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Abstract. One way to avoid overfitting in machine learning is to use
model parameters distributed according to a Bayesian posterior given
the data, rather than the maximum likelihood estimator. Stochastic
gradient Langevin dynamics (SGLD) is one algorithm to approximate such
Bayesian posteriors for large models and datasets. SGLD is a standard
stochastic gradient descent to which is added a controlled amount of noise,
specifically scaled so that the parameter converges in law to the posterior
distribution [WT11,TTV16]. The posterior predictive distribution can be
approximated by an ensemble of samples from the trajectory.
Choice of the variance of the noise is known to impact the practical behav-
ior of SGLD: for instance, noise should be smaller for sensitive parameter
directions. Theoretically, it has been suggested to use the inverse Fisher
information matrix of the model as the variance of the noise, since it is
also the variance of the Bayesian posterior [PT13,AKW12,GC11]. But
the Fisher matrix is costly to compute for large-dimensional models.
Here we use the easily computed Fisher matrix approximations for deep
neural networks from [MO16,Oll15]. The resulting natural Langevin dy-
namics combines the advantages of Amari’s natural gradient descent and
Fisher-preconditioned Langevin dynamics for large neural networks.
Small-scale experiments on MNIST show that Fisher matrix precondi-
tioning brings SGLD close to dropout as a regularizing technique.

Consider a supervised learning problem with a datasetD = {(x1, y1), . . . , (xN , yN )}
of N input-output pairs, to be modelled by a parametric probabilistic distribution
yi ∼ pθ(y|xi) (x = ∅ amounts to unsupervised learning of y). Defining the log-loss
`θ(yi|xi) := − ln pθ(yi|xi), the maximum likelihood estimator is the value θ that
minimizes E(x,y)∈D`θ(y|x), where E(x,y)∈D denotes averaging over the dataset.

Stochastic gradient descent is often used to tackle this minimization problem
for large-scale datasets [BL03,Bot10]. This consists in iterating

θ ← θ − η Ê(x,y)∈D ∂θ`θ(y|x), (1)

where η is a step size, ∂θ denotes the gradient of a function with respect to θ,
and Ê(x,y)∈D denotes an empirical average of gradients from a random subset of
the dataset D (a minibatch, which may be of size 1).

Estimating the model parameter θ via maximum likelihood, i.e., minimizing
the training loss on D, is prone to overfitting. Bayesian methods arguably offer a
protection against overfitting ([Bis06, 3.4], [Mac03, 44.4]; see also [Nea96,Mac92]



for Bayesian neural networks). Arguably, the variance of the posterior distribution
of θ represents the intrinsic uncertainty on θ given the data, and optimizing θ
beyond that point results in overfitting [WT11]; sampling the parameter θ from
its Bayesian posterior prevents using a too precisely tuned value.

Stochastic gradient Langevin dynamics (SGLD) [WT11,TTV16] modifies sto-
chastic gradient descent to provide random values of θ that are distributed
according to a Bayesian posterior. This is achieved by adding controlled noise to
the gradient descent, together with an O(1/N) pull towards a Bayesian prior:

θ ← θ − η Ê(x,y)∈D ∂θ

(
`θ(y|x)− 1

N
lnα(θ)

)
+
√

2η
N
N (0, Id) (2)

where N is the size of the dataset, α(θ) is the density of a Bayesian prior on θ,
and N (0, Id) is a random Gaussian vector of size dim(θ). 3 The larger N is, the
closer SGLD is to simple stochastic gradient descent, as the Bayesian posterior
concentrates around a single point. The Bayesian interpretation determines the
necessary amount of noise depending on step size and dataset size. SGLD has
the same algorithmic complexity as simple stochastic gradient descent.

Thanks to the injected noise, θ does not converge to a single value, but its dis-
tribution at time t converges to the Bayesian posterior of θ given the data, namely,
π(θ) ∝ α(θ)

∏
(x,y)∈D pθ(y|x). A formal proof is given in [TTV16,CDC15] for suit-

ably decreasing step sizes; the asymptotically optimal step size is ηk ≈ k−1/3 at
step k, thus, larger than the usual Robbins–Monro criterion for stochastic gradient
descent. The asymptotic behavior is well understood from [TTV16,CDC15], and
[MDM17,DM16] provide sharp non-asymptotic rates in the convex case.

One can then extract information from the distribution of θ. For instance, the
Bayesian posterior mean can be approximated by averaging θ over the trajectory.
The full Bayesian posterior prediction can be approximated by ensembling
[GBC16, 7.12] predictions from several values of θ sampled from the trajectory,
though this creates additional computational and memory costs at test time.

We refer to [WT11,TTV16] for a general discussion of SGLD (and other
Bayesian methods) for large-scale machine learning.

Practical remarks. For regression problems, the square loss (y − ŷ(θ))2 between
observations y and predictions ŷ(θ) must be properly cast as the log-loss of a
Gaussian model, ` = (y− ŷ(θ))2/2σ2 + dim(y) ln σ for a proper choice of σ (such
as the empirical RMSE). Just using σ2 = 1 amounts to using a badly specified
error model and will provide a poor Bayesian posterior.

The variance coming from computing gradients on a minibatch from D,
Ê(x,y)∈D∂θ`θ(y|x), adds up to the SGLD noise. For small step sizes, η � √η, so
the SGLD noise dominates. [AKW12] suggest a correction for large η.

A popular choice of prior α(θ) is a Gaussian prior N (0, Σ2); the variance Σ2

becomes an additional hyperparameter. In line with Bayesian philosophy we also
3 Our convention for the step size η differs from [TTV16] by a factor 2/N , namely,
δ = 2

N
η where δ is the step size in [TTV16, (3)]: this allows for a direct comparison

with stochastic gradient descent.



tested the conjugate prior for Gaussian distributions with unknown variance (a
mixture of Gaussian priors for all Σ2), the normal-inverse gamma, with default
hyperparameters; empirically, performance comes close enough to the best Σ2,
without having to optimize over Σ2.

Preconditioning the noise. SGLD as above introduces uniform noise in all param-
eter directions. This might hurt the optimization process. If performance is more
sensitive in certain parameter directions, adapting the noise covariance can largely
improve SGLD performance. This requires changing both the noise covariance
and the gradient step by the same matrix [WT11,GC11,AKW12,LCCC16].

For any positive-definite symmetric matrix C, the preconditioned SGLD,

θ ← θ − η C Ê(x,y)∈D ∂θ

(
`θ(y|x)− 1

N
lnα(θ)

)
+
√

2η
N
C1/2N (0, Id) (3)

still converges in law to the Bayesian posterior (it is equivalent to a non-precon-
ditioned Langevin dynamics on C−1/2θ). A diagonal C amounts to having distinct
values of the step size η for each parameter direction, both for noise and gradient.

This assumes that C is fixed and does not depend on θ. 4 In practice, this
means C should be adapted slowly in the algorithms (hence our use of running
averages for C hereafter); the resulting bias is analyzed in [LCCC16, Cor. 2].

[LCCC16] apply preconditioned SGLD to neural networks, with a diagonal
preconditioner C taken from the RMSProp optimization scheme, a classical tool
to adapt step sizes for each direction of θ. 5

Langevin preconditioners and information geometry. In order to provide a good
or even optimal preconditioner C, it has been suggested to set C to the inverse
of the Fisher information matrix [GC11,AKW12,PT13].

The Fisher information matrix J(θ) at θ, for a model pθ, is defined by

J(θ) := E(x,y)∈D Eỹ∼pθ(ỹ|x)

[
(∂θ ln pθ(ỹ|x)) (∂θ ln pθ(ỹ|x))>

]
(4)

(note that for supervised learning, we fix the distribution of the inputs x from the
data but sample y according to the model pθ(y|x)). Intuitively, the entries of the
Fisher matrix represent the sensitivity of the model in each parameter direction.

Using the inverse Fisher matrix as the SGLD preconditioner C has several
theoretical advantages. First, this reduces Langevin noise in sensitive parameter
directions (thanks to the Fisher matrix being the average of squared gradients).

Second, since C also affects the gradient term in (3), the gradient part of
SGLD becomes Amari’s natural gradient, known to have theoretically optimal
convergence [Ama98]. The resulting algorithm is also insensitive to changes of
variables in θ (for small learning rates) and makes sense if θ belongs to a manifold.
4 If C(θ) depends on θ, the algorithm involves derivatives of C(θ) with respect to θ
[GC11,XSL+14]. In our case (neural networks), these are not readily available.

5 We could not reproduce the good results from [LCCC16]. Their code contains a
bug which produces noise of variance 2η/N2 instead of 2η/N in (2), thus greatly
suppressing the Langevin noise, and not matching the Bayesian posterior.



Third, the Bayesian posterior variance of the parameter θ is asymptotically
proportional to the inverse Fisher information matrix J(θ∗)−1 at the maximum
a posteriori θ∗ (Bernstein–von Mises theorem [vdV00]). So with Fisher precondi-
tioning, the noise injected in the optimization process has the same shape as the
actual noise in the target distribution on θ. Thus, it is tempting to investigate
the behavior of SGLD with noise covariance C ∝ J(θ∗)−1.

Approximating the Fisher matrix for large models. The Fisher matrix J(θ∗) can
be estimated by replacing the expectation in its definition (4) by an empirical
average along the trajectory [AKW12]. This results in Algorithm 3 below.6

However, for large-dimensional models such as deep neural networks, the
Fisher matrix is too large to be inverted or even stored (it is a full matrix of size
dim(θ)× dim(θ)). So approximation strategies are necessary.

Approximating the Fisher matrix does not invalidate asymptotic convergence
of SGLD, since (3) converges to the true Bayesian posterior for any preconditioning
matrix C. But the closer C is to the inverse Fisher matrix, the closer SGLD will
be to a natural gradient descent, and SGLD noise to the true posterior variance.

One way of building principled approximations of the Fisher matrix is to
reason in terms of the associated invariance group. The full Fisher matrix provides
invariance under all changes of variables in parameter space θ: optimizing by
natural gradient descent over θ or over a reparameterization of θ will yield the
same learning trajectories (in the limit of small learning rates). Meanwhile, the
Euclidean gradient descent does not have any invariance properties (e.g., inverting
black and white in the image inputs of a neural network affects performance).
We refer to [Oll15] for further discussion in the context of neural networks.

The diagonal of the Fisher matrix is the most obvious approximation. Its
invariance subgroup consists of all rescalings of individual parameter components.

The quasi-diagonal approximation of the Fisher matrix [Oll15] is built to retain
more invariance properties of the Fisher matrix, at a small computational cost.
It provides invariance under all affine transformations of the activities of units in
a neural network (e.g., shifting or rescaling the inputs, or switching from sigmoid
to tanh activation function). The quasi-diagonal approximation maintains the
diagonal of the Fisher matrix plus a few well-chosen off-diagonal terms, requiring
to store an additional vector of size dim(θ). Overall, the resulting algorithmic
complexity is of the same order as ordinary backpropagation, thus suitable for
large-dimensional models. [Oll15] also provides more complex approximations
with a larger invariance group, suited to sparsely connected neural networks.

The resulting quasi-diagonal natural gradient can be coded efficiently [MO16];
experimentally, the few extra off-diagonal terms can make a large difference.

Natural Langevin dynamics for neural networks: implementation. Algorithm 1
presents the Langevin dynamics with a generic preconditioner C. For the ordinary
SGLD, C would be the identity matrix. The internal setup of a preconditioner
6 The Fisher matrix definition (4) averages over synthetic data ỹ generated by pθ(ỹ|x).
In practice, using the samples y from the dataset is simpler (the OP variant in Alg. 3).
This can result in significant differences [MO16,Oll15,PB13], even in simple cases.



decouples from the general implementation of SGLD optimization. A precondi-
tioner C is a matrix object that provides the routines needed by Algorithm 1:

– Multiply a gradient estimate by C: g ← Cg;
– Draw a Gaussian random vector ξ ∼ N (0, C) = C1/2N (0, Id);
– Update C given recent gradient observations;
– An initialization procedure for C at startup.

We now make these routines explicit for several choices of preconditioner.
The RMSProp preconditioner used in [LCCC16] divides gradients by their

recent magnitude: C is diagonal, and for each parameter component i, Cii is the
inverse of a root-mean-square average of recent gradients in direction i (Alg. 2).

Algorithm 3 describes preconditioned SGLD with a preconditioner C = J−1

using the full Fisher matrix J at the posterior mean θ∗. This is suitable only for
small-dimensional models. The Fisher matrix is obtained as a moving average
of rank-one contributions over the trajectory (Alg. 3). This moving average has
the further advantage of smoothing the fluctuations of the parameter θ over the
SGLD trajectory, ensuring convergence [AKW12].

Finally we consider SGLD using the quasi-diagonal Fisher matrix, the object
of the tests in this article, applicable to large-dimensional models.

For a neural network, the parameters are grouped into blocks corresponding
to the bias and incoming weights of each neuron, with the bias being the first
parameter in a block. The Fisher matrix J is updated as in Algorithm 3, but
storing only its diagonal and the first row in each block. Then a Cholesky
decomposition C = AA> is maintained for the preconditioner C, such that the
axioms of the quasi-diagonal approximation are satisfied (Algorithm 4): in each
block, A has non-zero entries only on its diagonal and first row, and is built such
that C−1 = (A>)−1A−1 has the same first row and diagonal as the Fisher matrix J .
The sparse Cholesky decomposition provides the operations of the preconditioner:
multiplying by C = AA> and sampling from N (0, C) = AN (0, Id).

Experiments. We compare empirically four SGLD preconditioners: Euclidean
(C = Id, standard SGLD), RMSProp, Diagonal Outer Product (DOP) and Quasi-
Diagonal Outer Product (QDOP) on the MNIST dataset. The Euclidean and
RMSProp results widely mismatch those from [LCCC16], see footnote 5.

We compare SGLD to Dropout, a standard regularization procedure for neural
networks. For SGLD we compare the performance of using a single network set
to the posterior mean, and an ensemble of networks sampled from the trajectory
(theoretically closer to the true Bayesian posterior, but computationally costlier).

The code for the experiments can be found at https://github.com/gmarceaucaron/
natural-langevin-dynamics-for-neural-networks . We use a feedforward ReLU
network with two hidden layers of size 400, with the usual N (0, 1/fan-in) initial-
ization [GBC16]. Inputs are normalized to [0; 1]. Step sizes are optimized over
η ∈ {.001, .01, .1, 1} for Euclidean and η ∈ {.0001, .001, .01, .1} for the others,
with schedule η ← η/2 every 10,000 updates [LCCC16]. Minibatch size is 100.
The metric decay rate and regularizer are γt = 1/

√
t and ε = 10−4. The prior was

a Gaussian N (0, σ2) with σ2 ∈ {0.01, 0.1, 1}. The Bayesian posterior ensemble is
built by storing every 100-th parameter value of the trajectory after the first 500.

https://github.com/gmarceaucaron/natural-langevin-dynamics-for-neural-networks
https://github.com/gmarceaucaron/natural-langevin-dynamics-for-neural-networks


Method NLL (train) Accuracy (train) NLL (test) Accuracy (test)
SGD 0.0003 100.00 0.0584 98.24
Dropout 0.0006 100.00 0.0519 98.61
Ensemble, Euclidean 0.0357 99.63 0.0726 98.10
Ensemble, RMSProp 0.0415 99.47 0.0742 98.17
Ensemble, DOP 0.0292 99.69 0.0660 98.13
Ensemble, QDOP 0.0229 99.85 0.0591 98.38
PostMean, Euclidean 0.0281 99.12 0.1240 97.16
PostMean, RMSProp 0.0299 99.07 0.1134 97.21
PostMean, DOP 0.0243 99.20 0.1389 97.20
PostMean, QDOP 0.0292 99.60 0.3429 98.14

Table 1. Performance on the MNIST test set with a feedforward 400-400 architecture.
Hyperparameters were selected based on accuracy on a validation set. The methods
are SGD without regularization, Dropout, SGLD ensemble and SGLD posterior mean
(PostMean) with a Gaussian prior (σ2 = 0.1).

Table 1 shows that SGLD with a quasi-diagonal Fisher matrix preconditioner
and Bayesian posterior ensembling outperforms other SGLD settings.

Bayesian theory favors the use of the full Bayesian posterior at test time,
rather than any single parameter value. The results here are consistent with this
viewpoint: using a single parameter set to the Bayesian posterior mean offers
much poorer performance than either Dropout or a Bayesian posterior ensemble.
(Dropout also has a Bayesian inspiration as a mixture of models [SHK+14].) This
is also consistent with the generally good performance of ensemble methods.

All other preconditioners perform worse than QDOP or Dropout. In particular,
the diagonal Fisher matrix offers no advantage over RMSProp, while the quasi-
diagonal Fisher matrix does. This is consistent with [MO16] and may vindicate
the quasi-diagonal construction via an invariance group viewpoint.
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Data: Dataset D = {(x1, y1), . . . , (xN , yN )} of size N ;
probabilistic model pθ(y|x) with log-loss `(y|x) := − ln pθ(y|x);
Bayesian prior α(θ) = N (θ0, Σ0), default: θ0 = 0;
Learning rate ηt � 1. Preconditioner C (for simple SGLD: C = Id).
Result: Parameter θ whose distribution approximates the Bayesian posterior

Pr(θ | D,α). Approximation θ̄ of the Bayesian posterior mean of θ.
Initialization: θ ∼ α(θ); θ̄ ← θ0; initialize preconditioner;
while not finished do

retrieve a data sample x and corresponding target y from D;
forward x through the network, and compute loss `(y|x);
backpropagate and compute gradient of loss: g ← ∂θ`(y|x) (for a minibatch:
let g be the average, not the sum, of individual gradients);
incorporate gradient of prior: g ← g + 1

N
Σ−1

0 (θ − θ0);
update preconditioner C using current sample and gradient g;
apply preconditioner: g ← Cg;
sample preconditioned noise: ξ ∼ N (0, C) = C1/2N (0, Id);
update parameters: θ ← θ − ηt g +

√
(2ηt/N) ξ;

update posterior mean: θ̄ ← (1− µt)θ̄ + µtθ.
end

Algorithm 1: SGLD with a generic preconditioner C. For instance C may
be Id (Euclidean SGLD), a diagonal preconditioner such as RMSProp, the
inverse of a Fisher matrix approximation...

Data: Preconditioner C = D−1/2 with D a diagonal matrix of size dim(θ); decay
rate γt; regularizer ε ≥ 0.

Initialization: D ← diag(1);
Preconditioner update: Dii ← (1− γt)Dii + γt g

2
i with gi the components of

the gradient of the current sample;
Preconditioner application: gi ← (Dii + ε)−1/2 gi;
Preconditioned noise: ξi ← (Dii + ε)−1/4N (0, 1).
Algorithm 2: RMSProp routines for SGLD, similar to [LCCC16].

Data: Preconditioner C = J−1 with J the Fisher matrix; decay rate γt;
regularizer ε ≥ 0.

Initialization: J ← diag(1);
Preconditioner update: Synthesize output ỹ ∼ pθ(ỹ|x) given current model θ
and current input x (OP variant: just use ỹ = y from the dataset);
Compute gradient of loss for ỹ: ṽ ← ∂θ`(ỹ|x);
Update Fisher matrix: J ← (1− γt)J + γtṽṽ

>;
Preconditioner application: v ← (J + ε Id)−1v;
Preconditioned noise: ξ ← (J + ε Id)−1/2N (0, Id).

Algorithm 3: Routines for SGLD with full Fisher matrix.



Data: Symmetric positive matrix J of which only the diagonal and first row are
known; regularizer ε ≥ 0.

Result: Sparse matrix A whose non-zero entries lie only on the diagonal and
first row, and such that (A>)−1A−1 has the same diagonal and first row
as J + ε Id.

A← 0; A00 ← 1√
J00+ε

(Matrix indices start at 0);

Aii ← 1√
Jii−(A00J0i)2+ε

for each index i 6= 0;

A0i ← −A2
00AiiJ0i for each index i 6= 0;

return A;
Algorithm 4: Quasi-diagonal Cholesky decomposition.
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