groups already produced some in-
teresting new examples of groups. The techniques involved are flexible enough and
hopefully more is to come.

IV. Open problems and perspectives

I feel, random groups altogether may grow up
as healthy as random graphs, for example.
M. Gromov, Spaces and questions

The problems presented hereafter are varied in style and difficulty. Some of them
amount to a cleaning of results implicit in the literature, others are well-defined ques-
tions, whereas the worst of them are closer to babbling on an emerging notion. Some
are directly extracted from the excellent exposition of Gromov in the final chapter
of [Gro93], and still unsolved.

Only problems directly pertaining to random groups are presented here. It must be
stressed that Gromov’s paper [Gro03] contains a lot of new, challenging ideas inspired
by his random group construction but belonging to neighboring fields, which unfortu-
nately could not be discussed here.

Disclaimer. The list of problems is provided “as is”, without any warranty, either ex-
press or implied, including, but not limited to, the warranty of correctness, of interest,
of fitness to any particular purpose (such as an article or thesis), or of non-triviality. We
wish the reader good luck.

IV.a. What happens at the critical density? The most frequent question after a talk
on random groups...

Asking whether a random group at density d = 1/2 is infinite or trivial might not
be the right way of looking at things. The most promising and intriguing approach
is to define a limit object for / — oo and for definite d < 1/2, and then letd — 1/2.
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The limit object would be as follows: by Theorem 14 the Cayley graph of the random
group G is a tree up to distance /(1 — 2d), and moreover the hyperbolicity constant is
< 4¢/(1 — 2d). So it is natural to consider the metric space +Cay(G) where 7 means
we rescale the distance by this factor: this yields, for any ¢, a 4/(1 — 2d)-hyperbolic
space which is a tree up to distance 1 — 2d. It seems very likely that for fixed d, for
¢ — oo this metric space converges a la Gromov-Paulin to some (maybe deterministic
in some sense) non-locally compact metric space locally modeled on a real tree. This
object would depend on d and be 4/(1 — 2d)-hyperbolic. Letting then d — 1/2 might
bring a non-trivial object, maybe with some self-similarity or universality properties.

Another approach consists in letting simultaneously { — oo and d — 1/2. Indeed,
Theorem 14 shows that the ball of radius /(1 — 2d) in the Cayley graph is a tree. One is
thus tempted to let d — 1/2 and set ¢ = K /(1 — 2d) so that the length of the smallest
relation in the group is kept constant (but the big problem is that this £ may be too
small for Theorem 11 to hold). It may happen that for large enough values of K, the
group converges (in law) to some non-trivial group with radius of injectivity K, maybe
infinitely presented. It may also happen that the group is trivial no matter how large
K is.

If one sticks to the question of what happens when we take exactly d = 1/2 in the
definition of the density model, one should note the following. If in the density model
we take not (2m — 1)% but P(¢)(2m — 1)% relators with P a subexponential term, for
d # 1/2 this does not change the theorem. But for d = 1/2 triviality or infiniteness
may depend on the subexponential term P. It might depend moreover on the details
of the model (such as taking relators on the sphere or in the ball). Exact determination
of these parameters might not be very relevant. Anyway, as a short answer, for d =
1/2 and P(¢) = 1, it is easy to check (using the probabilistic pigeon-hole principle as
in the comments after Theorem 11) that the random group has a positive probability
(something like (1/¢)?™) to be trivial.

Some expect, however, that “all classical groups lie at d = 1/2” (using precise enough
asymptotics for the P(¢) above?). By the way, note that property (") holds at d > 1/3
and in particular at d = 1/2.

IV.b. Different groups at different densities? Another question, lying at the core
of the density model, is to know whether density really has an impact on the random
group.

The question is not exactly to know whether two random groups are mutually iso-
morphic or not: indeed two successive random samplings of a group at the same length
and density will likely be non-isomorphic (although a proof of this would be very in-
teresting and difficult, compare § I1.3. for the one-relator case; see also [Gro93], p. 279).
Rather one would like to know if the probability measures for distinct values of d be-
come more and more different as £ — oo. More precisely, one would like to know
if, for every density dy and ¢ > 0, there exists a property of groups P, . which oc-
curs with probability — 1 at density d = dy, and with probability — 0 at any density
d¢ (dy —e,dy+¢),as { — oo.

Since a random group at density d and length ¢ has Euler characteristic 1 — m +
(2m — 1)%, for fixed m the number d¢ can be recovered from the algebraic structure of
the group. So it would be enough to recover any other combination of d and / to get
the answer. It is clear that as marked groups, with their standard generating set being
known, random groups are different: indeed, for example the optimal isoperimetry
constant 1 — 2d is provided by Theorem 14. But changing the generating set is a mess.

A very interesting but apparently difficult approach is suggested by Gromov in
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[Gro93] (p. 279). Let G = F,,/N be a finitely presented group and define the den-
sity of this presentation as follows: there is an integer ¢ such that the normal clo-
sure of N N By is N (where By is the ball of radius /¢ in F,;,); for 1 < k < /£ let the
density di = log#(N N By)/log #Bj; (one can use spheres instead of balls) and let
d(Fym — G) = supy<, dx. Now let d(G) be the infimum of these densities d(F,, — G)
on all finite generating sets of G. The question is whether for a random group at den-
sity d this gives back d. Computation of densities of classical groups would also be
interesting.
Gromov gives several other approaches in [Gro93], 9.B.(i).

The nicest thing would be to find group invariants depending continuously on den-
sity. Pansu suggested the use of /P-cohomology, where the critical p might vary with d
([Gro93], 9.B.(i) on ¢, H' # {0}), or the conformal dimension of the boundary, but this
approach has not yet been developed. It is wise to keep in mind the non-variation of
the spectral gap (Theorem 26). Note that this would not contradict Theorem 34 since,
tirst, we do not expect independently picked random groups at the same density to be
isomorphic, and second, random groups are not at all dense in G,,,.

IV.c. To (T) or not to (T'). Property (T) for random groups is known to hold at
density > 1/3 (Theorem 27), and not to hold at density < 1/5 (Theorem 32). There
necessarily exists a critical density for property (7'), since this property is inherited by
quotients (indeed: if at a density dy, property (T') occurs with positive probability, then
at densities d > dy we can write the group presentation as a union of a large num-
ber of presentations at density dp, and one of them is enough to bring property (7).
Determination of this critical density is a frustrating question.

The gap between the Haagerup property at d < 1/6 (Theorem 33) and failure of
property (T') at d < 1/5 is probably just a technical weakness in [OW-b]. It would be
very interesting to know whether, for random groups, property (7') starts just where
the Haagerup property stops, so that these two properties, though not opposite, would
be “generically opposite” (a possibility some people consider would be “sad”).

Another question is whether property (T') holds at d > 1/3 for a random quotient
(this is already asked in [Gro87], 4.5.C). It is trivially the case for quotients by random
words, for any initial group (since property (1) is inherited by quotients) but in this
case the random quotient might already be trivial at d = 1/3 (see Theorem 40) and so
this statement could be empty. But it is very reasonable to expect the same holds for
random quotients by elements in balls of hyperbolic groups as in Theorem 38: applying
the criterion of [Zuk03] to the generating set made of all elements of length ¢/3 looks
promising.

In the meantime, it is a good exercise to write a precise proof of the fact that random
groups at density d > 1/3 have property (') (in the density model, not in the triangular
model, see discussion in § 1.3.g.).

IV.d. Rankand boundary. Even such asimple invariant of groups as the rank (min-
imal number of elements in a generating set) is not known for random groups (except
of course for random quotients of F5). The rank does vary with density: by Theorem 17,
at density 0 (and likely at small enough densities) it is equal to m, but it is easy to show
that at density d > 1 — log(2k — 1)/log(2m — 1), the rank is at most & (this follows
from evaluating the probability that some relator can be written as a product of one
generator followed by ¢ — 1 generators chosen among k). This bound is very crude and
probably not optimal (one may expect, for example, the rank to be 2 when d — 1/2).
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The rank would provide a non-continuous but nevertheless interesting invariant to
prove that different densities produce different groups.

A possible approach is to generalize the method of Arzhantseva and Ol’shanskil at
density 0, which uses representation of subgroups by graphs and subsequent study of
the exponential growth rate of the number of words which are readable on the graph.
Combination of this with large deviation techniques for finite-state Markov chains may
lead to a sharp estimate of the various exponents (densities) at play.

These techniques may be useful for other questions related to the algebraic structure.
For example, Gromov asks ([Gro93], 9.B.(i)) whether a random group contains a non-
free infinite subgroup of infinite index. Also, one would like to extend Theorem 44
on the number of one-relator groups to more relators (as asked by Gromov in [Gro93],
p- 279), which, besides the interest of counting groups, would have implications for the
problems discussed in § IV.b.

It is very likely that a random group is one-ended and in particular does not split
as a free product (this is true at small densities and at d > 1/3, see § 1.3.d.). Another
question is unicity of the generating set up to Nielsen moves (compare Theorem 19);
e.g. form = 2it can be shown that, ford > 0.301... (an apparently transcendental value
coming from large deviation theory of the 4-state Markov chain describing reduced
words in two letters), the pair (a?, a2) generates the random group, but it is not clear
whether this pair is Nielsen-equivalent in the group to the standard generating pair
(al, CLQ).

IV.e. More properties of random groups. Any question which is meaningful for
torsion-free hyperbolic groups may be asked for random groups. Some may even be
answered.

Paragraph 1.9 of [Gro03] lists a few invariants “where a satisfactory answer seems
possible”: geometry of the boundary, L,-cohomology, simplicial norm on cohomology,
existence /non-existence of free subgroups, (non-)embeddability of random groups to
each other, “something C*-algebraic”.

Another frequently arising question is the existence of non-trivial finite quotients of
a random group and of residual finiteness. For any finite group H fixed in advance,
it is easy to show that a random group with large enough defining relators will not
map onto H. Exchanging the limits would provide hyperbolic groups without finite
quotients. (See also the temperature model in § IV.k. below.)

IVf. The world of random quotients. The theory of random quotients of given
groups, the basic idea of which is that typical elements in a given group are the most
nicely behaved, is at its very beginning. (Following Erd&s, this also plays an increas-
ingly important role in the—especially algorithmic—theory of finite groups, a subject
we could not even skim over in this survey, see e.g. [Dix02].)

Theorem 38 and 40 only deal, for the moment, with quotients of torsion-free hy-
perbolic groups (which is nevertheless a generic class!). Of course there is no hope to
extend these theorems to any initial group, if only because there exist infinite simple
groups (but note that the “triviality” parts of these theorems extend to any group of
exponential growth).

Nevertheless, the critical density 1/2 as in Theorem 38 seems to be quite a general
phenomenon. Within a hyperbolic group, the density 1/2 principle might apply to
random quotients by elements chosen in much more general subsets than the balls
w.r.t. some generating set: more or less any large subset X not resembling too much
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to a line should do i.e. quotienting by less than /#X elements randomly chosen in X
should preserve hyperbolicity. The axioms defined in [Oll04] may help for this. This
would have the advantage of decreasing the role of the generating set.

Identifying families of non-hyperbolic groups for which density 1/2 is critical would
be very nice too.

The theory of random quotients works well for torsion-free hyperbolic groups. In
the case of “harmful” torsion more complex phenomena occur (§ II.2.b., [Oll05b]).
Identifying necessary and sufficient conditions on torsion (probably having to do with
growth/cogrowth of the centralizers of torsion elements) for the random quotient the-
orems to hold, and identifying the kind of new phenomena which can happen in the
presence of harmful torsion, would be interesting.

Speaking of torsion, it is not even clear whether a random quotient of a torsion-
free hyperbolic group is still torsion-free. It is true however that geometric dimen-
sion 2 (which implies torsion-freeness) is preserved—this is what we use in every iter-
ated quotient construction, as in Proposition 43 and Theorems 49 and 51 for the group
with expanders. Using higher-dimensional complexes instead of the Cayley 2-complex
(such as the Rips complex) or the techniques in [Del-a], may help get the result.

Theorem 39 states that the growth exponent is preserved when quotienting by ran-
dom elements in a ball, and Theorem 42 states that the spectral radius is preserved
when quotienting by random words; but it is likely that both are preserved whatever
the model of random quotient. Elements to prove this appear in [Oll-e].

The methods used in [Ol104] to prove the phase transition theorems for random quo-
tients of hyperbolic groups are partly geometric, partly combinatorial. On the other
hand, those in [Gro03] and [DG] are almost purely geometric, but they do not allow
to make it to the critical density and only work for “very” small cancellation [Del-b].
Even the basic density 1/2 theorem (Theorem 11) has a much more combinatorial than
geometric proof. Geometrizing these proofs is a good challenge.

IV.g. Dynamics on the space of marked groups. The bad behavior of the isomor-
phism relation on the space of marked groups [Ch00] from the measurable point of
view suggests an ergodic approach (part 4 in [Ghy03], 9.B.(g) in [Gro93]). The dynam-
ics here comes from the action of the Nielsen moves on G,,, (more precisely, the Nielsen
moves on 2m-tuples generate the isomorphism relation on G,, by a theorem of Tietze,
see part 3 of [Ch00]). It seems likely, but is not known, that there is no non-trivial Borel
measure on G,, invariant under this action. It would be nice, and perhaps important,
to have an at least quasi-invariant measure.

There is a quite natural (family of) probability measure(s) on the space of all presen-
tations of m-generated groups, coming from the temperature model (see § IV.k. below),
which depends on a continuous parameter. This measure projects to a measure on G,,,
the properties of which (especially its behavior under Nielsen moves) must certainly
be studied.

Besides, the study of continuity /measurability /average/whatever of the usual in-
variants of groups or presentations on G,, is interesting, as suggested in [Gro93], 9.B.(g).

Ghys noted that the complexity of G,;, comes from lack of rigidity of the free group,
and suggests that studying the space of quotients of a given marked hyperbolic group
would keep all the nice properties of quotients of the free group (small cancellation,
random quotients...), while maybe providing enough rigidity to allow better topologi-
cal and measurable behavior, if the hyperbolic group has few automorphisms. This is
of course related to § IV.f. above.
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IV.h. Isoperimetry and two would-be classes of groups. Two natural properties re-
lated to isoperimetric inequalities of van Kampen diagrams arise naturally in random
groups (including Gromov’s group with expanders) and should be studied for them-
selves, independently of any probabilistic context.

The first one is stronger than mere hyperbolicity and generalizes small cancellation.
Random groups, just as small cancellation groups, have the property that any (reduced)
van Kampen diagram satisfies a linear isoperimetric inequality—whereas the definition
of hyperbolicity asks that only one van Kampen diagram per boundary word satisfies
such an inequality. This property implies, in particular, geometric dimension 2. But it
is not stable by quasi-isometry, since for example taking the Cartesian product with a
finite group introduces (a finite number of) spherical diagrams.

An interesting question is whether this property can be “geometrized”, i.e. to mod-
ify this property so that it becomes invariant under quasi-isometry; a way to do this
may be to ask that all van Kampen diagrams, after some local modifications, satisfy the
isoperimetric inequality. This geometrized property might be equivalent, for example,
to having a boundary of dimension one.

This certainly has to do with the “unfolded hyperbolicity” of [Gro0Olc], which is Gro-
mov’s newly coined name for the “local hyperbolicity” of [Gro87], 6.8.U (asking that
any “locally minimal” diagram satisfies the isoperimetric inequality; a link is explained
with non-existence of conformal maps, and with any surface in the space having nega-
tive Euler characteristic); these considerations probably deserve more attention.

Groups in this class may keep lots of interesting properties of small cancellation
groups.

The second property is the “homogeneous isoperimetric inequality”. The usual way
to write the isoperimetric inequality for a van Kampen diagram D is |0D| > C'|D|
where |D| is the number of faces of D. But a more natural way is a linear isoperi-
metric inequality between the boundary length of D and the sum of the lengths of the
boundary paths of faces of D:

oD =C > |of]

f face of D

which is more homogeneous since it compares a length to a length, not a length to a
number. For a finite presentation the two formulations are clearly equivalent (with a
loss in the constant equal to the maximal length of a relator in the presentation).

This inequality is especially useful when facing a group presentation with relators
of very different lengths, and is relevant also for infinite presentations. It naturally
appears in C’(«) small cancellation theory (with the constant C' = 1 — 6a), in ran-
dom groups (with C' = 1 — 2d, see Theorem 14), in the few-relator model of ran-
dom groups with various lengths (theta-condition of [Ols92]), in Champetier’s work
on cogrowth [Ch93], in computation of the hyperbolicity constant [Oll-d], in random
quotients of hyperbolic groups (section 6.2 of [Oll04]), in iterated quotients (it is satis-
fied with C = 1 — 2d under the assumptions of Proposition 43) and, noticeably, it is sat-
isfied by the infinitely presented groups containing expanders constructed in [Gro03].
Maybe importantly, it allows a formulation of the local-global principle without loss in
the constants and so seems to be the right assumption for it (Theorem 60 below, [Oll-f]).

So in lots of important contexts, even for finite presentations, this is the right way to
write the isoperimetric inequality.

The main question is whether this has some intrinsic and/or interesting meaning
for infinitely presented groups (“fractal hyperbolicity”? Cf. [Gro03], 1.7). The behavior
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under a change of presentation is unclear: for example the property is trivially satisfied
(even for a finitely presented group) if the presentation consists of all relations holding
in the group. One should probably restrict oneself to presentations with some mini-
mality assumptions (e.g. the one which, given a set of generators, consists in beginning
with an empty set of relators, and successively adding all relations which are not con-
sequences of already taken, shorter relations), and study how the property is affected
by elementary changes of the presentation.

IVi. Metrizing Cayley graphs, generalized small cancellation and “rotation fami-
lies”. The generalized small cancellation theory used in [Gro03] (briefly described in
§ IlI.1.e. above) is developed in several papers [Gro03, Gro0Ola, GroOlb] (see also [DG,
Del-b]). A single consolidated proof of the statements in section 2 of [Gro03] combined
with a few examples (such as relative graphical small cancellation as stated in [Oll-a])
would be very useful. Compared to the traditional study of van Kampen diagrams,
here the emphasis is put on geometric objects (such as lines for traditional small can-
cellation or trees for the graphical case) lying in a hyperbolic space acted upon by a
group, and on conditions under which the space can be quotiented along these objects.

The approach can be purely geometric (as in [DG]) or in great part combinatorial
(as in [Oll-c, Oll-a]). The geometric approach as written in [DG] does not work up to
the optimal cancellation coefficient 1/6 but only for “very small” cancellation. But its
strength is that, contrary to relative small cancellation, it can deal with quotients of a
hyperbolic group by relators of length equal to the characteristic length of the group
plus some large constant, whereas relative small cancellation needs the relation length
to be a large constant times the characteristic length of the ambient hyperbolic group.
This is why this approach succeeds in the case of the Burnside group.

The main idea is to put a non-trivial, negatively curved metric on the faces of the
Cayley complex. This might be a step just as important as the jump from combinatorics
of words to study of Cayley graphs and van Kampen diagrams. It is advocated in [DG]
that hyperbolic groups can be made “much more hyperbolic” this way, in some intrin-
sic sense, than when just using the edge metric on the Cayley graph (or the Euclidean
metric on the Cayley 2-complex). This technique is very flexible and may find many
applications. At the very least it should provide a nice framework for re-interpreting
some classical results of hyperbolic group theory.

IV,j. Better Cayley graphs with expanders? The construction of a Cayley graph
with expanders may be simplified. The most direct way would be to find an explicit
Gr'(1/6) labelling of the whole family of expanders; this would provide both a shorter
proof and an isometric embedding of the expanders, instead of quasi-isometric. Get-
ting an injective (on the vertices of the expanders) quasi-isometric embedding would
already be nice.

Another “flaw” of the construction is the final step using the Higman embedding
theorem in order to get a finitely presented group: this keeps non-uniform embeddabil-
ity into the Hilbert space, but the quasi-isometricity of the embedding of the expanders
into the Cayley graph is lost, as are geometric dimension 2 and property (7'), so the
question of expanders quasi-isometrically contained in the Cayley graph of a finitely
presented, maybe also Kazhdan group of dimension 2 is still open.
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IVK. Thetemperature model and local-global principles. Certainly one of the most
important theoretical problems related to random groups.

All the random groups defined so far define a notion of asymptotically typical prop-
erties of groups rather than an intrinsic notion of random groups: (say in the density
model) for each length ¢/ we indeed define a measure yy on the set of group presenta-
tions, but this measure does not converge as ¢ — co. Rather, for a given group property
P, its probability of occurrence under p, converges. As discussed in § 1.4., the space of
marked groups does not solve this problem because the notion of topological generic-
ity in it is uninteresting (there are very different-looking connected components) and
so an input from probability theory is required to know where in this space to look.

The temperature model, or every-length density model (discussed at the end of [Gro00],
but already present in [Gro93], 9.B.(d)) attempts to solve these problems by directly
defining a probability measure on the set of all (finite or infinite) group presentations,
thus providing a well-defined notion of a random group. Note that this measure will
project on the space of marked groups, and thus give access to the realm of infinitely
presented groups.

As usual, fix a set of m generators, and consider the set F;,, of reduced words. The
principle is to construct a set of relators R by deciding at random, for each r € F},,
whether we put it in R or not. Since there are much more long than short words, the
probability to take r should decrease with the length of r. A very natural choice is to
set

p(r) = (2m — I

where || is the length of the word r, and d < 1 is a density parameter. Now, for each
r € Fy,, with probability p(r) we decide to put r as a relator in R (independently of
what is decided for other 7’s). The random group is given by the presentation G =
<a1,... , Am ‘ R>

Note that a priori G is infinitely presented.

Let us interpret the parameter d. The expected number of words of length ¢ in R is
2m(2m — 1)1 (2m — 1)(4=D¢ because there are 2m(2m — 1)*~! such reduced words.
Note that this behaves like (2m — 1)% (up to a benign constant (2m)/(2m — 1)), which
is of course very reminiscent of the density model.

In other words, if for each ¢ € N*, R} is a random set of relators at density d and
at length ¢, then the union R’ = J,cy- R} has essentially the same probability law as
R (up to replacement of an average number by a fixed number of relators, which for
number such as (2m — 1)* is negligible by the law of large numbers).

This justifies the name “all-length density model”. The “temperature” [Gro00] refers
to the idea that a word w € F},, has “energy” |w|, and so if temperature is T the proba-
bility for a “random word” to be in “state”  (compared to its probability to be in state
r=e)is e I"VT, so that T = 1/((1 — d)log(2m — 1)). The higher the temperature, the
larger the set of relators R, the smaller the group G. When T' — 0, on the contrary,
the set R “freezes” to the empty set so that G = F;,,. Note that negative densities are
meaningful in this model.

As an immediate consequence of the interpretation of d as a density, we get that if
d>1/2({i.e. T > 2/log(2m — 1)) the group G is trivial with probability 1.

In this model, for each d > —oo there is a small but definite positive probability to
pick all the generators ay, . . ., a,, and put them as relators in R, in which case the group
is trivial. So here we do not expect a phase transition between infinity and triviality of G
with probabilities 0 and 1, but rather, a phase transition between a positive probability
to be infinite and a zero probability to be infinite.
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Up to this remark and the fact that the presentation is infinite at d > 0, the conjecture
[Gro00] is the exact analogue of Theorem 11:

CONJECTURE — Ifd < 1/2, the group G has a positive probability to be infinite, and
more precisely to be a direct limit of infinite hyperbolic, torsion-free groups of geomet-
ric dimension 2.

Another way to express d < 1/2 is that the function p(r) is in ¢2(F,,).

Not everything can happen with positive probability: for example at d > 0 we put
an exponential number of generators, so that by a simple argument, with probability
1 the abelianization of G is trivial, and so Abelian groups never appear in this model
(the support of the measure is not the whole space G,,).

Atd < 0, by the Borel-Cantelli lemma, the presentation for G is finite with probability
1, and the model is more or less related to the few-relator model with various lengths,
so that for negative densities the conjecture follows from Theorem 5, and the group is
even hyperbolic. But at d > 0 the presentation is infinite, and if the conjecture indeed
holds the group will admit no finite presentation.

As a sidepoint, Theorem 27 implies property (T) for d > 1/3, with probability 1. This
property is likely to happen much earlier.

An easy but important feature [Gro00] of this model is that for any d > 0, with prob-
ability 1 the group G has no finite quotient (compare the discussion above in § IV.e.).
Indeed, let 7 : G — H be a finite quotient of G. The cosets 7 1(h € H) meet one
element of F,,, out of #H, and so for d > 0 it is easy to see that R will contain one
(actually infinitely many) element of each coset with probability 1, thus proving that
H = {e}. This was for one single finite group H, but the union of countably many
events of probability zero has probability zero again.

The main difficulty when dealing with the temperature model is failure of the local-
global principle (see one possible statement in § V., Theorem 60, and other references a
few sentences below), a.k.a. the Gromov-Cartan-Hadamard theorem, which allows to
show hyperbolicity of a group by testing only isoperimetry for van Kampen diagrams
of bounded size. This implies in particular that there exists an algorithm which, given
a finite group presentation, answers positively when the group is hyperbolic (but may
not stop if the group is not).

When the lengths in a group presentation are of very different orders of magnitude,
this principle fails (or at least no suitable version of it is known). For a fixed density d,
for any ¢ € Nlet R, 4 be a random set of relators at density d and at length /. Using the
axioms in [Oll04] one can show that, for any constant A > 1, the group presented by

<a1,...,am\ U Rg7d>
Lo ALy

is very probably hyperbolic, for large enough ¢y depending on A. Then, using the
theory of random quotients and iterating like in Proposition 43, for any A > 1 we can
show that if ¢; 11 > A{;, the group presented by

<a1,...,am\U U RM>

iEN £, <AL,

will very probably be infinite and a direct limit of hyperbolic groups. But the tech-
niques used to treat (J; </« 4, Fr,a are very different from those used to treat the pas-
sage from ¢; to ¢; 11, so that this “lacunarity” is currently needed (see [Gro03]). Note
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however that this lacunarity does not (at least explicitly) appear in Ol’'shanskii’s treat-
ment [Ols92] of the few-relator model with various lengths (thanks to the use of a ho-
mogeneous way to write isoperimetry as discussed in § IV.h. above).

So probably the key to the temperature model is a much better understanding of the
local-global principle when the relators have very different lengths. The formulation
given below (Theorem 60 in § V.) allows some looseness for the ratio of the lengths,
and a careful exploitation of it results in replacing ¢y < ¢ < Aly with ¢y < ¢ < (f in
the above, for some exponent o > 1. A first step would be to remove the dependency
in ¢3/¢; in Theorem 60 [Oll-f]. But this is not enough to tackle the temperature model.
The geometrizing of Cayley complexes as discussed in § IV.i. (after [Gro03], [DG] etc.)
will also certainly be a key ingredient.

We refer the reader to [Gro87] (2.3.F and 6.8.M) and to [Bow91, Ols91b, Bow95,
Pap96, DG, Oll-f] for more information on this important topic. There is not even a
single statement unifying the various versions of the local-global principle written so
far...

The same game can be played replacing F), with any (especially hyperbolic!) ini-
tial group Gy and killing random elements of Gy according to the temperature scheme,
thus transposing in this model all the random quotient questions of § IV.f., and en-
dowing some neighborhood of each group in G,, with a canonical probability measure
depending on density.

IVI. Random Lie algebras. Ask Etienne Ghys about this (see also [Gro93], 9.B.(h)).

IV.m. Random Abelian groups, computer science and statistical physics. Phase
transitions arose first in statistical physics and it is natural to ask whether the phase
transition of random groups does model some physical phenomenon. The answer is
presently unknown.

A fundamental problem of computer science is the 3-SAT problem, which asks whether
a given set of clauses on Boolean variables can be satisfied. Each clause is of the form
(=)2;OR(—)z;OR(—)xy, where (—) denotes optional negations and where 1 < 4, j, k <
n. A set of clauses is satisfiable if each variable can be assigned the value true or false
such that all clauses become true Boolean formulae. Variants exist in which the length
of the clauses is not necessarily equal to 3. This problem is very important, and in
particular it is NP-complete.

A widely used approach consists in observing the behavior of this problem for ran-
dom choices of the clauses, for which methods from statistical physics are very useful
(see e.g. [BCM02, MMZ01] for an introduction). In this context there is a phase tran-
sition depending on the ratio of the number of clauses to the number of Boolean vari-
ables: when this ratio is below a precise threshold the set of clauses is very probably
satisfiable, whereas it is not above the threshold. Moreover, away from the threshold,
naive algorithms perform very well though the problem is NP-complete.

This immediately brings to mind the triangular model of random groups (§ 1.3.g.),
which consists in taking at random relations of the form xfﬁlxjﬂx%l = e and asking
whether the group presented by the elements xy, ...z, subject to these relations is
trivial or not. This triangular model looks strikingly like a kind of “non-commutative”
version of 3-SAT.

A commonly studied toy version of the 3-SAT problem is the XOR-SAT problem,
using exclusive OR’s instead of OR’s in the clauses. This one has a polynomial-time
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solution (it reduces to a linear system modulo 2), hence is considerably simpler theo-
retically, but nevertheless seems to keep lots of interesting properties of 3-SAT. It can
be interpreted as a random quotient of the commutative group (Z/2Z)™ (or sparse ran-
dom matrices), thus in line with the intuition that the triangular model is a somewhat
non-commutative random 3-SAT problem.

Random 3-SAT also exhibits phases: of course the satisfiability vs. non-satisfiability
phases parallel the hyperbolicity vs. triviality phases for group, but moreover, the sat-
isfiability phase breaks into two quit differently-behaved subphases, one in which the
set of admissible truth value assignements to the variables is strongly connected and
satisfiability is easy, and one in which the set of admissible truth value assignements
breaks into many well-separated clusters. These two subphases evoke the freeness vs.
(T') transition in the triangular model (Proposition 30 and Theorem 31): below this
frontier, the group is infinite for trivial reasons, whereas above it, it is still infinite but
not trivially so (compare performance of the group algorithms discussed in I.3.h.). This
suggests that isolation of clusters of SAT solutions parallels isolation of the trivial repre-
sentation among unitary representations of the group (one possible definition of prop-
erty (1)).

The many possible assignements of truth value to the variables suggest not to look
only at the random group given by a random presentation, but to all groups generated
by elements satisfying the random relations in the presentation (which are exactly the
quotients of this group). Maybe the connectedness vs. many-clustering of solutions of
SAT translates into some geometric property of the set of those groups, considered in
the space G,,, of marked groups (§1.4., § IV.g.).

This is quite speculative and there may also be no relation at all between these fields.
Nevertheless, methods from statistical physics and random-oriented computer science
are certainly interesting tools to study for random group theorists.
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V. Proof of the density one half theorem

Prolegomena. Recall that, given a group presentation, a van Kampen diagram is basi-
cally a connected planar graph each oriented edge of which bears a generator of the
presentation or its inverse (with opposite edges bearing inverse generators), such that
the word labelling the boundary path of each face is (a cyclic permutation of) a relator
in the presentation or its inverse. The diagram is said to be reduced if moreover some
kind of trivial construction is avoided. We refer to [LS77, Ols91a, Rot95] for precise
definitions. The set of reduced words that are read on the external boundary path of
some van Kampen diagram coincides with the set of reduced words representing the
trivial element in the group.

It is known [Gro87, Sho91a] that a group G is hyperbolic if and only if there exists a
constant C' such that any reduced word w representing the trivial element of GG appears
on the boundary of some van Kampen diagram with at most C' |w| faces.

In particular, to establish hyperbolicity it is enough to prove that there exists a con-
stant > 0 such that for any diagram D, we have |0D| > «|D| (where | D] is the
number of faces of D and |9D| the length of the boundary path of D %). This implies
the above with C' = 1/a. Note that since reducing a van Kampen diagram preserves
the boundary word, it is enough to check |0D| > «|D| for reduced diagrams (this
would actually never hold for all non-reduced diagrams).

We are going to show that for a random group at density d and at length ¢, with
overwhelming probability any reduced van Kampen diagram satisfies |0D| > (1 —
2d — ¢)l|D| (i.e. we actually prove Theorem 14).

The idea is very nicely explained in [Gro93], 9.B. Remember the discussion of Gro-
mov’s density (§ I.2.): The probability that two random reduced words share a common
initial subword* of length L is 1/(2m — 1)”. So at density d, the probability that, in a set
R made of (2m — 1)% random relators, there exist two words sharing a common initial
subword of length L, is at most (2m — 1)2#(2m — 1)~ (this was Proposition 10).

The geometric way to think about it is to visualize a 2-face van Kampen diagram in
which two faces of boundary length ¢ share L common edges. We have shown that
the probability that two relators in R make such a diagram is at most (2m — 1)2#-£
(up to an unimportant, subexponential factor 4¢> accounting for the positioning and
orientation of the relators in the diagram).

Now consider a random presentation ( ay, ..., a,, | R) where R is made of (2m —1)%
random reduced words of length ¢. Let D be any van Kampen diagram made by the
relators in R. Each internal edge of D (i.e. an edge adjacent to two faces) forces an
equality between two letters of the two relators read on the two adjacent faces; for
random reduced words this equality has a probability 1/(2m — 1) to be fulfilled. So if
L is the total number of internal edges in D, the probability that | D| random reduced
words fulfill the L constraints imposed by D is at most 1/(2m — 1)% (if the constraints
are independent). So the probability that we can find | D| relators in R fulfilling the
constraints of D is at most (2m — 1)IP1%(2m — 1)~ L.

Choose any ¢ > 0. If L > (d + €)|D| ¢, then the probability that D appears as a
van Kampen diagram of the presentation R is less than (2m — 1)~¢IPl by the reasoning
above, and so when ¢ — oo, with overwhelming probability D does not appear as a

*which is not exactly the number of edges of 9D in case the interior of D is not connected.

*Here and throughout the following we neglect the fact that for the first letter of a reduced word, we
have 2m choices instead of 2m — 1 as for all subsequent letters; when dealing with cyclically reduced
words, we also neglect the fact that for the last letter there may be 2m — 1 or 2m — 2 choices.
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van Kampen diagram of the random group. So we can assume L < (d +¢) | D| L.
Now we have
|0D| > |D| ¢ — 2L

since D has | D| faces, each of length ¢, and each gluing between two faces decreases
the boundary length by 2. (Equality occurs when the interior of D is simply connected;
otherwise, “filaments” linking clusters of faces still increase boundary length.) Conse-
quently, using L < (d +¢) | D|{ we get

|0D| > |D| (1 — 2d — 2¢)
as needed.

There are several obscure points in this proof. First, we did not justify why the con-
straints imposed by a van Kampen diagrams on letters of the presentation can be sup-
posed to be independent (in fact, they are not as soon as the diagram involves several
times the same relator®), so we are a priori not allowed to multiply all probabilities in-
volved like we did. Second, we should exclude simultaneously all diagrams violating
the isoperimetric inequality, and we only estimated the probabilily that one particular
diagram is excluded. Third, note that the trivial group, as well as any finite group, is
hyperbolic and thus satisfies the isoperimetric inequality, so we have proven that the
group is hyperbolic but not necessarily infinite.

The latter is treated by a cohomological dimension argument, see below. The second
problem is solved using the local-global principle of hyperbolic geometry (or Gromov-
Cartan-Hadamard theorem) which will be explained later. The first point requires a
more in-depth study of the probability for random relators to fulfill a diagram, which
we now turn to.

Probability to fulfill a diagram. First, we need a precise definition of what it means
for random words to fulfill a van Kampen diagram. We define an abstract diagram to
be a van Kampen diagram in which we forget the actual relators associated to the faces,
but only remember the geometry of the diagram, which faces bear the same relator as
each other, the orientation of the relator of each face, and where the relators begin.
Namely:

DEFINITION 57 — An abstract diagram D is a connected planar graph without valency-
1 vertices, equipped with the following data:

e Aninteger 1 < n < |D| called the number of distinct relators in D (where | D] is
the number of faces of D);

e A surjective map from the faces of D to the set {1,2,...,n}; a face with image i is
said to bear relator i;

>The proof given in [Zuk03] for the triangular model is partly incorrect too, but in a more subtle way
when a diagram involves several copies of a relator glued to itself. Namely, on page 659 of [Zuk03]: “First
put in the diagram n, relators r;. If they have some edges in common, denote by [; the length of the
longest common sequence, i.e. 0 < I; < 3” and then it is stated that, given the constraints of the diagram,
the number of choices for such a relator is at most (2m — 1)371.

Either /; denotes the maximal length of the intersection of two faces bearing 1. In this case it is not true
that the total number L of internal edges of the diagram is at most ) n;l;.

Or I; denotes the maximal length of the intersection of a face with the union of all other faces bearing
r1. Thenlet D be a 3-faces diagram bearing three copies of r1, the second copy having reverse orientation,
and with the second letter of the first copy glued to the first letter of the second copy, and the second letter
of the second copy glued to the first letter of the third copy. In this case i1 = 2 but the number of choices
for r1 is (2m — 1)°.
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e For each face f, a distinguished edge on the boundary of f and an orientation of
the plane +1; if p is the boundary path of f with the distinguished edge as first
edge and oriented according to the orientation of f, we call the k-th edge of p the
k-th edge of f.

An-tuple (w1, . .. ,wy,) of cyclically® reduced words is said to fulfill D if the following
holds: for each two faces fi and f» bearing relators i1 and is, such that the k;-th edge of
f1 is equal to the ko-th edge of f, then the k;-th letter of w;, and the ks-th letter of w;,
are inverse (if the orientations of fi and f> agree) or equal (if the orientations disagree).
For a n/-tuple of words withn’ < n, define a partial fulfilling similarly.

An abstract diagram is said to be reduced if no edge is adjacent to two faces bearing
the same relator with opposite orientations such that the edge is the k-th edge of both
faces.

In other words, putting w; on the faces of D bearing relator 7 turns D into a genuine
van Kampen diagram.

It is clear that conversely, any van Kampen diagram defines an associated abstract
diagram (which is unique up to reordering the relators). A van Kampen diagram is
reduced if and only if its associated abstract diagram is.

We can choose the order of enumeration of the relators and in particular we can ask
that the number of faces bearing relator 7 is non-increasing with i (call relator 1 the most
frequent relator, etc.).

Note that a face of a graph can be non-trivially adjacent to itself, in which case we
have f; = f, above (but then of course k1 # k3).

Hereafter we limit ourselves to abstract diagrams each face of which has boundary
path of length /, in accordance with the density model of random groups. Our goal is
to prove the following:

PROPOSITION 58 — Let R be a random set of relators at density d and at length (. Let
D be a reduced abstract diagram and let e > 0.

Then either |0D| > |D|¢(1 — 2d — 2¢), or the probability that there exists a tuple of
relators in R fulfilling D is less than (2m — 1)~

—e|D|¢

Note that in the “intuitive” proof above, we had a probability (2m — 1) instead.

To prove this proposition we shall need some more definitions. Let n be the number
of distinct relators in D. For 1 < @ < n let m; be the number of times relator i appears in
D. As mentioned above, up to reordering the relators we can suppose that m; > my >
e = My,

For1 < il,ig <n and 1 < /{?1,]{?2 </ say that (il,]{?l) > (ig,kg) if i1 > 19, OF if 11 = 19
and ki > k. Let e be an edge of D adjacent to faces f; and f> bearing relators i; and
i2, which is the k;i-th edge of f; and the ko-th edge of fo. Say edge e belongs to f; if
(11,k1) > (i2, k2), and belongs to fo if (ia, k2) > (i1, k1), so that an edge belongs to the
second face it meets.

Note that since D is reduced, each internal edge belongs to some face: indeed if
(1, k1) = (i2, k2) then either the two faces have opposite orientations and then D is not

®Here we work with cyclically reduced words to avoid the following technical annoyance: the begin-
ning and end of a reduced word may cancel, which forces to consider van Kampen diagrams with “spurs”
at some places. Anyway the theorem holds for any version, since the “probabilistic cost” of such a can-
cellation is identical with the probabilistic cost of a cancellation between two relators. Note however that
the same theorem does not hold for plain (non-reduced) random words, since then the combinatorics of
possible cancellations is exponential, and the critical density is lower than 1/2 [O1104].
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reduced (by definition), or they have the same orientation and the diagram is never
fulfillable since a letter would have to be its own inverse.
Let §(f) be the number of edges belonging to face f. For 1 <i < nlet

0; = max  o(f) (1)

f face bearing i

which will intuitively measure the “log-probabilistic cost” of relator ¢ (lemma below).
Since each internal edge belongs to some face, we have

D> ¢|D[ =2 > 6(f)=L|D|=2 Y mid; )

f face of D 1<i<n

LEMMA 59 — For 1 < i < n let p; be the probability that i randomly chosen cyclically
reduced words wy, ... ,w; partially fulfill D (and po = 1). Then

pi/pi-1 < (2m — 1) 3)

The lemma is proven as follows: Suppose that i — 1 words wy, ..., w;_; partially
tulfilling D are given. Then, successively choose the letters of the word w; in a way to
fulfill the diagram. Let f be a face of D bearing relator i and realizing the maximum ;.

Let £ < ¢ and suppose the first £ — 1 letters of w; are chosen. If the k-th edge of
f belongs to f, then this means that the other face f’ meeting this edge either bears a
relator ¢/ < i, or bears i too but the edge appears as the &’ < k-th edgein f’ (it may even
happen that f/ = f). In both cases, in order to fulfill the diagram the k-th letter of w; is
imposed by the letter already present on the edge, so that choosing it at random has a
probability 1/(2m — 1) to be correct’. The lemma is proven.

Now for 1 < i < n let P; be the probability that there exists a i-tuple of words
partially fulfilling D in the random set of relators R. We trivially® have

P; < (#R)'pi = (2m — 1)!p; (4)

and according to the density philosophy, id¢ + log,,, 1 p; is to be seen as the dimension
of the i-tuples of relators partially fulfilling D (i.e. the log of the expected number of
such i-tuples). This explains the role played by logs in the few next lines—beware these
logs are negative!
Combining Equations (2) and (3) we get
10D > £|D[+2)_ m; (10831 Pi — 1082, 1 Pi-1) )

= (|D]+2) (mi — miy1)108s,, 1 pi (6)

and Equation (4) yields (here we use m; > m;;1)

0D| = £ D] +2> (mi — mit1)(108y,,—1 P — ide) @)

’See footnote 6.

8Here it is even true that P;/P,—1 < (#R)pi/pi—1, because p;/p;—1 is independent of the value of
the words wi, ..., w;—1. But this is no longer true in more general contexts such as random quotients of
hyperbolic groups, where one has to condition by some properties of wi, . . ., w;—1 (the “apparent lentghs”
in [O1104]).
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and observe here that > " (m; — m;1)idl = d¢> m; = d¢|D|, hence
|0D| > £|D| (1 —2d) + 2 (m; — mis1)logs, 1 P (8)

so that setting P = min; P; (and using m; > m;; again) we get

0D = £|D|(1 - 2d) + 2(10gsp—1 P) Y _(mi — miy1) ©)
> |D|(¢(1 - 2d) + 2logy,, 1 P) (11)

since m; < |D].
Of course a diagram is fulfillable if and only if it is partially fulfillable for any : < n
and so

Pr (D is fulfillable by relators of R) < P < (2m — 1)%(|8D|/‘D‘*Z(1*2d)) (12)

which was to be proven.

The local-global principle, or Gromov-Cartan-Hadamard theorem. The proof above
applies only to one van Kampen diagram. But a deep result of Gromov ([Gro87],
2.3.F, 6.8.M) states that hyperbolicity of a space can be tested on balls of finite radius.
This somehow generalizes the classical Cartan-Hadamard theorem stating that a sim-
ply connected complete Riemannian manifold with non-positive sectional curvature is
homeomorphic to R”.

This implies in particular that hyperbolicity is semi-testable in the sense that there
exists an algorithm which, given a presentation of a hyperbolic group, outputs an up-
per bound for the hyperbolicity constant (but which may not stop for non-hyperbolic
presentations). Such an algorithm has indeed been implemented [EHO01, Hol95].

Following Gromoyv, the principle has been given various, effective or non-effective
formulations [Bow91, Ols91b, Bow95, Pap96, DG, Oll-f]. The variant best suited to our
context is the following [Oll-f]:

THEOREM 60 — LetG = (ay,...,an | R) be a finite group presentation and let {1, {5
be the minimal and maximal lengths of a relator in R.
For a van Kampen diagram D with respect to the presentation set

AD)= > |0f]

f face of D

where |0f| is the length of the boundary path of face f.
Let C > 0. Choose ¢ > 0. Suppose that for some K > 10°° (¢3/¢1)3e=2C~3, any
reduced’® van Kampen diagram D with A(D) < K/, satisfies

|0D| > C A(D)
Then any reduced van Kampen diagram D satisfies
|0D] > (C =) A(D)

and in particular the group is hyperbolic.

This constraint can be weakened.



PROOF OF THE DENSITY ONE HALF THEOREM 49

Back to random groups. Here all relators in the presentation have the same length
¢, so that A(D) = ¢|D|. In particular, the assumption A(D) < K/5 in the theorem
becomes | D| < K, i.e. we have to check diagrams with at most K faces.

Set K = 10°° 72 (1 — 2d — 2¢) 3, which most importantly does not depend on /. Let
N(K,?) be the number of abstract diagrams with K faces all of which have their bound-
ary path of length ¢. It can easily be checked (using the Euler formula) that for fixed K,
N(K,¢) grows polynomially in ¢ (a rough estimate yields N (K, ¢) < (*5 N(K)).

We know (Proposition 58) that for any reduced abstract diagram D fixed in advance
and violating the inequality |0D| > (1 — 2d — 2¢)¢| D|, the probability that it appears as
a van Kampen diagram of the presentation is at most (2m — 1)7¢‘. So the probability
that there exists a reduced van Kampen diagram with at most K faces, violating the
inequality |0D| > (1 — 2d — 2¢)¢| D], is less than N (K, ¢)(2m — 1)~¢‘. But, for fixed K
and ¢, this tends to 0 when ¢ — oo since N (K, ¢) grows subexponentially with ¢.

So with overwhelming probability, all reduced diagrams of the presentation with at
most K faces satisfy the isoperimetric inequality [0D| > (1 — 2d — 2¢)¢|D|. Applying
the theorem (with our choice of K) yields that all reduced van Kampen diagrams D
satisfy |0D| > (1 — 2d — 3¢)¢ | D| as needed.

The size of the constant K and the large value of N (K, ) may explain why computer
experiments (§ 1.3.h.) found the group to be trivial too often...

Infiniteness. The isoperimetric inequality above is shown to hold for any reduced
van Kampen diagram (and not only for one van Kampen diagram per boundary word,
which is what is required to be hyperbolic). This implies in particular that there is
no spherical diagram (a spherical diagram being a limit case of planar diagram of
zero boundary length, thus violating the isoperimetric inequality) and so the Cayley
2-complex is asphericall?, hence the group has geometric (hence cohomological) di-
mension < 2. Any group with torsion has infinite cohomological dimension, and so
the random group is torsion-free (which rules out non-trivial finite groups).

The trivial group is excluded since, using asphericity of the Cayley complex, the
Euler characteristic of the group is equal to 1 — m + #R = 1 — m + (2m — 1)%; for
positive d this is > 1, whereas the trivial group has Euler characteristic 1 (and excluding
the trivial group for d > 0 excludes it a fortiori for d = 0). The elementary hyperbolic
group Z is excluded for the same reason.

'OFor this to work one needs a careful definition of van Kampen diagrams, since there are several non-
equivalent notions of asphericity. See e.g. the discussion in [Oll-c].
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