
Learning Successor States and Goal-Dependent
Values: A Mathematical Viewpoint

Léonard Blier, Corentin Tallec, Yann Ollivier

January 13, 2021

Abstract

In reinforcement learning, temporal difference-based algorithms can
be sample-inefficient: for instance, with sparse rewards, no learning
occurs until a reward is observed. This can be remedied by learning
richer objects, such as a model of the environment, or successor states.
Successor states model the expected future state occupancy from any
given state [Day93, KSGG16], and summarize all paths in the envi-
ronment for a given policy. They are related to goal-dependent value
functions, which learn how to reach arbitrary states.

We formally derive the temporal difference algorithm for successor
state and goal-dependent value function learning, either for discrete or
for continuous environments with function approximation. Especially,
we provide finite-variance estimators even in continuous environments,
where the reward for exactly reaching a goal state becomes infinitely
sparse.

Successor states satisfy more than just the Bellman equation: a
backward Bellman operator and a Bellman–Newton (BN) operator
encode path compositionality in the environment. The BN operator is
akin to second-order gradient descent methods, and provides the “true”
update of the value function when acquiring more observations from the
environment, with explicit tabular bounds. In the tabular case and with
infinitesimal learning rates, mixing the usual and backward Bellman
operators provably improves eigenvalues for asymptotic convergence,
and the asymptotic convergence of the BN operator is provably better
than TD, with a rate independent from the environment. However, the
BN method is more complex and less robust to sampling noise.

Finally, a forward-backward (FB) finite-rank parameterization of
successor states enjoys reduced variance and improved samplability,
provides a direct model of the value function, has fully understood
fixed points corresponding to long-range dependencies (but ignores
small-scale dependencies), approximates the BN method, and provides
two canonical representations of states as a byproduct.

1

Contents
1 Introduction, Overview of Results 3

2 Notation for Markov Reward Processes 9

3 The Successor State Operator of a Markov Process 11
3.1 The Successor State Matrix in a Finite State Space 11
3.2 The Successor State Operator in a General State Space . . . 12

4 TD Algorithms for Deep Successor State Learning 15
4.1 The (Forward) TD Algorithm for Successor States 15

4.1.1 The Forward Bellman Equation 15
4.1.2 Forward TD for Successor States: Tabular Case 15
4.1.3 Forward TD for Successor States: Function Approxi-

mation . 16
4.1.4 Infinitely Sparse Rewards and Forward TD vs TD on

State-Goal Pairs . 17
4.1.5 Convergence properties for TD on successor states . . 19
4.1.6 Variants of Forward TD: Target Networks, Multi-Step

Returns, 𝛾 = 1, Using Features as Targets... 21
4.2 Backward TD for Successor States 21
4.3 Path Combinatorics Interpretation: Incorporating Newly Ob-

served Transitions . 23

5 Multiple Policies: Goal-Dependent 𝑄 and 𝑉 functions 24
5.1 The Optimal 𝑄-function for Every Goal State 25
5.2 Value and 𝑄 Functions with State Features as Goals 28
5.3 Existence and Uniqueness of Optimal Successor States 31

6 Matrix Factorization and the Forward-Backward (FB) Rep-
resentation 32
6.1 Advantages of Matrix Factorization for 𝑀 32
6.2 The TD Updates for the FB Representation of 𝑀 35

7 Second-Order Methods for Successor States: Implicit Pro-
cess Estimation and Bellman–Newton 39
7.1 Estimating a Markov Process Online 40
7.2 The Bellman–Newton Operator 42
7.3 Parametric Bellman–Newton Update 44
7.4 Discussion: strengths and weaknesses of second-order approaches 45

8 Learning Value Functions and Policies via Successor States 45

2

9 Small Learning Rates and the Continuous-Time Analysis 50
9.1 Continuous-Time Analysis of the Forward and Backward Bell-

man Operators . 51
9.2 Mixing Forward and Backward TD Improves Convergence . . 52
9.3 Continuous-Time Analysis of the Bellman–Newton Operator 53

A Further Variants and Properties of TD for Successor States 59
A.1 Using a Target Network . 59
A.2 TD on 𝑀 with Multi-Step Returns 59
A.3 Tabular TD on 𝑀𝑅 Is Tabular TD on 𝑉 60
A.4 The Parametric Update for Backward TD 60
A.5 Having Targets on Features of the State 61
A.6 Taking 𝛾 Close to 1: Relative TD 62

B Proofs for Sections 3, 4, 5, 7, 8, and Appendix A 63
B.1 Proofs for Sections 3 and 4: TD for 𝑀 63
B.2 Proofs for Appendix A: Further properties of TD for 𝑀 . . . 67
B.3 Proofs for Section 5: Goal-Dependent Methods 70
B.4 Examples of MDPs with Infinite Mass for 𝑄* 72
B.5 Proofs for Sections 7 and 8: Second-Order Methods 72

C The Bellman–Newton Operator and Path Composition 81

D Successor States, Eligibility Traces, and the Backward Pro-
cess 83

E Fixed Points for the FB Representation of 𝑀 87

F The FB Representation and Bellman–Newton 94
F.1 The FB Representation Coincides With Bellman–Newton for

Symmetric 𝑃 . 94
F.2 The BN-FB update . 96

G Sampling Simplified States for 𝑠1 and 𝑠2 96

H Formal Approach to Theorem 21 for Continuous Environ-
ments 100

I Background on Singular Value Decompositions 103

1 Introduction, Overview of Results
The successor state operator of a Markov reward process is an object that
directly encodes the passage from a reward function to the corresponding

3

value function. In particular, it expresses the value functions of all possible
reward functions for a given, fixed policy.

Goal-dependent value functions are a related object with many similar
properties. They describe the optimal value functions and policies for a
specific set of tasks: typically, for all rewards located at all possible target
states. In this case, the policy depends on the target state.

Here we offer a formal treatment of these objects in both finite and
continuous spaces. We present several learning algorithms and associated
results. In particular, we focus on proper treatment of the infinitely-sparse
reward problem encountered by TD-style approaches in continuous spaces if
the reward is located at a precise state.

Possible advantages of working with these objects include:

∙ Contrary to TD, learning starts even before any rewards are observed.
Sucessor state learning extracts information from every observed tran-
sition, by learning how to reach every visited state. Subsequent reward
observations provide an instantaneous update to the value function via
the successor state operator.
This learning is done without reward signals, illustrating an “unsuper-
vised reinforcement learning” approach. Successor state lie in between
model-free and model-based reinforcement learning approaches, provid-
ing a representation of the future of a state without having to synthesize
future states or unrolling synthetic trajectories. Algorithmically, they
rely on having two states as inputs rather than generating a state.

∙ Successor states and goal-dependent values exploit relationships be-
tween how to reach different states. With function approximation,
generalization occurs between different target states. But even in a
tabular setting with no generalization, these objects satisfy more alge-
braic relations than the usual Bellman equation: a backward Bellman
equation and a Bellman–Newton equation, expressing path composi-
tionality in the Markov process (Fig 1). This leads to quantifiable
asymptotic gains.

∙ Successor states and goal-dependent values can be used to solve several
problems at once, such as learning to reach arbitrary states. Even for
optimizing a single reward, they can be used for auxiliary tasks such
as going to an arbitrary state, which could be useful for exploration,
or to provide good state representations.

For learning value functions dependent on goal states, an obvious approach
is to apply any standard reinforcement learning algorithm, with reward 1
when the visited state is equal to the goal state (e.g., [SHGS15]). But this
breaks down in continuous spaces, as the reward function becomes infinitely
sparse (a random trajectory is never going to reach any predefined goal

4

exactly). Even in discrete spaces, the reward becomes exponentially sparse
as the number of components increase.

This problem is avoided by a suitable mathematical treatment. The
intuition behind several of our results is the following: If the goal is to
learn how to reach arbitrary states, then this is not a sparse reward problem,
although straightforward TD implementations treat it as such; it is a problem
with rewards everywhere. Approaches such as hindsight experience replay
[AWR+17] attempt to exploit this intuition by resampling goals a posteriori
in an off-policy algorithm, but it is unclear to us how much of the problem
HER solves in continuous spaces. The mathematical treatment here proves
that finite-variance algorithms exist for such problems, even in continuous
spaces.

Overview of results. In a nutshell, successor states summarize all pos-
sible paths in the environment for a given policy (Section 4.3). For finite
spaces, the entries 𝑀𝑠𝑠′ of the successor state matrix describe the expected
discounted time spent in state 𝑠′ by a trajectory starting at 𝑠 [Day93]:
𝑀𝑠𝑠′ = E

[︀∑︀
𝑡>0 𝛾

𝑡
1𝑠𝑡=𝑠′ |𝑠0 = 𝑠

]︀
. The entry 𝑀𝑠𝑠′ is also the value function at

𝑠 if the reward is 1 at 𝑠′ and 0 everywhere else. As such, 𝑀 contains the infor-
mation about reaching every state in the environment, not just those states
providing a reward. For a fixed policy, the value function depends linearly
on the reward: in a finite state space, for any reward function, represented
as a vector 𝑅 over states, its associated value function is 𝑉 = 𝑀𝑅.

The goal-dependent value function 𝑉𝑠𝑠′ at state 𝑠 for goal 𝑠′ (another
state) is defined as the value function at 𝑠 of the optimal policy for reaching
a unit reward located at 𝑠′. The difference with 𝑀𝑠𝑠′ is now that the policy
depends on 𝑠′ instead of being fixed. Learning this object allows for learning
how to reach different goal states. Contrary to 𝑀𝑠𝑠′ , 𝑉𝑠𝑠′ does not contain
information on how to optimize dense rewards (mixtures of goal states), only
rewards located at a single state. It is also possible to define 𝑉 for more
general types of goals rather just a target state, although the goals must be
predefined and mixtures of goals are not possible a posteriori.

The bulk of the text presents theoretically well-motivated algorithms to
learn these objects directly for any two states 𝑠, 𝑠′. The main contributions
of this text are the following.

∙ We formally define successor states and goal-dependent value (and
𝑄) functions in general state spaces (Sections 3 and 5), extending
the discrete case of [Day93]. For continuous states, this involves some
measure theory (Section 3.2), but the intuition is clear from the discrete
case (Section 3.1).
Successor states are always well-defined for a given policy (Theorem 2).
But goal-dependent value functions are generally not unique in con-

5

tinuous spaces (Section 5.3); still, there exists a canonical solution
(Theorem 14), smaller than all others.

∙ We formally derive the temporal difference (TD) algorithm for successor
state learning, both for discrete spaces, and for continuous spaces with
function approximation (Theorem 6), beyond the tabular setting of
[Day93]. A naive application of TD on a state-goal product space, with
reward 1 when the state reaches the goal, degenerates in continuous
spaces: the reward becomes infinitely sparse (it is 0 with probability
1 and ∞ with probability 0). Instead, the TD estimators we provide
have finite variance (Section 4.1.4, Proposition 8).
Known convergence results for TD extend to this setting: tabular case
with any sampling policy, linear parameterization on-policy, arbitrary
function approximation assuming reversibility of the Markov process
(Section 4.1.5).
Likewise, we formally derive the TD algorithm for goal-dependent 𝑄
and 𝑉 functions (Section 5), with finite-variance estimators even in
continuous spaces. The goals may be target states, or target values for
some vector-valued function of the states (Section 5.2).

∙ Algorithmically, successor states and goal-dependent values are repre-
sented by function approximators depending on two states (the current
state and a goal state) instead of one. TD learning works in a black-box
environment by sampling from a set of observed transitions 𝑠 → 𝑠′

between states, and sampling goal states (typically from the same
distribution). No reward signal is needed.
Most variants of TD still apply: 𝑉 or 𝑄 learning, target networks,
multi-step returns... (Appendix A). Notably, Appendix A.6 describes
relative TD to deal directly with a decay factor 𝛾 = 1 and to reduce
variance for 𝛾 close to 1.
Successor states and goal-dependent values can be used to learn an
optimal policy for a particular reward, or to learn goal-dependent
policies. Many different options are described in Section 8, such as
𝑄-learning or policy gradient, with several ways to learn the value
function from successor states.

∙ Successor states satisfy more than one Bellman equation: we introduce
backward TD for successor states (Section 4.2, Theorem 9), and the
corresponding parametric update (Theorem 26, Appendix A.4).
Successor states encode all paths in the Markov process for a fixed policy
(Section 4.3). The usual (forward) Bellman equation 𝑀 = Id +𝛾𝑃𝑀
adds a newly observed transition at the front of all known paths, while
the backward Bellman equation 𝑀 = Id +𝛾𝑀𝑃 extends known paths

6

by adding newly observed transitions at the back. This backward equa-
tion exists for successor states but not goal-dependent value functions.
In the tabular setting and with small learning rates, combining forward
and backward TD turns out to improve the eigenvalues of the learning
process (Section 9.2).

∙ We introduce “second-order” methods for learning successor states,
which are to TD what Newton-type methods are to first-order gradient
descent (Section 7). In addition to the usual (forward) and the backward
Bellman equations, there is a third Bellman equation satisfied by 𝑀 ,
which leads to the Bellman–Newton operator 𝑀 ← 2𝑀−𝑀2 +𝛾𝑀𝑃𝑀
(Section 7.2). It also enjoys a path interpretation, learning by path
concatenation and doubling the length of known paths (Proposition 20).
The forward and backward Bellman operators only increase the length
of known paths by 1 (Appendix C).
Asymptotically and in the small learning rate limit, the Bellman–
Newton operator converges provably faster than TD (Section 9.3),
with an asymptotic rate independent of the environment and policy.
However, in practice this method is less resistant to sample noise:
smaller learning rates are necessary, so the comparison with TD is
less clear. There is also a parametric version of the Bellman–Newton
operator (Theorem 21), but it is numerically fickle.
We also study the estimation of 𝑀 by direct inversion of Id−𝛾𝑃 using
an empirical estimate 𝑃 of the transition matrix 𝑃 in a finite state space.
The resulting update of 𝑀 when adding each new observation is the
same as a Bellman–Newton update with learning rate 1/𝑡 (Theorems 17
and 18). In finite spaces, we provide an explicit non-asymptotic bound
for the convergence of 𝑀 and the value function 𝑉 based on these
empirical estimates (Theorem 16).

∙ Representing the successor state operator as a dot product 𝐹 (𝑠1)⊤𝐵(𝑠2)
between features of the starting state 𝑠1 and the target state 𝑠2 has
many nice properties (Section 6). Here, the “forward” and “backward”
feature functions 𝐹 and 𝐵 are both learned to approximate 𝑀 : this
may have independent interest for representation learning.
First, this method provides a direct representation of the value function
without additional learning (Eq. 47).
Second, when learning 𝐹 and 𝐵 by any of the algorithms above, in
expectation the updates factorize between 𝑠1 and 𝑠2 (Proposition 15).
This allows for variance reduction, and for purely trajectory-wise algo-
rithms which only use the currently observed transition 𝑠→ 𝑠′ without
sampling an additional target state 𝑠2 (Section 6.2), in contrast to the
general form of TD for 𝑀 .

7

Third, this representation keeps some properties of the Bellman–Newton
method without its shortcomings; they actually coincide when the
transition matrix of the process is symmetric (Theorem 41).
Finally, the fixed points of TD for this representation can be fully
characterized in the tabular and overparameterized cases (Proposi-
tions 35–39 in Appendix E, and Section 6.2). They are related to
eigenspaces of the transition matrix 𝑃 . Notably, in the tabular or
overparameterized case, if forward TD is used to learn 𝐹 and backward
TD to learn 𝐵, then the fixed points are exactly local minimizers of
the error between the 𝐹⊤𝐵 model and the true successor state operator
(Proposition 35). In contrast, for ordinary TD on the value function
and a linear model, the fixed points are not minimizers of the error to
the true value function.

Some related work on successor states. The successor state operator
is linked to various existing objects under various names (fundamental matrix,
occupation matrix, successor representations, successor features...). Successor
states have even been identified in the neurosciences [SBG17].

For discount factor 𝛾 = 1, the successor matrix 𝑀 is known as the funda-
mental matrix [KS60, Bré99, GS97] of a Markov process (up to subtracting
the invariant measure). 1 The fundamental matrix encodes many properties
of the Markov chain, such as value functions ([Ber12], as we use here) or
hitting times [KS60]. In a reinforcement learning context, and with 𝛾 < 1,
this matrix goes back at least to [Day93].

Learning successor states by temporal difference is mentioned in [Day93]
for the tabular case and with linear approximations; the parametric case has
never been derived as far as we know.

In a deep learning context, several recent works have used the related
successor representations [KSGG16], e.g., for transfer [BDM+17, BBQ+18,
ZSBB17, LTL17, MWB18, BHB+20], hierarchical RL [MRG+18] or explo-
ration [MBB19].

In particular, the Deep Successor Representation algorithm [KSGG16]
approximates successor states by learning a state representation 𝜙(𝑠) together
with a successor representation 𝑚(𝑠) defined as the expected discounted
representation of future states from 𝑠: 𝑚(𝑠) = E

[︀∑︀
𝑡>0 𝛾

𝑡𝜙(𝑠𝑡)|𝑠0 = 𝑠
]︀
. As

𝜙 = 𝑚 = 0 is a fixed point of the method, a reconstruction loss must be
used to prevent collapse. Here we directly learn the successor states 𝑀𝑠𝑠′ for
every pair of states in the original space.

1Namely, in Markov chain theory, the fundamental matrix is defined with an additional
rank-one term which avoids all problems with 𝛾 = 1 and is analogous to relative TD. The
case 𝛾 < 1 is obtained from it [Ber12, §5.1.1]. In this introduction, to stay closer to RL
practice, we take 𝛾 < 1 and define 𝑀 without this term. The case 𝛾 = 1 is treated in
Appendix A.6 (relative TD for 𝑀).

8

Successor states provide the value function for every goal state: this is
related to learning multiple RL tasks [SMD+11, SHGS15, JKSY20, PG17]
which performs joint 𝑉 - or 𝑄-learning for a set of goals. To some extent, this
makes it possible to reach or transfer to previously unseen goals [SHGS15].

Recently, [vHMH+20] proposed an algorithm to learn a model of eligi-
bility traces; we prove in Appendix D that the expected eligibility traces
at each state is proportional to the transpose of the successor state matrix
(“predecessor” states).

Our second-order algorithms in Section 7 are based on an implicit process
estimation approach. Process estimation is also used in [PW19] to obtain
convergence bounds for the value function in finite MDPs, under a “syn-
chronous” setting (a transition is observed from every state at every step).
They prove that process estimation is minimax-optimal for this setting.

More generally, successor state learning comes in the context of unsuper-
vised RL, in which relevant features of the environment are learned without
the supervision of a reward signal. Many works have suggested that unsu-
pervised RL improves sample efficiency [SJK+19]. Notably, this includes
model-based methods [FLHI+18]. Contrary to the latter, successor state
learning does not require synthesizing accurate future states; to some extent,
a transition model is implicitly learned via a function 𝑚(𝑠, 𝑠′) that describes
how much 𝑠′ lies in the future of 𝑠 with the current policy.

2 Notation for Markov Reward Processes
We consider a Markov reward process (MRP) ℳ = ⟨𝒮, 𝑃, 𝑟, 𝛾⟩ with state
space 𝒮 (discrete or continuous), transition probabilities 𝑃𝑠𝑠′ from 𝑠 to 𝑠′,
random reward signal 𝑟𝑠 at state 𝑠, and discount factor 0 6 𝛾 < 1 [SB18].
We do not assume that the state space 𝒮 is finite.

In the finite case, 𝑃𝑠𝑠′ can be viewed as a matrix. In the general case, for
each 𝑠 ∈ 𝒮, 𝑃 (𝑠, d𝑠′) is a probability measure on 𝑠′ that depends on 𝑠. From
now on, we use the notation 𝑃 (𝑠, d𝑠′) to cover both cases. 2

A Markov decision process, with a given policy, with actions 𝑎 ∈ 𝒜,
transition probabilities 𝑃 (𝑠, 𝑎,d𝑠′), and policy 𝜋(𝑠, 𝑎), defines two Markov
reward processes: one on states via 𝑃 (𝑠, d𝑠′) :=

∑︀
𝑎 𝜋(𝑠, 𝑎)𝑃 (𝑠, 𝑎,d𝑠′), and

another on state-action pairs via 𝑃 ((𝑠, 𝑎), (d𝑠′, 𝑎′)) := 𝑃 (𝑠, 𝑎,d𝑠′)𝜋(𝑠′, 𝑎′).
(start at (𝑠, 𝑎), get 𝑠′, then choose the next action at 𝑠′). Thus, we work on
states and value functions, but all results extend to state-action pairs and 𝑄
functions.

2 Formally, we take the setting from [Hai10]. The state space 𝒮 is assumed to be a
complete, separable metric space (Polish space), such as a finite or countable space or R𝑛.
It is equipped with its Borel 𝜎-algebra (the 𝜎-algebra generated by all open sets). This
guarantees that integration behaves as expected. 𝑃 (𝑠, d𝑠′) is assumed to be a Markov
kernel, namely, a measurable map from 𝒮 to probability measures over 𝒮.

9

For now the policy is fixed: we deal with policy evaluation and successor
states under that policy. Goal-dependent policies are treated in Section 5.

We denote 𝑅(𝑠) := E[𝑟𝑠] the expected reward at 𝑠. The value function
𝑉 is 𝑉 (𝑠0) := E

[︁∑︀
𝑘 𝛾

𝑘𝑟𝑠𝑘

]︁
where 𝑠0, 𝑠1, . . . , 𝑠𝑡 is a trajectory starting at 𝑠0

sampled from the process. We denote by 1𝑠 the vector equal to 1 at the 𝑠
coordinate and 0 elsewhere.

Data model. We assume access to observations from the Markov reward
process, such as a fixed dataset of stored transitions, or some sample trajec-
tories. Each observation is a triplet (𝑠, 𝑠′, 𝑟𝑠) with 𝑠′ ∼ 𝑃 (𝑠, d𝑠′) and 𝑟𝑠 the
associated reward. Consecutive observations need not be independent. We
denote by 𝜌(d𝑠) be the distribution of states 𝑠 coming from the observations.
We cannot choose the states 𝑠: 𝜌 is unknown and we do not make any
assumptions on it. For instance, if we have access to trajectories from the
process, obtained by some exploration policy, then 𝜌 would be the law of
states visited under that policy. If we just have a finite dataset of transitions,
𝜌 would be the (unknown) law from which this dataset was sampled.

Markov kernels as operators. Interpreting 𝑃 and the successor state
as operators on functions over 𝒮 clarifies the statements of the results
below. We follow the standard theory of Markov kernels [Hai10, Hai06].
We denote by 𝐵(𝒮) the set of bounded measurable functions on 𝑆. 𝑃 acts
on such functions as follows. If 𝑓 is a function in 𝐵(𝒮), 𝑃𝑓 is defined as
(𝑃𝑓)(𝑠) := E𝑠′∼𝑃 (𝑠,d𝑠′) [𝑓(𝑠′)]. This is compatible with the matrix notation
𝑃𝑓 in the finite case, viewing 𝑓 as a vector. In the text, we freely identify
Markov kernels with the corresponding operators.

If 𝑃1 and 𝑃2 are two such Markov kernel operators, their composition 𝑃1𝑃2
is again a Markov kernel operator, and coincides with matrix multiplication
in the finite case. In particular, 𝑃𝑛 represents 𝑛 steps of 𝑃 . The identity
operator Id corresponds to always staying in the same state, namely, a
transition operator 𝑃 (𝑠, d𝑠′) = 𝛿𝑠(d𝑠′) with 𝛿𝑠 the Dirac measure at 𝑠.

We denote Δ := Id−𝛾𝑃 , the discrete Laplace operator of the Markov
process. Finally, if 𝐴 is an operator acting on functions over 𝒮, we denote
its inverse by 𝐴−1, if it exists.

Norms. Both 𝑃 (𝑠, d𝑠′) and the successor state operator 𝑀(𝑠, d𝑠′) are
measures on 𝑠′ that depend on 𝑠. We will use the following norms on such
objects: if 𝜌(d𝑠) is some reference probability measure on 𝒮, and 𝑀1(𝑠, d𝑠′)
and 𝑀2(𝑠, d𝑠′) are two such objects, we define

‖𝑀1 −𝑀2‖2𝜌 := E𝑠∼𝜌, 𝑠′∼𝜌 (𝑚1(𝑠, 𝑠′)−𝑚2(𝑠, 𝑠′))2 (1)

where 𝑚1(𝑠, 𝑠′) := 𝑀1(𝑠, d𝑠′)/𝜌(d𝑠′) is the density of 𝑀1 with respect to 𝜌
(if it exists; if not, the norm is infinite), and likewise for 𝑀2. We will also

10

use the total variation norm

‖𝑀1 −𝑀2‖𝜌,TV := E𝑠∼𝜌 ‖𝑀1(𝑠, ·)−𝑀2(𝑠, ·)‖TV (2)

with ‖𝑝1 − 𝑝2‖TV := sup𝐴⊂𝒮 |𝑝1(𝐴)− 𝑝2(𝐴)| the usual total variation dis-
tance between two measures.

3 The Successor State Operator of a Markov Pro-
cess

As an introduction before defining successor states over general state spaces,
we start with the case of finite state spaces, for which all the objects can be
seen as vectors matrices. This is the case treated in [Day93].

3.1 The Successor State Matrix in a Finite State Space

Informally, for finite state spaces, given two states 𝑠1 and 𝑠2 in a Markov
process, the successor state matrix 𝑀 is a matrix whose entry 𝑀𝑠1𝑠2 is the
expected discounted time spent at 𝑠2 if starting the process at 𝑠1 [Day93].

𝑀𝑠1𝑠2 is also the value function at 𝑠1 if the reward is located at 𝑠2
(𝑅𝑠 = 1𝑠=𝑠2). Thus, columns of 𝑀 contain the value functions of all single-
target rewards. For a fixed Markov process (e.g., fixed environment and
policy), the value function is a linear function of the reward. Thus, by
linearity, for any reward, the associated value function is 𝑉 = 𝑀𝑅. Namely,
𝑀 contains information about the value function of every reward.

We gather several equivalent definitions of the matrix 𝑀 in the following
Proposition. Since this is a particular case of the more general results below,
we do not include a proof.

Proposition 1 (Successor state matrix of a finite Markov
process). Consider a Markov process on a finite state space, with transition
matrix 𝑃 . The following definitions of the successor state matrix 𝑀 are
equivalent:

1. 𝑀 is the inverse of the Laplace operator Δ = Id−𝛾𝑃 ,

𝑀 = (Id−𝛾𝑃)−1 =
∑︁
𝑛>0

𝛾𝑛𝑃𝑛. (3)

2. 𝑀 is the matrix that transforms a reward function into the correspond-
ing value function: for any reward function 𝑅, the associated value
function is

𝑉 = 𝑀𝑅. (4)

3. For each state 𝑠, the column 𝑠 of the matrix 𝑀 represents the value
function of a Markov reward process whose reward is 1 when at state
𝑠 and 0 everywhere else (𝑅 = 1𝑠).

11

4. 𝑀 is the unique fixed point of the Bellman operator

𝑀 ← Id−𝛾𝑃𝑀 (5)

or equivalently of the backward Bellman operator

𝑀 ← Id−𝛾𝑀𝑃. (6)

5. For each state 𝑠, the row 𝑠 of the matrix 𝑀 represents the expected
occupation time at each state, for trajectories starting at 𝑠, with
discounting 𝛾:

𝑀𝑠𝑠′ =
∑︁
𝑡>0

𝛾𝑡P(𝑠𝑡 = 𝑠′|𝑠0 = 𝑠) (7)

where 𝑠0, . . . , 𝑠𝑡 is a random trajectory in the Markov process.

6. The entry 𝑠𝑠′ of the matrix 𝑀 , is the number of paths from 𝑠 to 𝑠′,
weighted by their probability in the process, and with decay 𝛾 according
to their length:

𝑀𝑠𝑠′ =
∑︁

𝑛

∑︁
𝑝=(𝑠0𝑠1...𝑠𝑛)

path from
𝑠0 = 𝑠 to 𝑠𝑛 = 𝑠′

𝛾𝑛
𝑛∏︁

𝑖=1
𝑃 (𝑠𝑖|𝑠𝑖−1). (8)

3.2 The Successor State Operator in a General State Space

𝑀 is also well-defined in general state spaces, using the Markov process
formalism of Section 2, as follows. This extends [Day93] to arbitrary 𝒮. (All
proofs are given in the Appendix.)

Theorem 2. The successor state operator 𝑀 of a Markov reward process
is defined as

𝑀 :=
∑︁
𝑛>0

𝛾𝑛𝑃𝑛, 𝑀(𝑠1, d𝑠2) =
∑︁
𝑛>0

𝛾𝑛𝑃𝑛(𝑠1,d𝑠2). (9)

where 𝑃 0 := Id. Thus, for each 𝑠1, 𝑀(𝑠1, d𝑠2) is a measure on 𝑠2, with total
mass 1

1−𝛾 .
Then 𝑀 is a well-defined operator over the set 𝐵(𝒮) of bounded measur-

able functions on 𝒮. Moreover,

𝑀 = (Id−𝛾𝑃)−1 (10)

as operators over 𝐵(𝒮), and

and 𝑉 = 𝑀𝑅 (11)

for any reward function 𝑅. (Note that 𝑀 does not depend on 𝑅.)

12

𝑀 can be interpreted as paths in the Markov process: 𝑀(𝑠1, d𝑠2) repre-
sents the number of paths from 𝑠1 to 𝑠2, weighted by their probability and
discounted by their length. This will be relevant to compare the algorithms
below. Indeed, in the finite-state case and using matrix notation, 𝑃𝑛

𝑠𝑠′ is the
probability to go from 𝑠 to 𝑠′ in 𝑛 steps; therefore

𝑀𝑠𝑠′ =
∑︁
𝑛>0

𝛾𝑛(𝑃𝑛)𝑠𝑠′ =
∑︁
𝑛>0

𝛾𝑛
∑︁

𝑠=𝑠0,𝑠1,...,𝑠𝑛−1,𝑠𝑛=𝑠′

𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛 (12)

=
∑︁

𝑝 path from 𝑠 to 𝑠′

𝛾|𝑝| P(𝑝) (13)

where, if 𝑝 = (𝑠0, ..., 𝑠𝑛) is a path, P(𝑝) = 𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛 is its probability
and |𝑝| = 𝑛 its length. The same holds with integrals instead of sums in
continuous spaces.

Yet another interpretation of 𝑀 is via expected eligibility traces: indeed,
when visiting a state 𝑠, the expectation of the eligibility trace vector (𝑒𝑠′) is
directly related to 𝑀𝑠′𝑠. The details are given in Appendix D; see also the
discussion of “predecessor features” in [vHMH+20].

Successor states and successor representations. Given a function 𝜙
over the state space 𝒮, the expectation of the cumulated, discounted future
values of 𝜙 given the starting point 𝑠0 of a trajectory (𝑠𝑡) is

E

⎡⎣∑︁
𝑡>0

𝛾𝑡𝜙(𝑠𝑡)

⎤⎦ =
∑︁
𝑡>0

𝛾𝑡(𝑃 𝑡𝜙)(𝑠0) = (𝑀𝜙)(𝑠0). (14)

Thus, the successor representation (e.g., in the sense of [KSGG16]) of a state
𝑠 is obtained by applying 𝑀 to some user-chosen function 𝜙.

Representing and learning the successor state operator. With con-
tinuous states, 𝑀 cannot be represented as a matrix. Instead, we will learn
a function of a pair of states. Namely, we will learn a parametric model of
𝑀 via its density with respect to the data distribution 𝜌 over states (this
choice makes every algorithm samplable from the data). We present two
versions of this. The first version represents 𝑀 as

𝑀(𝑠1, d𝑠2) ≈ �̃�𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) (15)

and the second version as

𝑀(𝑠1,d𝑠2) ≈ 𝛿𝑠1(d𝑠2) +𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) (16)

where 𝛿𝑠1 is the Dirac measure at 𝑠1, and where �̃�𝜃 and 𝑚𝜃 are functions
over pairs of states, depending smoothly on some parameter 𝜃. We will derive
well-principled algorithms to learn the functions �̃�(𝑠1, 𝑠2) and 𝑚(𝑠1, 𝑠2) from

13

observations of the Markov process. The data distribution 𝜌 is unknown, but
all algorithms below only require the ability to sample states from 𝜌, which
we can do by definition since 𝜌 is the distribution of states in the dataset.
These two models correspond, respectively, to

𝑉 (𝑠1) = E𝑠2∼𝜌[�̃�𝜃(𝑠1, 𝑠2)𝑅(𝑠2)] (17)

and
𝑉 (𝑠1) = 𝑅(𝑠1) + E𝑠2∼𝜌[𝑚𝜃(𝑠1, 𝑠2)𝑅(𝑠2)]. (18)

The first version is simpler. The motivation for the second version is as
follows. In continous spaces, 𝑀 has a singular part, corresponding to the
immediate reward in 𝑉 , and to the term Id in the series for 𝑀 : for each 𝑠1,
the measure 𝑀(𝑠1, ·) comprises a Dirac mass at 𝑠1. In continuous spaces, this
singular part cannot be represented as �̃�(𝑠1, 𝑠2)𝜌(d𝑠2) for a smooth function
�̃�. But since this singular part 𝛿𝑠1 is known, we can just parameterize and
learn the absolutely continuous part 𝑚(𝑠1, 𝑠2). Thus, the second version
may represent 𝑀 exactly (at least if 𝑃 is smooth), while in general the first
version cannot. Still, the first version may provide useful approximations.

The function 𝑚𝜃(𝑠1, 𝑠2) can be interpreted as a (directed) similarity
measure between 𝑠1 and 𝑠2, coming from the structure of the Markov process.

In this text, we define several algorithms for learning 𝑚𝜃: the exten-
sion of temporal difference (TD) to successor states (Section 4.1); back-
ward TD for successor states (Section 4.2); and second-order-type meth-
ods (Section 7). The matrix-factorized forward-backward parameterization
�̃�𝜃(𝑠1, 𝑠2) = 𝐹𝜃(𝑠1)⊤𝐵𝜃(𝑠2) has many additional properties and is treated in
Section 6.

A learned model of 𝑀 can be used in several ways:

∙ 𝑀 may be used to improve learning for a given reward. For instance,
with a sparse reward located at a known target state 𝑠tar, then 𝑉 (𝑠) =
𝑀(𝑠, d𝑠tar). In that case, learning 𝑀 directly provides the value
function, while ordinary TD would not work because of the sparse
reward. With dense rewards, 𝑀 can be used in the learning of the
value function (Section 8).

∙ Objects similar to 𝑀 may be used to learn goal-dependent policies,
such as learning how to reach any arbitrary state. This does not cover
dense rewards, but extends to reaching states with arbitrary values for
some features. This is covered in Section 5.

Section 8 gives more details about the ways to use 𝑀 to learn value
functions and policies.

14

4 TD Algorithms for Deep Successor State Learn-
ing

4.1 The (Forward) TD Algorithm for Successor States

4.1.1 The Forward Bellman Equation

Theorem 3 (Bellman equation for successor states). The
successor state operator 𝑀 is the only operator which satisfies the Bellman
equation 𝑀 = Id +𝛾𝑃𝑀 .

This Bellman equation makes sense, as operators, on any state space,
discrete or continuous. In finite spaces, each column of the matrix 𝑀
contains the value function for a reward located at a specific target state, and
the Bellman equation for 𝑀 is just the collection of the standard Bellman
equations for every target state; the Id term is the reward for reaching state
𝑠 when the target is 𝑠.

This Bellman operator on 𝑀 has the same contractivity properties as
the usual Bellman operator.

Proposition 4 (Contractivity of the Bellman operator
on 𝑀). Equip the space of functions 𝐵(𝒮) with the sup norm ‖𝑓‖∞ :=
sup𝑠∈𝑆 |𝑓(𝑠)|. Equip the space of bounded linear operators from 𝐵(𝒮) to
𝐵(𝒮) with the operator norm ‖𝑀‖op := sup𝑓∈𝐵(𝒮), 𝑓 ̸=0 ‖𝑀𝑓‖∞ / ‖𝑓‖∞.

Then the Bellman operator 𝑀 ↦→ Id +𝛾𝑃𝑀 is 𝛾-contracting for this
norm.

Consequently, for any learning rate 𝜂 6 1, iterated application of the
Bellman operator 𝑀 ← (1− 𝜂)𝑀 + 𝜂(Id +𝛾𝑃𝑀) converges to the successor
state operator.

4.1.2 Forward TD for Successor States: Tabular Case

Given that the Bellman equation on 𝑀 is a collection of ordinary Bellman
equations for every target state, an obvious algorithm to learn 𝑀 in finite
state spaces is to perform ordinary TD in parallel for all these single-state
rewards, as in [Day93]. Let 𝑠tar be some target state and consider the
reward 1𝑠tar . Upon observing a transition 𝑠 → 𝑠′, ordinary TD for this
reward updates 𝑉 by 𝑉𝑠 ← 𝑉𝑠 + 𝜂 𝛿𝑉𝑠, where 𝜂 is some learning rate and
𝛿𝑉𝑠 = 1𝑠=𝑠tar + 𝛾𝑉 (𝑠′)− 𝑉 (𝑠). Performing TD in parallel for every column
of 𝑀 with target state 𝑠tar is equivalent to the following [Day93].

Definition 5 (Tabular temporal difference for successor
states). The TD algorithm for 𝑀 , in a finite state space, maintains 𝑀 as
a matrix. Upon observing a transition 𝑠→ 𝑠′ in the Markov process, 𝑀 is
updated by 𝑀 ←𝑀 + 𝜂 𝛿𝑀 where 𝜂 is a learning rate and 𝛿𝑀 has entries

𝛿𝑀𝑠𝑠2 := 1𝑠=𝑠2 + 𝛾𝑀𝑠′𝑠2 −𝑀𝑠𝑠2 ∀𝑠2 (19)

15

In the tabular case and with deterministic rewards, learning 𝑀 via TD,
then estimating 𝑉 via the matrix product 𝑉 = 𝑀𝑅, is equivalent to directly
learning 𝑉 via tabular TD (Appendix A.3): tabular TD on 𝑀 treats all
target states 𝑠2 as independent learning problems, and no learning gain is
achieved.

However, this equivalence does not hold with function approximation,
which introduces generalization between states. Since any target state is
reached with zero probability, applying parametric TD naively in parallel for
every target state would always provide reward 0 in continuous environments.
The parametric TD updates we present below are not equivalent to this naive
TD: they have the same expectation but avoid the zero-reward problem.

4.1.3 Forward TD for Successor States: Function Approximation

In continuous environments, it is not possible to store 𝑀 as a matrix. But
we can maintain a model 𝑚𝜃 of the density of 𝑀 , as explained in Section 3.2.
As in usual parametric TD, we learn 𝜃 by defining an “ideal” update given
by the Bellman equation, and update 𝜃 so that 𝑀 gets closer to it.

Theorem 6 (TD for successor states with function ap-
proximation). Maintain a parametric model of 𝑀 as in Eq. 16 via
𝑀𝜃𝑡(𝑠1,d𝑠2) = 𝛿𝑠1(d𝑠2) + 𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2), with 𝜃𝑡 the value of the pa-
rameter at step 𝑡, and with 𝑚𝜃 some smooth family of functions over pairs
of states.

Define a target update of𝑀 via the Bellman equation, 𝑀 tar := Id +𝛾𝑃𝑀𝜃𝑡 .
Define the loss between 𝑀 and 𝑀 tar via 𝐽(𝜃) := 1

2
⃦⃦
𝑀𝜃 −𝑀 tar⃦⃦2

𝜌 using the
norm (1). Then the gradient step on 𝜃 to reduce this loss is

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌

[︀
𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)

+ 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2) (𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2))
]︀
. (20)

For the model variant in Eq. 15, 𝑀𝜃𝑡(𝑠1,d𝑠2) = �̃�𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2), the
gradient step on 𝜃 to reduce the loss 𝐽(𝜃) is

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌 [𝜕𝜃�̃�𝜃𝑡(𝑠, 𝑠)

+ 𝜕𝜃�̃�𝜃𝑡(𝑠, 𝑠2) (𝛾�̃�𝜃𝑡(𝑠′, 𝑠2)− �̃�𝜃𝑡(𝑠, 𝑠2))
]︀
. (21)

This gradient step is “samplable”. Namely, we can define a stochastic
update 𝛿𝜃TD with expectation (20): sample a transition 𝑠 → 𝑠′ from the
dataset of transitions, and another independent “destination” state 𝑠2 from
the dataset, then set

𝛿𝜃TD = 𝛾 𝜕𝜃𝑚𝜃(𝑠, 𝑠′) + 𝜕𝜃𝑚𝜃(𝑠, 𝑠2)
(︀
𝛾𝑚𝜃(𝑠′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)

)︀
(22)

or likewise for �̃� (only the first term is different).

16

This algorithm uses a transition 𝑠→ 𝑠′ and one additional random state
𝑠2, independent from 𝑠 and 𝑠′. The Bellman–Newton update (Section 7.3)
will use two additional random states 𝑠1 and 𝑠2 (but no additional transition).
The law of 𝑠2 is 𝜌, which means 𝑠2 is just another state sampled from the
dataset. For instance, if the dataset consists of a sampled trajectory trajectory
(𝑠𝑡)𝑡>0, when observing a transition 𝑠𝑡 → 𝑠𝑡+1, additional independent state
samples can be obtained by using states 𝑠𝑡′ at times 𝑡′ independent from
𝑡 (such as a random 𝑡′ 6 𝑡). This requires maintaining a replay buffer of
observed states.

Several variants avoid having to sample 𝑠2 independently from 𝑠 → 𝑠′.
In the FB representation of 𝑀 (Section 6), the expectation over 𝑠2 can be
estimated online using just the observed transition 𝑠→ 𝑠′, with no additional
state. Appendix G also describes the possibility of using a “cheap” source
for the additional states 𝑠2 instead of actual states, as long as the transitions
𝑠→ 𝑠′ come from the true process. Finally, Theorem 13 makes it possible
to use a joint rather than independent distribution for 𝑠 and 𝑠2 (such as
choosing a target state 𝑠2 and following an 𝑠2-dependent policy for some
time).

4.1.4 Infinitely Sparse Rewards and Forward TD vs TD on State-
Goal Pairs

Why don’t the Dirac rewards show up in the parametric TD algorithm of
Theorem 6? Why don’t the rewards become infinitely sparse with continuous
states?

The tabular TD algorithm (19) for 𝑀 features a sparse reward 1𝑠=𝑠2 .
Why don’t these sparse rewards vanish completely in the continuous state
limit, where an equality of states never occurs? This is simply because we
know exactly when these terms make a contribution: namely, we know we can
just take 𝑠2 = 𝑠. In the continuous case, with a model �̃�(𝑠, 𝑠2), the sparse
reward is a Dirac 𝛿𝑠(d𝑠2), and it shows up in TD as a term 𝜕𝜃�̃�(𝑠, 𝑠2)𝛿𝑠(d𝑠2).
When integrated over 𝑠2, this term is just 𝜕𝜃�̃�(𝑠, 𝑠). Thus the contribution
from the infinitely sparse Dirac term is actually finite and nonzero.

Intuitively, we are solving RL problems with an infinity of infinitely sparse
target states 𝑠2. But at every time step, when we visit state 𝑠, we know that
we just visited the target state 𝑠2 = 𝑠: every step brings a reward. This
knowledge is exploited in the expressions we give for TD, resulting in a finite
contribution 𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′) in (20).

Algorithmically, it is quite important to use this. In algorithms that
sample a target state 𝑠2 fully independently from 𝑠 (such as picking a random
goal 𝑔 in [SHGS15]), the contribution from the reward 1𝑠=𝑠2 is sometimes
nonzero in the tabular case, but gets infinitely sparse and eventually vanishes
in the continuous case. We provide more details in Section 4.1.4 (see also
Section 5 for a discussion of state-goal resampling strategies such as hindsight

17

experience replay [AWR+17]).
On the other hand, successor states learned via Theorem 6 can in principle

learn an infinite number of infinitely sparse rewards, with every transition
being informative.

The state-goal process. In expectation, one can view forward TD for 𝑀
as ordinary TD on the space of pairs (𝑠, 𝑠2), as follows. For the tabular case
this holds without expectations, but for the parametric case, this equivalence
holds only in expectation: ordinary parametric TD on pairs (𝑠, 𝑠2) would
have infinite variance on continuous spaces due to the Dirac reward 𝛿𝑠(d𝑠2),
but the successor state update in Theorem 6 avoids this infinite variance, as
discussed above.

In the tabular case, the equivalence is a direct consequence of the Defini-
tion 5 for tabular forward TD on 𝑀 .

Proposition 7 (Tabular forward TD on 𝑀 as ordinary TD
on state-goal pairs). Let 𝑃 be the transition matrix of the Markov
process on state space 𝑆. We call state-goal Markov process the Markov
process on 𝑆 × 𝑆 whose transition matrix is 𝑃 ⊗ Id, namely (𝑠, 𝑠2) goes to
(𝑠′, 𝑠2) with 𝑠′ ∼ 𝑃 (d𝑠′|𝑠).

Let 𝑆 be discrete. Then tabular TD for successor states on 𝑆 (Definition 5)
is equivalent to ordinary tabular TD on the value function of the state-goal
process for the reward function 𝑅(𝑠, 𝑠2) = 1𝑠=𝑠2 .

The parametric case is handled as follows. In discrete or continuous
state spaces, the successor state operator 𝑀(𝑠, d𝑠2) satisfies the Bellman
equation 𝑀(𝑠, d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠)𝑀(𝑠′, d𝑠2) as measures over 𝑠2.
Consider the parameterization (15), 𝑀(𝑠, d𝑠2) = �̃�𝜃(𝑠, 𝑠2)𝜌(d𝑠2) where
𝑚𝜃 is some parametric function (the parameterization (16) with 𝑚𝜃 is
similar). The Bellman equation rewrites as �̃�𝜃(𝑠, 𝑠2)𝜌(d𝑠2) = 𝛿𝑠(d𝑠2) +
𝛾E𝑠′∼𝑃 (d𝑠′|𝑠)�̃�𝜃(𝑠, 𝑠2)𝜌(d𝑠2). If 𝑆 is discrete, the ratio of measures 𝛿𝑠(d𝑠2)/𝜌(d𝑠2)
is an ordinary function and we can rewrite the successor state Bellman equa-
tion as

�̃�𝜃(𝑠, 𝑠2) = 𝛿𝑠(d𝑠2)
𝜌(d𝑠2) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠)�̃�𝜃(𝑠, 𝑠2). (23)

This is the Bellman equation over state-goal pairs (𝑠, 𝑠2) for the reward
function 𝑅(𝑠, 𝑠2) := 𝛿𝑠(d𝑠2)/𝜌(d𝑠2) and transition matrix 𝑃 ⊗Id. It is similar
to goal-dependent value functions (as in, e.g., [SHGS15]), up to the 1/𝜌(d𝑠2)
factor necessary to turn measures into functions. Parametric TD using
this equation is just the average of parametric TD for the individual value
functions associated to each goal 𝑠2.

Naive TD on this state-goal Bellman equation does not behave well due
to the sparse reward 𝛿𝑠(d𝑠2): most pairs have reward 0 and this induces high
variance. In continuous spaces, TD on this equation degenerates: the reward

18

is 0 with probability 1 but its variance is infinite due to the infinite Dirac
function 𝛿𝑠(d𝑠2)/𝜌(d𝑠2). However, the expected TD update can be computed
algebraically and results in the finite-variance update for successor states.
Thus we have the following result.

Proposition 8 (Parametric TD on 𝑀 as finite-variance
version of parametric TD on goal-state pairs). Let the state
space 𝑆 be discrete. Then the Bellman equation 𝑀 = Id +𝛾𝑃𝑀 for successor
states is equivalent to the ordinary Bellman equation (23) for the state-goal
process on pairs (𝑠, 𝑠2) with reward function 𝑅(𝑠, 𝑠2) := 𝛿𝑠(d𝑠2)/𝜌(d𝑠2).

Moreover, in expectation over state-goal samples (𝑠, 𝑠2) ∼ 𝜌 ⊗ 𝜌, the
ordinary parametric TD update for the Bellman equation (23) of the state-
goal process is equal to the parametric TD update for successor states from
Theorem 6, both for the parameterizations 𝑚𝜃 and �̃�𝜃.

Let the state space 𝑆 be continuous, with 𝜌 covering the whole space.
Then ordinary parametric TD for the Bellman equation (23) on the state-
goal process is undefined: the reward term is 0 with probability 1 but has
infinite variance. On the other hand, its expectation is well-defined, and the
parametric TD update for successor states from Theorem 6 has the same
expectation but finite variance (for smooth and bounded 𝑚𝜃).

4.1.5 Convergence properties for TD on successor states

Forward TD for 𝑀 converges in the same conditions as ordinary TD for the
value function. This is obtained by viewing forward TD for 𝑀 as ordinary
TD on the space of pairs (𝑠, 𝑠2), as in Section 4.1.4. Thus, interpreting TD
for successor states as TD on the state-goal process immediately transfers
existing convergence results for ordinary TD to successor states.

We consider three such results: convergence of tabular TD, convergence
of TD on-policy with a linear parameterization, and convergence of TD on-
policy for any parameterization if the random walk is reversible. In each case,
we refer to the original works for additional technical conditions (learning
rates, smoothness...)

∙ In the tabular case, forward TD on 𝑀 (Definition 5) converges, with
pairs (𝑠, 𝑠2) sampled at each step from essentially any selection scheme
(stochastic or deterministic) that ensures every pair is selected infinitely
often, and with suitable learning rates [Tsi94].

∙ TD with linear parameterization on discrete spaces is known to converge
on-policy [TVR97], namely, with states sampled according to a steady-
state distribution of the Markov process (assumed to be nonzero on
every state). For successor states this translates to the following.
Assume 𝑆 is discrete and the successor state operator is parameterized

19

as
𝑀(𝑠, d𝑠2) ≈

∑︁
𝑖

𝜃𝑖 𝜙𝑖(𝑠, 𝑠2)𝜌(d𝑠2) (24)

or equivalently �̃�𝜃(𝑠, 𝑠2) =
∑︀

𝑖 𝜃𝑖 𝜙𝑖(𝑠, 𝑠2), where 𝜃 = (𝜃1, . . . , 𝜃𝑘) is the
parameter to be learned, and 𝜙1, . . . , 𝜙𝑘 are fixed functions. Assume 𝜌
is a positive steady-state distribution of the Markov operator 𝑃 , and
let 𝜌2 be any positive distribution over 𝑆. Then 𝜌 ⊗ 𝜌2 is a steady-
state distribution of the Markov operator 𝑃 ⊗ Id over state-goals, and
parametric TD for the Bellman equation (23) with pairs (𝑠, 𝑠2) sampled
from 𝜌⊗ 𝜌2, is convergent for suitable learning rates. This also covers
the parametric update in Theorem 6, which has the same expectation
by Proposition 8.

∙ For TD with arbitrary parametric families, convergence is known
assuming that the Markov operator 𝑃 is reversible, namely, that 𝜌 is
its steady-state distribution and further satisfies the detailed balance
condition 𝜌(d𝑠)𝑃 (d𝑠′|𝑠) = 𝜌(d𝑠′)𝑃 (d𝑠|𝑠′), in other words, steady-state
flows from state 𝑠 to 𝑠′ and 𝑠′ to 𝑠 are equal. Then, parametric TD is
a stochastic gradient descent of a global loss between the approximate
and true value function [Oll18]. This result extends to MDPs which are
“reversible enough” [BB19]. Applying the result of [Oll18] to successor
states via the state-goal process yields the following. Assume that
the space 𝑆 is finite and that the Markov operator 𝑃 is reversible.
Let �̃�𝜃 be any smooth parametric model for successor states. Let �̃�*

be the true value, namely, let the true successor state operator be
𝑀(𝑠, 𝑠2) = �̃�*(𝑠, 𝑠2)𝜌(d𝑠2). Define the loss function

ℓ(𝜃) := (1− 𝛾) ‖�̃�𝜃 − �̃�*‖2𝜌⊗𝜌 + 𝛾 ‖�̃�𝜃 − �̃�*‖2Dir (25)

where ‖𝑓‖2𝜌⊗𝜌 := E𝑠∼𝜌, 𝑠2∼𝜌𝑓(𝑠, 𝑠2)2 and the Dirichlet norm is

‖𝑓‖2Dir := 1
2E𝑠∼𝜌, 𝑠2∼𝜌, 𝑠′∼𝑃 (d𝑠′|𝑠)(𝑓(𝑠′, 𝑠2)− 𝑓(𝑠, 𝑠2))2. (26)

Then the parametric TD step for 𝑀 (Theorem 6) is equal to the gradient
of this loss, −1

2𝜕𝜃ℓ(𝜃). (This is a global loss between the parametric
model and the true value �̃�*, contrary to the loss in Theorem 6 which
uses a loss with respect to the right-hand-side of the Bellman equation,
which depends on the current estimate.)
Thus, in the reversible case with 𝜌 the stationary distribution, para-
metric TD for 𝑀 converges to a local minimum of the global loss (25),
under the general conditions for convergence of stochastic gradient
descent.

20

4.1.6 Variants of Forward TD: Target Networks, Multi-Step Re-
turns, 𝛾 = 1, Using Features as Targets...

The variants of TD used in practice also exist for successor states.
In Appendix A we provide the parametric updates for two variants:

using a target network (namely, performing several gradient steps toward
Id +𝛾𝑃𝑀 tar without updating 𝑀 tar), and using multi-step returns.

Appendix A.6 describes relative TD for successor states: this makes it
possible to deal directly with 𝛾 = 1 and to reduce variance for 𝛾 close to 1.

Appendix G deals with using different probability distributions for 𝑠 and
𝑠2 (e.g., using synthetic states for 𝑠2 to have more samples), and using a
different reference measure for the parameterization of 𝑀 (e.g., representing
𝑀 by its density with respect to the uniform measure rather than the
unknown distribution 𝜌 in (16) and (15)).

Appendix A.5 mentions situations where the reward is known to depend
only on some features 𝜙(𝑠) of the state 𝑠 (such as a subset of coordinates
of 𝑠). A typical example would be a specific target value for 𝜙(𝑠). In that
case, it is enough to learn the successor state operator 𝑀(𝑠, d𝑔) with the
second argument in the space of features, 𝑔 = 𝜙(𝑠). Then 𝑀(𝑠, d𝑔) directly
provides the value function of the problem with a reward when 𝜙(𝑠) is equal
to 𝑔. It can be used to express the value function of any reward that depends
only on 𝑔. The forward TD updates for 𝑀(𝑠, d𝑔) are similar to the case of
𝑀(𝑠, d𝑠2).

4.2 Backward TD for Successor States

Theorem 9. The successor state operator 𝑀 is the only operator which
satisfies the backward Bellman equation, 𝑀 = Id +𝛾𝑀𝑃 .

This equation has no analogue on 𝑉 . It is similar to an update of expected
eligibility traces (see Appendix D). The resulting operator has the same
contractivity properties as the usual (forward) Bellman operator.

Proposition 10 (Contractivity of the backward Bellman
operator on 𝑀). Equip the space of functions 𝐵(𝒮) with the sup norm
‖𝑓‖∞ := sup𝑠∈𝑆 |𝑓(𝑠)|. Equip the space of bounded linear operators from
𝐵(𝒮) to𝐵(𝒮) with the operator norm ‖𝑀‖op := sup𝑓∈𝐵(𝒮), 𝑓 ̸=0 ‖𝑀𝑓‖∞ / ‖𝑓‖∞.

Then the backward Bellman operator 𝑀 ↦→ Id +𝛾𝑀𝑃 is 𝛾-contracting
for this norm.

The corresponding parametric update to bring 𝑀 closer to Id +𝛾𝑀𝑃 ,
similar to Theorem 6, is

𝛿𝜃BTD = 𝛾 𝜕𝜃𝑚𝜃(𝑠, 𝑠′) +𝑚𝜃(𝑠1, 𝑠)
(︀
𝛾 𝜕𝜃𝑚𝜃(𝑠1, 𝑠

′)− 𝜕𝜃𝑚𝜃(𝑠1, 𝑠)
)︀

(27)

for the model (32) using 𝑚𝜃, and

𝛿𝜃BTD = 𝜕𝜃�̃�𝜃(𝑠, 𝑠) + �̃�𝜃(𝑠1, 𝑠)
(︀
𝛾 𝜕𝜃�̃�𝜃(𝑠1, 𝑠

′)− 𝜕𝜃�̃�𝜃(𝑠1, 𝑠)
)︀

(28)

21

for the model (33) using �̃�𝜃. Here a transition 𝑠 → 𝑠′ and another, inde-
pendent state 𝑠1 are both sampled from the dataset. A precise statement is
given in Theorem 26 (Appendix A.4).

Backward TD for 𝑀 is not structurally different from forward TD: it
corresponds to forward TD for the “time-reversed” Markov process (Ap-
pendix D). But since states are typically observed in a time-ordered sequence,
this might produce a difference. In general, the backward TD update (27)
does not look like a time-reversal of the forward TD update (37): (27) in-
volves Bellman gaps of gradients 𝜕𝑚 while (37) involves Bellman gaps of
𝑚. This difference is superficial and disappears in expectation under the
stationary distribution: if we assume that 𝜌 is the stationary distribution of
the process, then (27) is equal in expectation to

𝛾 𝜕𝜃𝑚𝜃(𝑠, 𝑠′) + 𝜕𝜃𝑚𝜃(𝑠1, 𝑠
′)
(︀
𝛾𝑚𝜃(𝑠1, 𝑠)−𝑚𝜃(𝑠1, 𝑠

′)
)︀

(29)

which looks more like a time-reversal of the forward TD update (37), with
(time-reversed) Bellman gaps of 𝑚. 3

Moreover, contrary to forward TD, learning 𝑀 by backward TD then
setting 𝑉 = 𝑀𝑅 is not equivalent to learning 𝑉 via TD in the tabular case.

Mixing forward and backward TD can change the learning of 𝑀 in
various ways. In the tabular case and in the infinitesimal learning rate
limit, such mixing substantially reduces the dimension of the subspace of
𝑀 where convergence is slowest (Section 9.2). With the matrix-factorized
parameterization of Section 6, using forward, or backward TD, or a mixture
of the two, provides approximations of 𝑀 using slightly different criteria
(Appendix E).

There is no version of backward TD for the goal-dependent optimal 𝑄
function of Section 5.1. Performing a random step on the goal state does
not commute with optimizing an action depending on the goal state. With a
fixed policy, backward TD is forward TD on a time-reversed Markov process,
but when choosing actions, time reversal is not possible: in the expectimax
problem (45), each action choice may depend both on previous actions and
on the goal state, and reversing time is not possible. Similarly, there is no
backward TD for the target-feature version of Section A.5, as the features
do not generally contain full information about the next transition and the
future features.

22

Figure 1: Combining paths: forward TD, backward TD, and path composition
(Bellman–Newton).

4.3 Path Combinatorics Interpretation: Incorporating Newly
Observed Transitions

The difference between forward and backward TD for 𝑀 is best understood
in the path viewpoint on 𝑀 (Eq. 12). Indeed, the current estimate of 𝑀𝑠1𝑠2

contains a current estimation on the number of paths from 𝑠1 to 𝑠2, weighted
by their estimated probabilities in the Markov process. TD replaces 𝑀 with
𝑃𝑀 , and adds Id, which represents the trivial paths from 𝑠 to 𝑠. Backward
TD uses 𝑀𝑃 instead. In both cases, the operator 𝑃 is sampled via an
observed transition 𝑠→ 𝑠′. Thus, 𝑃𝑀 builds new known paths by taking
all paths contained in 𝑀 and adding the transition 𝑠 → 𝑠′ at the front of
each path, while 𝑀𝑃 adds the transition 𝑠 → 𝑠′ at the back of each path
in 𝑀 (Fig. 1). Forward TD reasons at fixed target states (rewards) [GO19],
while backward TD reasons at fixed starting points.

Thus, TD and backward TD on 𝑀 differ in how they learn new paths
from known paths when each new transition is observed. Arguably, both are
reasonable ways to update a mental model of paths in an environment when
discovering new transitions (e.g., if a new street 𝑠→ 𝑠′ opens in a city).

There is a third way to build new paths when observing a new transition
𝑠→ 𝑠′: take all known paths to 𝑠, all known paths from 𝑠′, and insert 𝑠→ 𝑠′

in the middle (Fig. 1). This exploits path concatenation, roughly doubling
the length of known paths. This operation is involved in the way that 𝑀
actually changes when the process is changed by increasing 𝑃 (𝑠, d𝑠′) (the
way possible paths actually change when a new street opens). This is the
basis of the “second-order” algorithms we present for 𝑀 in Section 7.

3The difference between (29) and (27) just lies in shifting terms around along a trajectory
𝑠 → 𝑠′ → 𝑠′′ → . . . : in one case, the term 𝑚𝜃(𝑠1, 𝑠′)𝜕𝜃𝑚𝜃(𝑠1, 𝑠′) is grouped with the
previous transition 𝑠→ 𝑠′, in the other case, with the next transition 𝑠′ → 𝑠′′. Thus the
difference is minor if working online along trajectories, but (27) is valid even if 𝜌 is not the
stationary distribution.

23

5 Multiple Policies: Goal-Dependent 𝑄 and 𝑉 func-
tions

The principles above can be used to learning goal-dependent policies and
a goal-dependent value or 𝑄 function, just by letting the policy be goal-
dependent in the results above. This option only covers rewards located
at a given target state, not dense rewards; it can also cover target features
of states rather than a fully specified target state (Section 5.2), namely,
having target values for some function 𝜙 of the state. A first application is
to learn all optimal policies to reach any goal state 𝑠2, either via 𝑄-learning
(Section 5.1) or 𝑉 -learning (Section 5.2).

This approach partially solves the well-known sparse reward problem in
goal-dependent learning. For instance, let us consider the goal-dependent
value function 𝑉 (𝑠, d𝑠2): for every target state 𝑠2, it solves the 𝑠2-dependent
Bellman equation

𝑉 (𝑠, d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑠2)𝑉 (𝑠′,d𝑠2) (30)

with reward when 𝑠 = 𝑠2, and 𝑠2-dependent policy 𝑃 (d𝑠′|𝑠, 𝑠2). (In the
continuous case, the goal-dependent value function is a measure on 𝑠2,
because the probability to exactly reach a state is usually 0. We will learn
its density with respect to a reference measure.)

Using TD directly on this equation leads to sparse reward problems: in
continuous state spaces, a reward is never observed (and rarely observed in
large discrete spaces).

However, the contribution of the reward 𝛿𝑠(d𝑠2) to the TD update can
be computed exactly in expectation. The resulting update does not involve
sparse rewards anymore: every transition is informative because it shows
how to reach the currently visited state (as discussed in Section 4.1.3). This
update is the same as with successor states: the update for �̃� in Theorem 6
can be directly used to train goal-dependent policies by seeing �̃�(𝑠, 𝑠2) as
the value function at 𝑠 when the goal state is 𝑠2 (see the example after
Theorem 13).

Existing workarounds for this sparse reward issue include strategies for
resampling state-goal pairs that more frequently lead to nonzero rewards,
such as Hindsight Experience Replay (HER) [AWR+17], which works with any
𝑄-learning method, assuming knowledge of the reward function associated
to each goal. It is not clear to us whether HER actually solves the infinitely-
sparse-reward issue or not. 4 The results described here are not mutually
exclusive with using HER: HER is a sampling strategy for transitions in

4For instance, with noisy dynamics in a continuous space, the probability to reach a
state exactly is always 0, so if the reward is 1 when reaching the state, the 𝑄-function
computed by HER would be 0. Here we have used infinite (Dirac) rewards when reaching
a goal: this leads to a well-defined, nonzero 𝑄 function, but rescaling the reward by an
infinite factor would result in infinite HER updates. On the other hand, in some non-noisy

24

the training set, which can be used with any 𝑄-learning method, such as
those presented here; so in principle HER could be used as the state-goal
distribution 𝜌𝑆𝐺 for 𝑄-learning in Theorem 13.

We start with learning the optimal 𝑄 function for every target state
(Section 5.1). We first describe the precise meaning of goal-dependent Bellman
equations such as (30), and present the resulting parametric update.

Next we turn to a more general statement involving either the 𝑉 or
𝑄 function, and target features instead of target states (Section 5.2). We
discuss three use cases: 𝑄-learning with any goal feature function, 𝑉 -learning
conditioned to goal states, and 𝑉 -learning conditioned to goal features, which
presents some subtleties. The goal-dependent 𝑉 function can be used to
train goal-dependent policies by any policy gradient method.

In Section 5.3 we provide mathematical details for the existence and
uniqueness of goal-dependent Bellman equations, in the case of the 𝑄 function.
Having to work with measures of potentially infinite mass results in non-
uniqueness of the solution, but there is still a “natural” solution, equal both
to the smallest solution and to the limit of the finite-horizon solution.

5.1 The Optimal 𝑄-function for Every Goal State

Several works have attempted to learn optimal 𝑄 functions indexed by an
additional “goal” which encodes a variable reward. The simplest case is when
the reward is located at a single goal state 𝑔. Computing the 𝑄 function
𝑄(𝑠, 𝑎, 𝑔) for every goal state 𝑔 fully solves the navigation problem in an
environment, although this function does not provide the optimal policies
for “mixed” rewards, only for single-state rewards.

The viewpoint presented here allows for a more principled approach to
this object 𝑄; notably, it can avoid the sparse reward problem of algorithms
that sample a state 𝑠 and a goal state 𝑔 independently, with reward 1𝑠=𝑔.
This is avoided thanks to the direct algebraic treatment of Diracs or sparse
rewards discussed above.

So far, the successor state operator was defined for a given, fixed policy.
The goal-dependent 𝑄 function uses a different (optimal) policy for every
goal. It can be defined through the optimal Bellman operator.

Definition 11 (Optimal Bellman operator for successor
states). Let 𝑄(𝑠, 𝑎,d𝑠2) be a measure on 𝑠2 depending on a state-action
pair (𝑠, 𝑎). Define the optimal Bellman operator 𝑇 via

(𝑇𝑄)(𝑠, 𝑎,d𝑠2) := 𝛿𝑠(d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑎′
𝑄(𝑠′, 𝑎′, d𝑠2). (31)

continuous MDPs with continuous actions, it is possible to reach a state exactly, and in
that instance HER would work without modification. This point needs more investigation.

25

In the discrete case, this is just the usual optimal Bellman opera-
tor in parallel for every goal state 𝑠2, namely, (𝑇𝑄)(𝑠, 𝑎, 𝑠2) = 1𝑠=𝑠2 +
𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) max𝑎′ 𝑄(𝑠′, 𝑎′, 𝑠2). In the continuous case, for each state-action
(𝑠, 𝑎), 𝑄(𝑠, 𝑎, ·) is a measure over the state space, and the supremum sup𝑎′ 𝑄(𝑠′, 𝑎′,d𝑠2)
is a supremum of measures over 𝑠2. 5

In the discrete case, a fixed point exists by standard contractivity argu-
ments; however, with continuous states, the situation is tricky, see Section 5.3.
In particular, with continuous states the measure 𝑄 may have either finite
or infinite mass; intuitively, the total mass of 𝑄 indicates how many distinct
policies we can follow to reach different states. The total mass of 𝑄(𝑠, 𝑎)
is the total number of distinct points that can be reached from (𝑠, 𝑎) by
taking different action sequences, weighted by the probability and discounted
by time. In contrast, the successor state operator of a single fixed policy
(Sections 3–4) always has total mass

∑︀
𝛾𝑡 = 1

1−𝛾 : there is no choice of actions
so the total probability of states is 1 at each time step.

To see this, consider two extreme examples. In the first, the environment
just ignores every action and sends the agent to a random uniform state at
each time step. Then for any (𝑠, 𝑎), 𝑄(𝑠, 𝑎,d𝑠2) is 𝛿𝑠(d𝑠2) + 𝛾

1−𝛾 d𝑠2, with
total mass 1

1−𝛾 . In the second example, for every state we have an action
that sends us directly to that state. Then 𝑄(𝑠, 𝑎,d𝑠2) is a measure for which
every single state 𝑠2 ̸= 𝑠 has mass 𝛾

1−𝛾 , and the total mass of 𝑄(𝑠, 𝑎, ·) is
infinite. This can be arranged even with finite action spaces: generally, at
horizon 𝑡 the mass may be as large as 𝛾𝑡(#𝐴)𝑡 if every action sequence
leads to a different part of the state (examples in Appendix B.4). In the
fixed-policy case, the mass at horizon 𝑡 was always 𝛾𝑡 and the total mass
was always finite.

Parametric goal-dependent 𝑄-learning. Let us consider parametric
models for 𝑄. As before, we consider two models given by

𝑄𝜃(𝑠, 𝑎,d𝑠2) := 𝛿𝑠(d𝑠2) + 𝑞𝜃(𝑠, 𝑎, 𝑠2)𝜌(d𝑠2) (32)

and
𝑄𝜃(𝑠, 𝑎,d𝑠2) := 𝑞𝜃(𝑠, 𝑎, 𝑠2)𝜌(d𝑠2) (33)

respectively, and we will learn 𝑞𝜃 and 𝑞𝜃. For instance, up to the factor 𝜌,
the models in [SHGS15] correspond to 𝑞𝜃(𝑠, 𝑎, 𝑠2) = ℎ(𝜙𝜃(𝑠, 𝑎), 𝜓𝜃(𝑠2)). 6

5In general, the supremum of 𝑘 measures 𝜇1, . . . , 𝜇𝑘 is defined as follows: for every
measurable set 𝐴, (sup𝑖 𝜇𝑖)(𝐴) := sup(𝐵𝑖)

∑︀
𝜇𝑖(𝐵𝑖) where the supremum is taken over all

partitions of 𝐴 = 𝐵1 ⊔𝐵2 ⊔ · · · ⊔𝐵𝑘 into disjoint measurable sets (𝐵𝑖). This is also the
smallest measure that is larger than every 𝜇𝑖. Each 𝐵𝑖 is the set where 𝜇𝑖 is the largest
measure in the family. This means that at each point in state space, we select the measure
with the highest value; thus, the sup over actions in (31) depends on the goal states 𝑠2.

The definition assumes that the set of actions is countable; otherwise, additional smooth-
ness assumptions are required for existence.

6The factor 𝜌, or some other measure, is needed to get a well-defined object in continuous
state spaces. In discrete spaces, it results in an 𝑠2-dependent scaling of the 𝑄 function,

26

The resulting parametric update is as follows. The update is off-policy:
we assume access to a dataset of transitions (𝑠, 𝑎, 𝑠′) in a Markov decision
process. Let 𝜌SA be the distribution of the state-action pair (𝑠, 𝑎) in the
dataset; its marginal over 𝑠 is 𝜌 as before. Given a measure-valued function
of (𝑠, 𝑎), such as 𝑄(𝑠, 𝑎,d𝑠2), we define its norm similarly to (1) as

‖𝑄‖2𝜌SA,𝜌 := E(𝑠,𝑎)∼𝜌SA, 𝑠2∼𝜌[𝑞(𝑠, 𝑎, 𝑠2)2] (34)

where 𝑞(𝑠, 𝑎, 𝑠2) := 𝑄(𝑠, 𝑎,d𝑠2)/𝜌(d𝑠2) is the density of 𝑄 with respect to 𝜌,
if it exists (otherwise the norm is infinite).

Theorem 12 (Parametric 𝑄-learning for every goal state).
Consider a parametric model of 𝑄 given by (32) or (33), where 𝑞𝜃(𝑠, 𝑎, 𝑠2)
or 𝑞(𝑠, 𝑎, 𝑠2) are smooth functions depending on the parameter 𝜃.

Let 𝜃0 be some value of the parameter. Define a target update 𝑄tar of 𝑄
via the optimal Bellman operator (31) applied to𝑄𝜃0 , namely, 𝑄tar(𝑠, 𝑎,d𝑠2) :=
(𝑇𝑄𝜃0)(𝑠, 𝑎,d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup𝑎′ 𝑄𝜃0(𝑠′, 𝑎′, d𝑠2). Define the
loss between 𝑄𝜃 and 𝑄tar via 𝐽(𝜃) := 1

2
⃦⃦
𝑄𝜃 −𝑄tar⃦⃦2

𝜌SA,𝜌 using the norm
(34).

Then the gradient step on 𝜃 to reduce this loss is

− 𝜕𝜃𝐽(𝜃) = E(𝑠,𝑎)∼𝜌SA, 𝑠′∼𝑃 (𝑠′|𝑠,𝑎), 𝑠2∼𝜌

[︀
𝛾 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠′)

+ 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠2)
(︂
𝛾 sup

𝑎′
𝑞𝜃0(𝑠′, 𝑎′, 𝑠2)− 𝑞𝜃(𝑠, 𝑎, 𝑠2)

)︂]︂
(35)

for the model (32) using 𝑞𝜃, and

− 𝜕𝜃𝐽(𝜃) = E(𝑠,𝑎)∼𝜌SA, 𝑠′∼𝑃 (𝑠′|𝑠,𝑎), 𝑠2∼𝜌 [𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠)

+ 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠2)
(︂
𝛾 sup

𝑎′
𝑞𝜃0(𝑠′, 𝑎′, 𝑠2)− 𝑞𝜃(𝑠, 𝑎, 𝑠2)

)︂]︂
(36)

for the model (33) using 𝑞𝜃.

Here we have presented the update using a fixed “target network” with pa-
rameter 𝜃0 (typically a previous value of 𝜃), a common practice for parametric
𝑄-learning.

This update is “samplable”: sample a transition (𝑠, 𝑎, 𝑠′) from the dataset,
another independent transition (𝑠2, 𝑎2, 𝑠

′
2) from the dataset (𝑎2 and 𝑠′

2 are
discarded), and estimate the gradient by

̂︁𝛿𝜃 = 𝛾 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠′) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠2)
(︂
𝛾 sup

𝑎′
𝑞𝜃0(𝑠′, 𝑎′, 𝑠2)− 𝑞𝜃(𝑠, 𝑎, 𝑠2)

)︂
(37)

or likewise for 𝑞 (only the first term is different).

which still has the same optimal policy for each 𝑠2.

27

This update is perfectly analogous to the successor state updates for 𝑚𝜃

and �̃�𝜃 in Theorem 6, except that 𝑞𝜃 and 𝑞𝜃 depend on the actions, and that
the policy follows a supremum over actions instead of being fixed.

As before, the infinite, infinitely sparse rewards 𝛿𝑠(d𝑠2) of the every-goal
problem produce the finite contribution 𝛾 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠′) or 𝜕𝜃𝑞(𝑠, 𝑎, 𝑠) in this
parametric update. Sampling two independent states 𝑠 and 𝑠2 is still needed,
but for the Bellman gap term, not for the reward term.

5.2 Value and 𝑄 Functions with State Features as Goals

We now turn to a general result covering both value and 𝑄 functions (𝑄
functions are obtained as the value function of the state-action Markov
process, as explained in Section 2). We also cover target features rather than
target states: namely, we are given a feature function 𝜙 on state space, and
the reward is nonzero on states 𝑠 such that 𝜙(𝑠) achieves a particular goal
value 𝑔. Target states correspond to 𝜙 = Id.

Covering 𝑉 functions requires the ability to work on-policy. Thus, we
assume that goal-dependent policies are given, yielding goal-dependent tran-
sitions 𝑠→ 𝑠′|𝑔 defined by their transition probabilities 𝑃 (d𝑠′|𝑠, 𝑔).

Thus we wish to find solutions to the goal-dependent Bellman equation

𝑉 (𝑠, d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑔)𝑉 (𝑠′,d𝑔) (38)

with reward on states such that the features 𝜙(𝑠) are equal to 𝑔. Full target
states amount to 𝜙 = Id: a nonzero reward when 𝑠 = 𝑔. This can be used
in turn to train the goal-dependent policies, for instance by policy gradient.
(The technical meaning of this equation is similar to the case of 𝑄 above.
For a discussion on existence and uniqueness we refer to Section 5.3.)

Here the training dataset is made of triplets (𝑠 → 𝑠′|𝑔): transitions
indexed by a goal. For the 𝑄 function this is not restrictive: working on
state-action pairs, given a state-action (𝑠, 𝑎, 𝑠′) it is always possible to sample
a goal 𝑔 a posteriori, and to define the next action 𝑎′ according to policy 𝑔
in state 𝑠′. For the 𝑉 function this is more restrictive: typically, the training
set would be made of trajectories where a goal is selected at random and kept
for some time. This results in some empirical distribution over state-goal
pairs (𝑠, 𝑔) in the training set, with 𝑠 and 𝑔 not independent.

A major issue is to avoid using the sparse rewards 𝛿𝜙(𝑠)(d𝑔). Indeed, the
most obvious approach to the Bellman equation (38) is to view this problem
as an ordinary Markov process on the augmented state space of state-goal
pairs (𝑠, 𝑔). The TD update for this problem is

𝛿𝜃 = E(𝑠,𝑔)∼𝜌𝑆𝐺, 𝑠′∼𝑃 (d𝑠′|𝑠,𝑔)

[︂
𝜕𝜃𝑣𝜃(𝑠, 𝑔)

(︂
𝛿𝑠(d𝑔)
𝜏(d𝑔) + 𝛾𝑣𝜃(𝑠′, 𝑔)− 𝑣𝜃(𝑠, 𝑔)

)︂]︂
where 𝜌𝑆𝐺 is the distribution of state-goal pairs (𝑠, 𝑔) in the training set, and
where the 𝑉 function has been parameterized as 𝑉𝜃(𝑠, d𝑔) = 𝑣𝜃(𝑠, 𝑔)𝜏(d𝑔)

28

for some arbitrary measure 𝜏(d𝑔) on goal space. In a continuous state space,
no reward would ever be observed.

Sparse rewards can be avoided by just using the goal 𝑔 = 𝜙(𝑠) for the
sparse term: 𝜕𝜃𝑣𝜃(𝑠, 𝑔) 𝛿𝑠(d𝑔) 𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)). The price to pay is computing
the value function only up to a goal-dependent scaling. Namely, there is a
simple sparsity-free TD update for the related problem

𝑉 (𝑠, d𝑔) = 𝛼(𝑠, 𝑔) 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑔)𝑉 (𝑠′, d𝑔). (39)

Here the reward is nonzero only if 𝜙(𝑠) = 𝑔, but with an unknown factor
𝛼(𝑠, 𝑔) that depends on the solution reached.

If 𝛼(𝑠, 𝑔) depends only on 𝑔, then optimal policies are not affected: for
every goal 𝑔, we just compute the correct value function for this goal up to a
𝑔-dependent scaling. This happens in many use cases, notably for 𝑄-learning
or if 𝜙 = Id (goals are full states), as shown below.

The least favorable use case is 𝑉 -learning with 𝜙 ̸= Id. Then the scaling
𝛼 may also vary among the states 𝑠 which achieve 𝜙(𝑠) = 𝑔: this may result
in policies which do solve the problem of finding a state 𝑠 with 𝜙(𝑠) = 𝑔,
but not necessarily in an optimal way. (In that case, another option is to
explicitly provide a full state 𝑠𝑔 such that 𝜙(𝑠𝑔) = 𝑔 and use the full state 𝑠𝑔

as the goal instead, thus going back to 𝜙 = Id.)
We now turn to the technical, general statement and discuss some explicit

use cases. The theorem is stated for 𝑉 functions; the case of 𝑄 functions
follows by applying it to the state-action Markov process.
Theorem 13 (Goal-dependent TD). Let 𝜙 : 𝑆 → 𝒢 be a function
from the state space to some goal space 𝒢 (discrete if 𝑆 is discrete and
continuous if 𝑆 is continuous).

Assume that the training set consists of transitions (𝑠→ 𝑠′|𝑔) indexed
by a goal. Let the joint distribution of state-goal pairs in the training set
be 𝜌𝑆𝐺(d𝑠, d𝑔). Let 𝜌𝑆 and 𝜌𝐺 be its marginals over 𝑠 and 𝑔, namely, the
distributions of states and of goals in the training set. Assume that the
density of 𝜌𝑆𝐺 with respect to 𝜌𝑆𝜌𝐺 is nonzero everywhere (every state-goal
pair appears with some positive probability).

Parameterize the value function as 𝑉𝜃(𝑠, d𝑔) = 𝑣𝜃(𝑠, 𝑔)𝜌𝐺(d𝑔).
Then the parameter update

𝛿𝜃 = E(𝑠,𝑔)∼𝜌𝑆𝐺, 𝑠′∼𝑃 (d𝑠′|𝑠,𝑔)
[︀
𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) + 𝜕𝜃𝑣𝜃(𝑠, 𝑔)

(︀
𝛾𝑣𝜃(𝑠′, 𝑔)− 𝑣𝜃(𝑠, 𝑔)

)︀]︀
(40)

is the TD update associated with the Bellman equation for the goal-dependent
value function

𝑉 (𝑠, d𝑔) = 𝛼(𝑠, 𝑔) 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑔)𝑉 (𝑠′, d𝑔). (41)

where 𝛼(𝑠, 𝑔) := 𝜌𝑆(d𝑠)𝜌𝐺(d𝑔)/𝜌𝑆𝐺(d𝑠, d𝑔). (Note that the value of 𝛼(𝑠, 𝑔)
is used only on states such that 𝜙(𝑠) = 𝑔.)

In the following cases, 𝛼 depends only on 𝑔:

29

∙ If the distributions of states and goals are independent in the training
set, namely, if 𝜌𝑆𝐺(𝑠, 𝑔) = 𝜌𝑆(𝑠)𝜌𝐺(𝑔), then 𝛼(𝑠, 𝑔) = 1.

∙ If 𝜙 = Id (goals are full states) then the statement also holds with
𝛼(𝑔, 𝑔) instead of 𝛼(𝑠, 𝑔) in (41).

Concretely, a stochastic update 𝛿𝜃 is obtained by sampling from the
dataset a transition (𝑠→ 𝑠′|𝑔) indexed by a goal 𝑔, and then updating by

𝛿𝜃 = 𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) + 𝜕𝜃𝑣𝜃(𝑠, 𝑔)
(︀
𝛾𝑣𝜃(𝑠′, 𝑔)− 𝑣𝜃(𝑠, 𝑔)

)︀
. (42)

This is similar to the update of �̃�𝜃 in successor states (Theorem 6), except
here the policy depends on the goal. This can be used in turn to train a
goal-depedent policy (Section 8).

This theorem can work out in three different ways:

∙ 𝑄-learning works for any goal features 𝜙, using an ordinary off-policy
training set of transitions ((𝑠, 𝑎)→ 𝑠′). In that case, there is no need
for transitions to be indexed by a goal. This follows from the theorem
applied to the state-action process, and yields 𝛼 = 1.

∙ 𝑉 -learning works best with full goal states (𝜙 = Id). This requires
a training set of transitions (𝑠 → 𝑠′|𝑔) each indexed by a goal state
(such as exploring with a given goal for some time). A goal-dependent
policy can be trained by any policy gradient method. In that case, 𝛼
depends only on 𝑔, thus, computing the value function for every 𝑔 up
to a 𝑔-dependent scaling that does not affect the optimal policy for 𝑔.

∙ 𝑉 -learning can be applied with any goal features 𝜙, but the resulting
algorithm implicitly reweights the rewards among those states which
achieve a given goal. Goal-dependent policies training by policy gradient
will still reach a state such that 𝜙(𝑠) = 𝑔, but not necessarily in an
optimal way, with certain states implicitly preferred.

Let us discuss the first two cases in more detail.
With 𝑄-learning, it is possible to pick any goal a posteriori for any

observed transition ((𝑠, 𝑎)→ 𝑠′). So goals and states can be picked indepen-
dently, resulting in 𝛼 = 1. This plays out as follows: Assume the training
set is made of transitions ((𝑠, 𝑎) → 𝑠′), that we have a set of goals 𝑔 ∈ 𝒢,
and that we maintain the value function 𝑣𝜃((𝑠, 𝑎), 𝑔) over state-action pairs.
Assume we have 𝑔-dependent policies 𝜋𝑔, such as the greedy policy obtained
from the 𝑄-function 𝑣𝜃((𝑠, 𝑎), 𝑔). Then the expected TD update (40) can be
realized by picking at random a transition ((𝑠, 𝑎)→ 𝑠′) in the dataset, picking
at random a goal 𝑔 ∼ 𝜌𝐺(d𝑔) according to any user-chosen distribution on
goals, picking an action 𝑎′ ∼ 𝜋𝑔(𝑠′), and updating the parameter via

𝛿𝜃 = 𝜕𝜃𝑣𝜃((𝑠, 𝑎), 𝜙(𝑠, 𝑎)) + 𝜕𝜃𝑣𝜃((𝑠, 𝑎), 𝑔)
(︀
𝛾𝑣𝜃((𝑠′, 𝑎′), 𝑔)− 𝑣𝜃((𝑠, 𝑎), 𝑔)

)︀
.

(43)

30

With 𝑉 -learning, it is unreasonable to assume that goals and states are
independent in the training set: this would require an exploration policy
which randomly changes goals at every step. A more reasonable exploration
policy would pick a goal 𝑔 ∼ 𝜌𝐺 and keep it for some time, using the goal-
dependent policy 𝜋𝑔. This results in a set of transitions (𝑠→ 𝑠′|𝑔) indexed by
their goals, with a non-independent distribution of goals and visited states,
thus 𝛼 ̸= 1. If 𝜙 = Id the theorem states that 𝛼 only depends on 𝑔 so
that optimal policies are not affected. The expected TD update (40) can
be realized by picking at random a transition (𝑠→ 𝑠′|𝑔) in the dataset and
updating the parameter via

𝛿𝜃 = 𝜕𝜃𝑣𝜃(𝑠, 𝑠) + 𝜕𝜃𝑣𝜃(𝑠, 𝑔)
(︀
𝛾𝑣𝜃(𝑠′, 𝑔)− 𝑣𝜃(𝑠, 𝑔)

)︀
. (44)

This update of 𝑣𝜃 is identical to the update of �̃�𝜃 in successor states (Theo-
rem 6), except here the transitions (or policy) depends on the goal.

There is no variance from sparse rewards in these expressions: the reward
term produces the term 𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)), namely, a term directly evaluated at
the goal 𝑔 = 𝜙(𝑠) associated with the currently visited state 𝑠. (But there
is still some variance from the Bellman gap part of the expression.) Thus,
when learning goal-dependent value or 𝑄 functions with sparse rewards, it
is possible to avoid the sparse reward problem by directly setting the goal
𝑔 = 𝜙(𝑠) for the reward term in the TD update.

For comparison, algorithms such as hindsight experience replay store a
mixture of state-related and state-independent goals in a training dataset
of transitions, to be used with any off-policy learning algorithm. As in our
setting, they assume knowledge of the reward function (such as 𝛿𝜙(𝑠)(d𝑔))
and access to a way to build goals from states, such as 𝜙. This provides a
strategy for building a relevant state-goal distribution in the training set.
Such an approach is independent from our results, which directly reduce the
variance in the 𝑄-learning update. Thus in principle both approaches can
be used simultaneously.

Multi-step, horizon-𝑘 versions of TD (Appendix A.2) do not seem to be
available in the goal-dependent setting in a version that avoids the infinitely-
sparse Dirac reward problem.

5.3 Existence and Uniqueness of Optimal Successor States

We now turn to finding a solution to the optimal goal-dependent Bellman
equation 𝑇𝑄 = 𝑄.

For discrete, infinite Markov reward processes, the value function that
solves the Bellman equation is in general not unique; it is unique under
additional constraints such as boundedness. 7

7For instance, consider the simple random walk on the state space Z, which goes right

31

For the optimal goal-dependent 𝑄-function, we cannot impose bounded-
ness, since the solution sometimes has infinite mass. 8 Instead, we prove that
the solution for the horizon-𝑡 problem exists and converges to the smallest
solution of the Bellman equation when 𝑡→∞.

Let 𝑄𝑡 be the goal-dependent 𝑄-function at bounded horizon 𝑡, obtained
by expanding the expectimax problem at horizon 𝑡, namely

𝑄𝑡(𝑠1, 𝑎1,d𝑠𝑔) := 𝛿𝑠1(d𝑠𝑔) +

E𝑠2∼𝑃 (𝑠2|𝑠1,𝑎1) sup
𝑎2

[︂
𝛾𝛿𝑠2(d𝑠𝑔) + · · ·E𝑠𝑡∼𝑃 (𝑠𝑡|𝑠𝑡−1,𝑎𝑡−1) sup

𝑎𝑡

[︁
𝛾𝑡𝛿𝑠𝑡(d𝑠𝑔)

]︁
· · ·
]︂
.

(45)

This𝑄𝑡 can also be described via the optimal Bellman operator 𝑇 as𝑄𝑡 = 𝑇 𝑡0,
with 0 the zero measure. (In the following, “𝑄 is a measure” is short for “for
every state-action (𝑠, 𝑎), 𝑄(𝑠, 𝑎, ·) is a measure”.)

Theorem 14. Let 𝑇 be the optimal Bellman operator of Definition 11.
Let 0 be the measure with mass 0.

Let 𝑄𝑡 := 𝑇 𝑡0 be the goal-dependent 𝑄-function at horizon 𝑡. Then
when 𝑡 → ∞, 𝑄𝑡 converges strongly 9 to a measure 𝑄*. This limit solves
the Bellman equation 𝑇𝑄* = 𝑄*, and is the smallest such solution. In finite
state spaces, it is the only solution with finite mass.

The solution is never unique: the measure that gives infinite mass to
every set is another. Hence the interest of considering the smallest solution,
where the values come from rewards actually picked at some time 𝑡.

6 Matrix Factorization and the Forward-Backward
(FB) Representation

6.1 Advantages of Matrix Factorization for 𝑀

In this section we study a specific parametric model for the successor state
operator, which has many advantages: a “matrix-factorized” representation.
We consider the model (15), namely 𝑀(𝑠1, d𝑠2) ≈ �̃�𝜃(𝑠1, 𝑠2)𝜌(d𝑠2), with the
particular choice

�̃�𝜃(𝑠1, 𝑠2) = 𝐹𝜃𝐹
(𝑠1)⊤𝐵𝜃𝐵

(𝑠2) (46)

or left with probability 1/2. Given 𝛾 < 1, let 𝜙 be the solution to 𝜙 = 𝛾
2 (1 + 𝜙2) and

define 𝑓(𝑠) := 𝜙𝑠 for 𝑠 ∈ Z. Then by construction, 𝑓(𝑠𝑡) = 𝛾E𝑠𝑡+1|𝑠𝑡 𝑓(𝑠𝑡+1). Thus, if 𝑉
is any solution to the Bellman equation, then 𝑉 + 𝑓 is another solution. Such solutions
“believe there is an infinite reward at infinity”.

8For the same reason, contractivity arguments will not work in the proofs, as it is
hard to find a norm that is finite and nonzero in every situation. The arguments rely on
monotonicity of the Bellman operator.

9Namely, for every state-action (𝑠, 𝑎) and for every measurable set 𝐴, 𝑄𝑡(𝑠, 𝑎, 𝐴)
converges to 𝑄(𝑠, 𝑎, 𝐴).

32

where 𝐹 : 𝑆 → R𝑟 and 𝐵 : 𝑆 → R𝑟 are two learnable functions from the state
space to some representation space R𝑟, parameterized by 𝜃 = (𝜃𝐹 , 𝜃𝐵). This
provides an approximation of 𝑀 by a rank-𝑟 operator. Such a factorization
is used for instance in [SHGS15] for the goal-dependent 𝑄-function (up to
the factor 𝜌).

Intuitively, 𝐹 is a “forward” representation of states and 𝐵 a “backward”
representation: if the future of 𝑠1 matches the past of 𝑠2, then 𝑀(𝑠1,d𝑠2) is
large. The learning algorithms presented above (forward and backward TD
for 𝑀) can be directly applied to this parameterization, leading to explicit
updates for 𝐹 and 𝐵 (Section 6.2).

This representation of 𝑀 has a number of advantages and some shortcom-
ings. (In this section we deal mostly with successor states; for goal-dependent
value functions, this representation has fewer advantages.) The advantages
are as follows.

∙ It provides a direct representation of the value function at every state,
without learning an additional model of 𝑉 . Namely,

𝑉 (𝑠) ≈ 𝐹 (𝑠)⊤𝐵(𝑅), 𝐵(𝑅) := E𝑠∼𝜌[𝑟𝑠𝐵(𝑠)] (47)

where the “reward representation” 𝐵(𝑅) can be directly estimated by
an online average of 𝐵(𝑠) weighted by the reward 𝑟𝑠 at 𝑠. This is a
direct consequence of (17). For instance, with sparse rewards, each
time a reward is observed, the value function is updated everywhere.
10

This point applies to successor states, but not to goal-dependent value
functions, which cannot handle arbitrary rewards.

∙ It simplifies the sampling of a pair of states (𝑠, 𝑠2) needed for forward
TD. Indeed, the forward TD update (21) factorizes as an expectation
over 𝑠, times an expectation over 𝑠2 (Section 6.2 below), which can be
estimated independently. The same applies to backward TD. This can
potentially reduce variance a lot, and even allows for purely “trajectory-
wise” online estimates using only the current transition 𝑠→ 𝑠′, without
sampling of another independent state 𝑠2. (Once more, this works for
successor states but not for goal-dependent value functions, since in
that case the transitions 𝑠→ 𝑠′ depend on 𝑠2.)

∙ It produces two (policy-dependent) representations of states, a forward
and a backward one, in a natural way from the dynamics of the MDP
and the current policy. This could be useful for other purposes.

10The model of 𝑀 using 𝑚 instead of �̃� is less convenient for 𝑉 , leading to 𝑉 (𝑠) =
𝑅(𝑠) + 𝐹 (𝑠)⊤𝐵(𝑅), thus requiring a model of the expected reward 𝑅(𝑠).

33

∙ Even in the tabular case, when the state space is discrete and unstruc-
tured, this provides a form of prior or generalization between states
(based on a low-rank prior for the successor state operator). States
that are linked by the MDP dynamics get representations 𝐹 and 𝐵
that are close.

∙ It has some of the properties of the second-order methods of Section 7,
without their complexity. This is proved in Appendix F.1.

The shortcomings are as follows:

∙ It approximates the successor state operator by an operator of rank at
most 𝑟. This is never an exact representation unless the representation
dimension 𝑟 is at least the number of distinct states.

∙ The best rank-𝑟 approximation of (Id−𝛾𝑃)−1 erases the small singular
values of 𝑃 : thus this representation will tend to erase “high frequencies”
in the reward and value function, and provide a spatially smoother
approximation focusing on long-range behavior. This is fine as long as
the reward is not a “fast-changing” function made up of high frequencies
(such as a “checkerboard” reward).
This can be expected: learning a reward-agnostic object such as 𝑀
cannot work equally well for all rewards. For these reasons, it may be
useful to use a mixed model for the value function with the FB model
as a baseline, such as

𝑉𝜙(𝑠) = 𝐹 (𝑠)⊤𝐵(𝑅) + 𝑣𝜙(𝑠) (48)

where 𝐹 and 𝐵 are learned via successor states, 𝐵(𝑅) is as in (47),
and 𝜙 is learned via ordinary TD on the remainder. The 𝐹𝐵 part will
catch reward-independent, long-range behavior, while the 𝑣𝜙 part will
be needed to catch high frequencies in a particular reward function.

Why is a matrix-factorized form relevant for 𝑀? Small-rank approx-
imations of a matrix are relevant when the matrix has a few large eigenvalues
and many small eigenvalues (or singular values, depending on the precise
criterion). Since the successor state operator is the inverse of Id−𝛾𝑃 , this
means the approximation is reasonable if Id−𝛾𝑃 has few small eigenvalues
and many large eigenvalues.

The spectrum of Markov operators is a well-studied topic. For continuous-
time operators associated with random diffusions, possibly with added
drift, the spectrum generally follows Weyl’s law [Wik]: in dimension 𝑑,
the continuous-time analogue of Id−𝑃 has roughly 𝑘𝑑/2 eigenvalues of size
6 𝑘, thus, few small and many large eigenvalues.

34

The simplest example is a random walk on a discrete torus [1;𝑛]. The
operator 𝑃 is diagonal in Fourier representation, with eigenvectors 𝑒2𝑖𝜋𝑘𝑥/𝑛

with 𝑘 an integer. The corresponding eigenvalue of 𝑃 is cos(2𝜋𝑘/𝑛), yielding
an eigenvalue (1 − 𝛾) + 2𝛾 sin2(𝜋𝑘/𝑛) for Id−𝛾𝑃 . The largest eigenvalue
of 𝑃 is 1 (for 𝑘 = 0) corresponding to the smallest eigenvalue 1 − 𝛾 for
Id−𝛾𝑃 . For 𝛾 close to 1, (Id−𝛾𝑃)−1 has a very large eigenvalue 1/(1− 𝛾),
then an eigenvalue of order 𝑛2/2𝜋2, and the next eigenvalues behave like
𝑛2/2𝑘2𝜋2, thus decreasing like 1/𝑘2. In this case, a small-rank approximation
is reasonable. A similar computation holds for periodic grids [1;𝑛]𝑑 in higher
dimension.

How general is this example? The best studied case is for continuous-time
diffusions in continuous spaces such as a subset in R𝑑. In continuous time,
the analogue of the operator Id−𝛾𝑃 is the infinitesimal generator operator of
the continuous-time Markov process. For the standard Brownian motion, this
operator is the Laplacian Δ =

∑︀𝑑
𝑖=1 𝜕

2/𝜕𝑥2
𝑖 . Its inverse Δ−1 plays the role

of the successor state operator and provides the value function in continuous
time. The spectrum of the Laplacian is well-known and follows Weyl’s law:
there are about 𝑘𝑑/2 eigenvalues of size 6 𝑘 [Wik]. In particular, Δ has few
small eigenvalues and many large eigenvalues, so that the successor state
operator (given by Δ−1, which provides the value function in continuous
time) has few large eigenvalues and many small eigenvalues as needed.

This applies not only to Brownian motion, but to basically any diffusion
with drift and variable coefficients on a subset of R𝑑: indeed, in this case
the infinitesimal generator is an elliptic operator and also follows Weyl’s law
[Gå53]. The same law also holds for diffusions on Riemannian manifolds, as
the Riemannian Laplace operator also follows Weyl’s law [Ber03, Chapter
9.7.2]. These continuous estimates are still valid when discretizing the state
space [XZZ17]. So this situation is quite general.

6.2 The TD Updates for the FB Representation of 𝑀

We now describe the explicit parametric TD updates for the FB representation
of successor states. These follow directly from the general expressions for
forward TD and backward TD.

However, the particular factorized structure gives rise to more variants:
pure forward (forward TD on 𝐹 and 𝐵), forward-backward (forward TD
update for 𝐹 but backward TD update for 𝐵), etc. These will lead to slightly
different fixed points and different dynamics for feature learning, as we will
explore later.

Proposition 15 (Successor state TD updates in the FB rep-
resentation). Consider the parameterization �̃�𝜃(𝑠1, 𝑠2) = 𝐹𝜃𝐹

(𝑠1)⊤𝐵𝜃𝐵
(𝑠2)

of the successor state operator 𝑀 where 𝐹 and 𝐵 are two functions from 𝑆
to R𝑟, parameterized by 𝜃 = (𝜃𝐹 , 𝜃𝐵). Abbreviate 𝐹 for 𝐹𝜃𝐹

and 𝐵 for 𝐵𝜃𝐵
.

35

Then the forward TD update (21) for 𝐹 is equal to

E𝑠∼𝜌 (𝜕𝜃𝐹
𝐹 (𝑠)⊤)𝐵(𝑠) + E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′) (𝜕𝜃𝐹

𝐹 (𝑠)⊤) Σ𝐵(𝛾𝐹 (𝑠′)− 𝐹 (𝑠)) (49)

where Σ𝐵 is the matrix

Σ𝐵 := E𝑠2∼𝜌𝐵(𝑠2)𝐵(𝑠2)⊤. (50)

The forward TD update for 𝐵 is equal to

E𝑠∼𝜌 (𝜕𝜃𝐵
𝐵(𝑠)⊤)𝐹 (𝑠) + E𝑠2∼𝜌 (𝜕𝜃𝐵

𝐵(𝑠2)⊤)𝐷𝐹𝐵(𝑠2). (51)

where 𝐷𝐹 is the matrix

𝐷𝐹 := E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′) 𝐹 (𝑠)(𝛾𝐹 (𝑠′)− 𝐹 (𝑠))⊤. (52)

The backward TD update for 𝐹 is equal to

E𝑠∼𝜌 (𝜕𝜃𝐹
𝐹 (𝑠)⊤)𝐵(𝑠) + E𝑠1∼𝜌 (𝜕𝜃𝐹

𝐹 (𝑠1)⊤)𝐷𝐵𝐹 (𝑠1), (53)

where 𝐷𝐵 is the matrix

𝐷𝐵 := E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)(𝛾𝐵(𝑠′)−𝐵(𝑠))𝐵(𝑠)⊤. (54)

The backward TD update for 𝐵 is equal to

E𝑠∼𝜌 (𝜕𝜃𝐵
𝐵(𝑠)⊤)𝐹 (𝑠) + E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)

(︁
𝛾 𝜕𝜃𝐵

𝐵(𝑠′)⊤− 𝜕𝜃𝐵
𝐵(𝑠)⊤

)︁
Σ𝐹𝐵(𝑠)

(55)
where Σ𝐹 is the matrix

Σ𝐹 := E𝑠1∼𝜌 𝐹 (𝑠1)𝐹 (𝑠1)⊤. (56)

Proposition 34 (Appendix E) describes how these updates play out for
finite spaces in the “tabular on FB” setting, in which a value of 𝐹 and 𝐵 is
maintained for each state.

Forward or backward TD may be used separately for 𝐹 and 𝐵, giving
rise to four algorithms: forward on 𝐹 and forward on 𝐵 (ff-FB), forward on
𝐹 and backward on 𝐵 (fb-FB), backward on 𝐹 and forward on 𝐵 (bf-FB),
and backward on 𝐹 and backward on 𝐵 (bb-FB). These algorithms behave
quite differently on how they learn features and on the fixed points obtained,
as discussed below.

Consequences for sampling and variance. A key feature of the FB
updates is their decomposition as a product of an expectation over a transition
𝑠→ 𝑠′, times an expectation over another independent state 𝑠2 or 𝑠1.

This has important consequences algorithmically for variance reduction
via minibatching. Indeed, a natural way to sample these updates would be

36

to sample a minibatch of transitions 𝑠→ 𝑠′, another minibatch of states 𝑠2,
and evaluate (49) on the minibatch 𝑠→ 𝑠′ with the value of Σ𝐵 obtained on
the minibatch 𝑠2. This would not be possible for other parameterizations of
𝑀 : in general, (21) would require to compute a separate quantity for each
(𝑠→ 𝑠′, 𝑠2), thus requiring smaller minibatches in practice.

Furthermore, these updates lend themselves to a purely trajectory-wise
online estimation, without even sampling another independent state 𝑠2 or
𝑠1: indeed, (49) can be estimated at the current transition 𝑠→ 𝑠′, while the
matrices Σ𝐹 etc., may be estimated online by an exponential moving average
over past or recent states.

Fixed points, feature learning. With 𝐹 and 𝐵 of dimension 𝑟, each of
the 𝑟 components of 𝐹 and 𝐵 defines a function 𝐹𝑖(𝑠) or 𝐵𝑖(𝑠) on the state
space. We call these functions features. The features of 𝐹 provide a basis for
approximating the value function 𝑉 . In addition, the model for 𝑉 ignores
any part of the reward function that is uncorrelated to the features of 𝐵.

More precisely, the kernel of 𝐵 and the image of 𝐹⊤ directly encode which
features of states are ignored. Namely, if 𝑅 ∈ Ker𝐵𝜌 then the corresponding
value function is estimated to 0: 𝑀𝑅 = 𝐹⊤𝐵𝜌𝑅 = 0. Thus Ker𝐵𝜌 encodes
the subspace of reward functions that is unseen by the model. Ker𝐵𝜌 is
exactly the space of functions which are 𝐿2(𝜌)-orthogonal to all the features
in 𝐵. Likewise, for any reward function 𝑅, the approximate value function
is 𝐹⊤𝐵𝜌𝑅 = 0 which lies inside Im𝐹⊤: thus Im𝐹⊤ is the space of features
used to express the value functions.

The four algorithms ff-FB, fb-FB, bf-FB, and bb-FB greatly differ on
how new features are learned:

∙ ff-FB learns new features by applying the operator 𝑃 to existing
features in 𝐹 . These new features are put into both 𝐹 and 𝐵. The
fixed points of ff-FB correspond to eigenvectors of the matrix 𝑃 and
𝑀 (Proposition 36).

∙ bb-FB learns new features by applying the operator 𝑃⊤ to existing
features in 𝐵, and putting them into both 𝐹 and 𝐵. 11 The fixed
points of bb-FB correspond to eigen-probability densities of 𝑃 and 𝑀
(Remark 38, Proposition 37).

∙ fb-FB learns new features both by applying 𝑃 to features in 𝐹 , and 𝑃⊤

to features in 𝐵. The fixed points of fb-FB are the rank-𝑟 truncated
SVD decompositions of the matrix 𝑀 .

11The action of 𝑃⊤ on a positive vector 𝑣 corresponds to the law of a state at time 𝑡 + 1
if the state at time 𝑡 is distributed according to 𝑣. Thus, 𝑃⊤ naturally acts on probability
distributions over states.

37

∙ bf-FB may not learn any features beyond the initialization of 𝐹 and 𝐵.
For any subspace of features, there is a fixed point of bf-FB which lies
in that subspace.

We refer to Appendix E for precise statements of these properties. In
addition, fb-FB and bf-FB preserve the symmetry with respect to time
reversal of the process, while ff-FB and bb-FB do not.

Relationship with successor representation learning and with lin-
ear TD with learned features. To help interpreting these relations, we
will relate them to objects from the literature. We make two claims. First,
for fixed and orthonormal 𝐵, the forward update of 𝐹 corresponds to stan-
dard successor representation learning with state representation (features)
𝐵. Second, for fixed 𝐹 , the forward update of 𝐵 corresponds to learning the
value function for every target state via linear TD with fixed features 𝐹 .

To simplify things, in this paragraph we consider the “tabular-FB” setting,
in which 𝐹 and 𝐵 are parameterized just by listing the value of 𝐹 (𝑠) and
𝐵(𝑠) on every state 𝑠, assuming a finite state space. 12 For instance,
the forward TD update (49) for 𝐹 , with learning rate 𝜂 > 0, becomes
𝐹 (𝑠)← 𝐹 (𝑠) + 𝜂 𝛿𝐹 (𝑠) where

𝛿𝐹 (𝑠) = 𝐵(𝑠) + Σ𝐵(𝛾𝐹 (𝑠′)− 𝐹 (𝑠)) (57)

upon sampling a transition 𝑠→ 𝑠′.
If 𝐵 is a fixed, 𝐿2(𝜌)-orthonormal collection of feature functions (namely,

if Σ𝐵 = Id), then this forward TD equation to learn 𝐹 is identical to
standard deep successor representation learning using 𝐵 as the representation.
Indeed, standard deep successor representation learning [KSGG16] starts
with given features 𝜙(𝑠) on the state space, and learns the successor features
𝑚 as the expected discounted future value of 𝜙 along a trajectory (𝑠𝑡):
𝑚(𝑠) =

∑︀
𝑡>0 𝛾

𝑡E[𝜙(𝑠𝑡)|𝑠0 = 𝑠]. Such an 𝑚 is the fixed point of the Bellman
equation 𝑚 = 𝜙+ 𝛾𝑃𝑚. Via identifying 𝑚 = 𝐹 and 𝜙 = 𝐵, ordinary TD
for this Bellman equation is equivalent to (57) when Σ𝐵 = Id. However, this
is not the case if Σ𝐵 ̸= Id. This is because scalings are different: With the
successor state operator, if 𝐵 is doubled, then 𝐹 is halved so that 𝑀 = 𝐹⊤𝐵
is fixed. With successor representations, if the state representation 𝜙 is
doubled, then 𝑚 is doubled as well.

Next, if 𝐹 is fixed, we claim that the forward TD update for 𝐵 corresponds
to linear TD to learn all value functions corresponding to individual reward
1𝑠2 at all target states 𝑠2, with 𝐹 as the feature basis. Indeed, if the reward
function is 𝑅 = 1𝑠2 , and the corresponding value function is represented
as 𝑉 = 𝐹⊤𝑤 for some learned vector 𝑤 (this is linear TD with feature

12This is different from a tabular setting for 𝑀 , which would parameterize 𝑀 by listing
the values 𝑀(𝑠1, 𝑠2) for every pair of states.

38

basis 𝐹), then the TD update of 𝑤 when observing a transition 𝑠 → 𝑠′ is
𝛿𝑤 = 𝐹 (𝑠)

(︁
1𝑠=𝑠2 + 𝛾𝐹 (𝑠′)⊤𝑤 − 𝐹 (𝑠)⊤𝑤

)︁
. Of course, the resulting 𝑤 depends

on 𝑠2. Thus, if we learn a vector 𝑤(𝑠2) this way for every 𝑠2, we get an
update 𝛿𝑤(𝑠2) = 𝐹 (𝑠)

(︁
1𝑠=𝑠2 + 𝛾𝐹 (𝑠′)⊤𝑤(𝑠2)− 𝐹 (𝑠)⊤𝑤(𝑠2)

)︁
. By identifying

𝑤(𝑠2) and 𝐵(𝑠2), then on expectation over 𝑠 and 𝑠2 sampled from 𝜌, this is
equal to (51) for tabular 𝐵. Thus, for fixed 𝐹 , the forward TD update (51)
just puts into every 𝐵(𝑠2) a representation of the value function for reward
1𝑠2 as a linear combination of the features 𝐹 (𝑠).

Thus, when learning 𝐹 and 𝐵 jointly, the “FB-tabular” forward TD
update on 𝐹 and 𝐵 can be seen as a simultaneous learning of all value
functions for all reward 1𝑠2 , by linear TD in a learned feature basis 𝐹 .

7 Second-Order Methods for Successor States: Im-
plicit Process Estimation and Bellman–Newton

We now turn to more complex, “second-order” algorithms for estimating
successor states and value functions. First, we study the best online estimate
of 𝑀 and 𝑉 in the tabular case, obtained by directly estimating the transition
matrix and reward function, and exactly solving the Bellman equation in
this estimated process. We provide a convergence theorem for this method
(Theorem 16).

This provides an explicit online evolution equation for 𝑀 and 𝑉 from
observed transitions, in which the transition matrix does not appear (suc-
cessor states via implicit process estimation, Theorem 17). Interestingly,
this “true” update of 𝑉 is TD preconditioned by 𝑀 (Theorem 18). This is
related to viewing 𝑀𝑠1𝑠 as an expectation of the eligibility trace at state 𝑠
(Appendix D).

The resulting “true” update of𝑀 , taken in expectation, defines a Bellman–
Newton operator (Definition 19), so called because it corresponds exactly to
the Newton method for inverting the matrix 𝑀 . Intuitively, this operator
proceeds by concatenating known paths of the MDP, thus doubling the length
of known paths, while TD and backward TD just add one transition to the
set of known paths (see intuition in Section 4.3). This intuition is formalized
in several ways (Proposition 20, Appendix C). This also translates as much
better asymptotic convergence in the continuous-time limit (Section 9.3).

All these properties are exact analogues of the convergence properties of
second-order Newton-like methods compared to simple first-order gradient
descent. Thus, online estimation of 𝑀 and the Bellman–Newton operator
can be seen as “second-order” TD algorithms. Accordingly, they are also
numerically trickier. Strengths and weaknesses are discussed in Section 7.4.

Finally, we derive the parametric version of the Bellman–Newton operator,
extending it beyond full-matrix tabular updates to sampling in arbitrary

39

state spaces. However, this update has a large variance unless some kind of
forward-backward (FB) representation is used.

7.1 Estimating a Markov Process Online

We now introduce estimates of 𝑀 and 𝑉 by online estimation of the Markov
process, first in the tabular case, then via function approximation. The
process estimation is implicit: it does not appear in the resulting algorithms
for 𝑀 . (In particular, we never store an estimated transition matrix 𝑃 ,
which would not make sense for continuous spaces; this excludes solving the
problem by planning via the model 𝑃 .)

In a (small) finite state space, an obvious approach to learn 𝑀 is to
first learn an estimate (𝑃 , �̂�) of the transition matrix 𝑃 and reward vector
𝑅 of the Markov reward process, by direct empirical averages; then set
𝑀 and 𝑉 to their true values in the estimated Markov process, namely,
�̂� =

∑︀
𝑛>0 𝛾

𝑛𝑃𝑛 = (Id−𝛾𝑃)−1 and 𝑉 = �̂��̂�.
The empirical averages 𝑃 and �̂� are updated for each new transition

𝑠 → 𝑠′ with reward 𝑟𝑠, by updating the row 𝑠 of the transition matrix 𝑃 ,
and the value �̂�𝑠 at 𝑠:

𝑃𝑠𝑠2 ← (1− 1/𝑛𝑠)𝑃𝑠𝑠2 + (1/𝑛𝑠)1𝑠2=𝑠′ ∀𝑠2, �̂�𝑠 ← (1− 1/𝑛𝑠)�̂�𝑠 + (1/𝑛𝑠)𝑟𝑠

(58)

with 𝑛𝑠 the number of visits to state 𝑠 up to time 𝑡. The initialization
of 𝑃 and �̂� is forgotten after the first observation at each state (𝑛𝑠 = 1),
but to fix ideas we initialize to 𝑃 = �̂� = 0. The corresponding estimates
�̂� = (Id−𝛾𝑃)−1 and 𝑉 = �̂��̂� converge to their true values, as shown by
the following non-asymptotic bound.

Theorem 16 (Convergence bounds for process estimation).
Consider a finite Markov reward process with 𝑆 states and 𝐸 edges ((𝑠, 𝑠′) is
an edge if 𝑃𝑠𝑠′ > 0), rewards almost surely bounded by 𝑅max, and stationary
distribution 𝜌. Update 𝑃 and �̂� online via (58), initialized to 𝑃 = �̂� = 0.

Then after 𝑡 i.i.d. observations (𝑠∼ 𝜌, 𝑠′ ∼ 𝑃𝑠𝑠′), with probability 1− 𝛿,
the estimates �̂� = (Id−𝛾𝑃)−1 and 𝑉 = �̂��̂� satisfy

‖�̂� −𝑀‖𝜌,TV 6
2𝛾

(1− 𝛾)2

√︃
2𝐸
𝑡

log 2
𝛿

(59)

and ∑︁
𝑠

𝜌(𝑠)
⃒⃒⃒
𝑉 (𝑠)− 𝑉 (𝑠)

⃒⃒⃒
6

3𝑅max
(1− 𝛾)2

√︃
2𝐸
𝑡

log 4𝑆
𝛿
. (60)

These bounds do not depend on the sampling measure 𝜌, although the
norm used to define the error does. Thus, rarely visited points have no
impact on these bounds.

40

Direct matrix inversion is inconvenient. But since (58) is a rank-one
update of the matrix 𝑃 , one can compute the update of �̂� resulting from
(58); this update does not explicitly involve 𝑃 anymore. This will form the
basis for the parametric version.

We call the resulting algorithm successor states via implicit process
estimation (SSIPE).

Theorem 17 (SSIPE: Tabular online update of 𝑀). When a
transition 𝑠 → 𝑠′ is added to an empirical estimate of a Markov reward
process via (58), the successor state matrix �̂� of the estimated process
becomes �̂� ← �̂� + 𝛿𝑀 with

𝛿𝑀𝑠1𝑠2 = 1
𝑛𝑠
�̂�𝑠1𝑠

1𝑠2=𝑠 + 𝛾�̂�𝑠′𝑠2 − �̂�𝑠𝑠2

1− 1
𝑛𝑠

(𝛾�̂�𝑠′𝑠 − �̂�𝑠𝑠 + 1)
∀𝑠1, 𝑠2 (61)

with 𝑛𝑠 the number of times state 𝑠 has been sampled. The estimated value
function 𝑉 becomes 𝑉 ← 𝑉 + 𝛿𝑉 with

𝛿𝑉𝑠1 = 1
𝑛𝑠

(𝑟𝑠 + 𝛾𝑉𝑠′ − 𝑉𝑠) �̂�𝑠1𝑠 + 𝑜(1/𝑛𝑠) ∀𝑠1 (62)

where 𝑟𝑠 is the observed reward.

This describes the “true” change of 𝑀 when the Markov process changes
by increasing 𝑃𝑠𝑠′ . This update contains a two-sided term 𝑀𝑠1𝑠𝑀𝑠′𝑠2 : in
terms of paths, this term combines all known paths from 𝑠1 to 𝑠, the transition
𝑠→ 𝑠′, then all known paths from 𝑠′ to 𝑠2 (Fig. 1 and Appendix C).

The update of 𝑉 has the form 𝛿𝑉 = 𝑀 · (Bellman gap at s). The
matrix 𝑀 can be seen as a “credit assignment” to transfer the Bellman gap
𝑅+ 𝛾𝑃𝑉 − 𝑉 observed at a state 𝑠 to “predecessor” states.

The update (61) of 𝑀 is also its TD update multiplied on the left by 𝑀
(compare (61) and (19)). This is most clear when taking expectations over
the next transition 𝑠→ 𝑠′, as follows.

Theorem 18 (The true change of 𝑀 and 𝑉 is TD precon-
ditioned by 𝑀). Estimate the successor matrix and value function of a
finite MRP by �̂� = (Id−𝛾𝑃)−1 and 𝑉 = �̂��̂� where 𝑃 and �̂� are estimated
directly by the empirical averages (58).

Consider the updates of these estimates after observing a new transition
𝑠→ 𝑠′. Then, in expectation over the transition 𝑠→ 𝑠′ sampled at time 𝑡,
the update (61) of �̂� is equal to

E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ [𝛿𝑀] = 1
𝑡 �̂�(Id +𝛾𝑃�̂� − �̂�) + 𝑜(1/𝑡) (63)

when the number of observations 𝑡 tends to infinity. The resulting update of
the value function is 𝑉 ← 𝑉 + 𝛿𝑉 with

E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ [𝛿𝑉] = 1
𝑡 �̂�(𝑅+ 𝛾𝑃𝑉 − 𝑉) + 𝑜(1/𝑡). (64)

41

Thus, preconditioning the TD update by 𝑀 itself produces an update
that tracks the “true” value of 𝑀 and 𝑉 given all observations available so
far. The learning rate 1/𝑡 is inherited from the direct estimate of 𝑃 and 𝑅
via empirical averages in (58).

This update of 𝑉 is consistent with the view of 𝑀 as an expected eligibility
trace (Appendix D). Indeed, eligibility traces also update the value function
at states 𝑠1 that are connected to 𝑠 via a trajectory. Actually, in expectation,
these updates are the same: with 𝜆 = 1, the eligibility trace vector at a state
𝑠 is an unbiased estimator of the column 𝑀𝑠1𝑠 (Theorem 31 in Appendix D).
From this viewpoint, learning 𝑀 via a parametric model, or using TD(1),
are both ways of estimating the “predecessor states” of a state 𝑠. Eligibility
traces are unbiased but can have large variance, while the model of 𝑀 has
no variance but may have bias if not learned well.

Such a preconditioning is analogous to second-order methods in optimiza-
tion using the inverse Hessian, which directly jump to the the location of
the new optimum when one more data point becomes available. However,
in second-order methods, the preconditioning matrix is symmetric definite
positive, while this is not the case here; this can produce numerical problems.

In small-scale experiments, using the full matrix online update of �̂�
resulted in much faster convergence of the value function than TD, consis-
tently with the theoretical prediction of Section 9.3. But with this method,
each update requires 𝑂(|𝑆|2) computation time. This is useful only if sample
efficiency is the main concern.

7.2 The Bellman–Newton Operator

Thus, when estimating a Markov process online, in expectation, each new
observation replaces the estimate �̂� with �̂� + E[𝛿𝑀] = �̂�(1 + 1

𝑡) −
1
𝑡 �̂�(Id−𝛾𝑃)�̂�+𝑜(1/𝑡) by (63). Interestingly, this expected update does not
depend on the distribution 𝜌 of sampled states 𝑠. This is because the 1/𝑛𝑠

factors behave asymptotically like 1/(𝑡𝜌𝑠), thus compensating the sampling
probabilities 𝜌𝑠. The fluctuations between 𝑛𝑠 and 𝑡𝜌𝑠 are absorbed in the
𝑜(1/𝑡) terms. We gather this behavior in the following operator.

Definition 19 (Bellman–Newton operator). We call Bellman–
Newton operator with learning rate 𝜂 > 0 the operator 𝑀 ↦→ 𝑀(1 + 𝜂) −
𝜂𝑀(Id−𝛾𝑃)𝑀 .

The reason for the name is the following: With learning rate 𝜂 = 1, this
operator is 𝑀 ↦→ 2𝑀 −𝑀(Id−𝛾𝑃)𝑀 . Inverting a matrix 𝐴 by iterating
𝑀 ← 2𝑀 −𝑀𝐴𝑀 is the Newton method for matrix inversion, going as far
back as 1933 [PS91]. The Newton method has superexponential convergence,
squaring the error (doubling precision) at each step. This property translates
as follows in our context.

42

In terms of paths, the quadratic term in 𝑀 realizes the path concatenation
operation in Fig. 1. This is formalized as follows, and proved and further
discussed in Appendix C. In contrast, forward and backward TD only increase
the length of known paths by 1.

Proposition 20 (Bellman–Newton doubles the length of
known paths). Assumes that 𝑀 represents exactly the successor states
up to 𝑘 steps, namely, 𝑀 =

∑︀𝑘
𝑖=0 𝛾

𝑖𝑃 𝑖 (as matrices or as operators). Then
after one step of the Bellman–Newton operator with learning rate 𝜂 =
1, 𝑀 represents exactly the successor states up to 2𝑘 + 1 steps, namely,
2𝑀 −𝑀(Id−𝛾𝑃)𝑀 =

∑︀2𝑘+1
𝑖=0 𝛾𝑖𝑃 𝑖.

Unfortunately, this method does not always converge. In particular, it
is initialization-dependent. For instance, the initialization 𝑀 = 0 is a fixed
point. In general, the Bellman–Newton operator preserves the kernel and
image of 𝑀 , so there are many fixed points. Still, 𝑀 = (Id−𝛾𝑃)−1 is the
only full-rank fixed point.

Convergence of the Newton method for matrix inversion is quite well
understood [PS91] and works if the spectral radius of Id−𝐴𝑀 is less than 1 at
initialization. Otherwise, the method can diverge. For instance, 𝐴 = Id−𝛾𝑃
for successor states, so initializing to 𝑀 = Id converges.

Learning rates 𝜂 ≪ 1 improve convergence properties. In Section 9.3
we study convergence with infinitesimal learning rates, proving much faster
asymptotic convergence than with simple TD on 𝑀 . This is analogous
to the faster convergence of second-order methods with respect to simple
gradient descent. Even with 𝜂 ≪ 1, some initializations still diverge; however,
if the initialization is of the form 𝑀 = (Id−𝛾𝑃0)−1 for some stochastic
or substochastic matrix 𝑃0 (e.g., 𝑃0 = 0, initializing 𝑀 to Id) then the
infinitesimal learning rate version converges.

Sampled Bellman–Newton update. Like the Bellman operator for TD
on 𝑀 , the Bellman–Newton operator lends itself to sampling the states at
which the values are updated.

This works out as follows. Assume that 𝑆 is discrete so that 𝑀 is a
matrix (we deal with the parametric case in the next section). Let as usual
𝜌 be the probability distribution from which states are sampled, and let 𝜌
be the matrix with diagonal entries 𝜌. Set �̃� := 𝑀𝜌−1 (this corresponds
to the parameterization �̃� in (15)). Then the Bellman–Newton update is
equivalent to �̃� ↦→ �̃�(1 + 𝜀)− 𝜂�̃�(𝜌− 𝛾𝜌𝑃)�̃�. In expectation, this update
can be realized by sampling a state 𝑠 ∼ 𝜌 and a transition 𝑠′ ∼ 𝑃 (d𝑠′|𝑠).
Indeed, in that case we have E1𝑠1

⊤
𝑠′ = 𝜌𝑃 and E1𝑠1

⊤
𝑠 = 𝜌, and therefore

the update

�̃�𝑠1𝑠2 ← (1 + 𝜂)�̃�𝑠1𝑠2 − 𝜂 �̃�𝑠1𝑠 �̃�𝑠𝑠2 + 𝜂 𝛾 �̃�𝑠1𝑠 �̃�𝑠′𝑠2 ∀𝑠1, 𝑠2 (65)

43

is equal to the Bellman–Newton update in expectation over (𝑠, 𝑠′). 13

This is still a full-matrix update: the value �̃�𝑠1𝑠2 is updated for every
𝑠1 and 𝑠2, even if (𝑠, 𝑠′) is sampled. This is not scalable. It is possible to
sample the states 𝑠1 and 𝑠2 from 𝜌 as well: with this option, the expectation
of the update is multiplied by 𝜌 on the left and right.

7.3 Parametric Bellman–Newton Update

Perhaps surprisingly, the full-matrix tabular update of 𝑀 lends itself well to
a parametric version, by following the standard TD strategy of updating the
parameter to bring 𝑀 closer to its new value.

Theorem 21 (Bellman–Newton update with function ap-
proximation). Maintain a parametric model of 𝑀 via 𝑚𝜃𝑡 or �̃�𝜃𝑡 as in
Section 3.2, with 𝜃𝑡 the parameter at step 𝑡.

Let 𝑠 → 𝑠′ be the transition in the Markov process observed at step 𝑡,
with reward 𝑟𝑠. Define a target update of 𝑀 by 𝑀 tar := 𝑀𝜃𝑡 + 𝛿𝑀 with 𝛿𝑀
given by the online tabular estimate (61). Define the loss between 𝑀 and
𝑀 tar via 𝐽(𝜃) := 1

2
⃦⃦
𝑀𝜃 −𝑀 tar⃦⃦2

𝜌 using the norm (1).
Then the gradient step on 𝜃 to reduce this loss is

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= 1

𝑡 E𝑠1∼𝜌, 𝑠2∼𝜌
[︀
𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′) + 𝛾 𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠

′)
+(𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)) (𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2) +𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2))

]︀
+𝑜(1/𝑡)

(66)

for the model (16) using 𝑚𝜃, and

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= 1

𝑡 E𝑠1∼𝜌, 𝑠2∼𝜌 [�̃�𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃�̃�𝜃𝑡(𝑠1, 𝑠)
+ �̃�𝜃𝑡(𝑠1, 𝑠)(𝛾�̃�𝜃𝑡(𝑠′, 𝑠2)− �̃�𝜃𝑡(𝑠, 𝑠2)) 𝜕𝜃�̃�𝜃𝑡(𝑠1, 𝑠2)

]︀
+ 𝑜(1/𝑡) (67)

for the model (15) using �̃�𝜃.

The update of 𝑉 via 𝑀 is discussed in Section 8.
Here the learning rate 1/𝑡 is inherited from the direct estimate of 𝑃 via

empirical averages, but can be replaced with any learning rate. As with TD,
the update was derived from a tabular update, but makes sense in continuous
state spaces. In particular, the parametric gradient does not involve the state
counts 𝑛𝑠 from (61): a cancellation occurs because 𝑛𝑠 ∼ 𝑡𝜌𝑠 when 𝑡→∞.

Implementing this update requires sampling two additional states 𝑠1 and
𝑠2 from the dataset, in addition to the transition 𝑠→ 𝑠′. See the discussion
after Theorem 6 for possible ways to sample these additional states. TD for

13This is not quite equivalent to the online update (61): using 𝑛𝑠 ≈ 𝑡𝜌𝑠, the latter yields
�̃�𝑠1𝑠2 ← �̃�𝑠1𝑠2 + 𝜂 �̃�𝑠1𝑠(1𝑠=𝑠2 /𝜌𝑠 − �̃�𝑠𝑠2 + 𝛾 �̃�𝑠′𝑠2) + 𝑜(𝜂) with 𝜂 = 1/𝑡. This difference
disappears after taking expectations over 𝑠1 and 𝑠2 in addition to (𝑠, 𝑠′).

44

𝑀 required only one: this reflects the full matrix update (61), while TD only
updates the 𝑠 row of 𝑀 when observing a new transition 𝑠→ 𝑠′ (Eq. 19).

For parametric Bellman–Newton, the model 𝑚𝜃 can be initialized to 0
while the model �̃�𝜃 cannot. Indeed, setting 𝑚𝜃 to 0 corresponds to setting 𝑀
to Id, a valid initialization for the Bellman–Newton operator, while setting
�̃�𝜃 to 0 corresponds to setting 𝑀 to 0, an unwanted and unstable fixed point
of the Bellman–Newton operator.

7.4 Discussion: strengths and weaknesses of second-order
approaches

In a tabular setting, the full-matrix online update (61) of 𝑀 (where a
transition 𝑠 → 𝑠′ is sampled, but with the value 𝑀𝑠1𝑠2 updated for every
state 𝑠1 and 𝑠2) converges much faster than TD to compute the value function,
empirically. This is in line with the asymptotic convergence properties of
the Bellman–Newton versus ordinary Bellman operator (Section 9.3).

However, this results in an 𝑂(|𝑆|2) cost per time step, so it is only
interesting if sample efficiency is the main issue. The alternative is to sample
a few states 𝑠1 and 𝑠2 and only update 𝑀𝑠1𝑠2 for those states. But in practice,
we have found that this introduces many instabilities and requires reducing
the learning rate so much (typically 𝜂 smaller than 1/ |𝑆|2) that the benefit of
second-order Newton convergence is lost. The same phenomenon is observed
for the parametric version of Theorem 21.

This sampling issue can be avoided if using a factorized representation
𝑀 = 𝐹⊤𝐵 as in Section 6. Namely, there exists an update of 𝐹 and 𝐵
that is compatible with sampling and that reproduces the Bellman–Newton
update (Section F.2). This decouples the sampling of states 𝑠1 and 𝑠2,
thus reducing variance and allowing for larger learning rates. However, this
also exacerbates another issue of the Bellman–Newton update, namely, the
existence of non-full-rank fixed points and the preservation of the kernel
and image of 𝑀 . The representation 𝑀 = 𝐹⊤𝐵 is usually not full-rank, and
the Bellman–Newton update of Section F.2 preserves the kernels of 𝐹 and
𝐵. As a consequence (at least for uniform 𝜌), this algorithm computes the
inverse of Id−𝛾𝑃 in the subspace spanned by the initializations of 𝐹 and 𝐵,
but no features are learned. Currently, we have found no fully satisfactory
second-order update beyond the full-matrix update (61).

8 Learning Value Functions and Policies via Suc-
cessor States

There are many possible ways to use a model 𝑀 of the successor state
operator in policy and and value function learning. Choices include:

45

∙ Using policy gradient versus using 𝑄-learning (greedy or Boltzmann
policies, DDPG...).
If the reward is a known goal state, we may directly use the optimal
goal-dependent 𝑄 function of Section 5.1.
For 𝑄-learning with other types of rewards, the successor state opera-
tor can be defined on the Markov process over state-action pairs (as
explained in Section 2). The 𝑄 function can be computed from this
“successor state-action operator” in the same ways as the 𝑉 function
from the successor state operator. Thus, all methods described below
to learn 𝑉 can be extended to 𝑄, and we do not discuss this option
further here.

∙ Using the goal-dependent value function as in Section 5 (this leads
to a goal-dependent policy for every goal state, simultaneously for all
single-state reward functions), versus using the successor state operator
of a single policy as in Section 4 (this works for dense rewards but with
a single policy).

∙ Using the successor state operator directly in the policy gradient formula
without a value function model, versus learning a model of 𝑉 from
successor states, then using this model normally in policy gradient.

∙ If learning a model of 𝑉 from successor states, there are several options
to do so. First, the FB representation of 𝑀 directly yields a 𝑉 function.
Second, the 𝑉 function may be learned from 𝑀 in a supervised way
based on 𝑉 = 𝑀𝑅. Third, 𝑀 may be used only as one component
of the value function (𝑉 = 𝑀𝑅 + 𝑣𝜙 with 𝑣𝜙 learned via TD), or
as an initialization. This is presumably better if 𝑀 is approximate.
Fourth, 𝑉 may be learned via TD “preconditioned by 𝑀”, based on
the formula (64) for the true change of 𝑉 when new transitions are
observed (Theorem 18).

We now describe these options in greater detail. They have different
bias-variance trade-offs, and the best option may differ based form case to
case.

We recall the general form of the policy gradient estimator for a parametric
policy 𝜋

𝛿𝜋 := E𝑠∼𝜌E𝑎∼𝜋(𝑎|𝑠)
[︁
(𝜕 ln 𝜋(𝑎|𝑠))E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎)

[︀
𝑟𝑠,𝑎 + 𝛾𝑉 (𝑠′)− 𝑏(𝑠)

]︀]︁
(68)

where 𝜕 ln 𝜋(𝑎|𝑠) is the derivative with respect to the policy parameters of the
log-probability to select action 𝑎, where 𝑟𝑠,𝑎 is the immediate reward received
after action 𝑎, and where 𝑏 is an arbitrary baseline function which reduces
variance of the estimator (typically 𝑏(𝑠) = 𝑉 (𝑠) so that 𝑟𝑠,𝑎 + 𝛾𝑉 (𝑠′)− 𝑏(𝑠)
is centered, but we will see other choices below).

46

Learning goal-dependent policies. The simplest case is for learning
policies to reach arbitrary target states, using the goal-dependent value
function 𝑣𝜃(𝑠, 𝑔) of Section 5.2. Here 𝑔 represents a variable goal, such as a
target state, or a desired value for some function of states (Section 5.2).

This works with a goal-dependent policy 𝜋(𝑎|𝑠, 𝑔) depending on goal 𝑔,
and leads to the policy gradient update

𝛿𝜋 = E(𝑠,𝑔)∼𝜌𝑆𝐺, 𝑎∼𝜋(𝑎|𝑠,𝑔),𝑠′|𝑃 (d𝑠′|𝑠,𝑎)(𝜕 ln 𝜋(𝑎|𝑠, 𝑔))(𝛾𝑣𝜃(𝑠′, 𝑔)− 𝑏(𝑠, 𝑔)) (69)

where 𝑣𝜃 is the goal-dependent value function model from Section 5.2, where
𝑏 is an arbitrary baseline function (such as 𝑏(𝑠, 𝑔) = 𝑣𝜃(𝑠, 𝑔)), and where
𝜌𝑆𝐺 is the empirical distribution of state-goal pairs in the trajectories in the
dataset (typically obtained by choosing a goal and following the associated
policy for some time).

A few comments on this formula: First, with goal states, the reward 𝑟𝑠,𝑎

in (68) is a Dirac mass, but it depends only on the previous state, not on 𝑎 or
𝑠′; so by choosing the baseline 𝑏 to include this Dirac, this term disappears
in (69).

Second, in the formalism of Section 5.2, the value function is formally a
measure over goals, 𝑉𝜃(𝑠, d𝑔) = 𝑣𝜃(𝑠, d𝑔)𝜌𝐺(d𝑔). Thus, the policy gradient
update (68) is goal-dependent and is itself a measure over goals 𝑔. This
measure can be integrated over all goals 𝑔; for each 𝑔 we may choose the
distribution 𝑠 ∼ 𝜌𝑆𝐺(d𝑠|𝑔) of states given this goal. This is how we obtain
the policy update (69) from (68). In the computation, the measures cancel
out between 𝜌𝑆𝐺(d𝑠|𝑔) and the 𝜌𝐺(d𝑔) appearing in 𝑉𝜃: this results in just
𝑣𝜃 in (69), and in the sampling of a pair (𝑠, 𝑔) from 𝜌𝑆𝐺(𝑠,𝑔).

Learning 𝑉 from 𝑀 . Another option is to learn the value function 𝑉
using 𝑀 , then just use the value function via ordinary policy gradient. We
now consider the case of a single (non-goal-dependent) policy to be learned,
with an arbitrary reward function. There are several options again.

∙ The FB representation of Section 6 directly provides a representation
of the value function as

𝑉 (𝑠) ≈ 𝐹 (𝑠)⊤𝐵(𝑅), 𝐵(𝑅) := E𝑠∼𝜌[𝑟𝑠𝐵(𝑠)] (70)

where 𝐵(𝑅) is a “representation of the reward”, which can be sampled
by weighting the representation 𝐵(𝑠) of states by their reward. Thus
𝐵(𝑅) can be estimated online. Then the value of 𝑉 can be plugged
directly in the policy gradient formula (68).
Since the FB representation will focus on low frequencies (long-range)
features, it might be useful to used a “mixed” model for 𝑉 , with
𝐹 (𝑠)⊤𝐵(𝑅) as one component, and another component learned via
ordinary TD; see (75) below.

47

∙ Another case is if the reward is located at a single known target state
𝑔. Then 𝑉 (𝑠) = �̃�(𝑠, 𝑔) and the policy gradient (68) is equal to

𝛿𝜋 = E𝑠∼𝜌E𝑎∼𝜋(𝑎|𝑠)
[︁
(𝜕 ln 𝜋(𝑎|𝑠))E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎)

[︀
𝛾�̃�(𝑠′, 𝑔)− 𝑏(𝑠)

]︀]︁
(71)

(once more, the reward term 𝑟𝑠,𝑎 does not depend on 𝑎 in that case
and can be absorbed in the baseline 𝑏). This assumes the model �̃� is
used for 𝑀 ; the model 𝑚 does not seem to lead to a usable formula in
this case.
This is useful for sparse rewards: contrary to TD methods, 𝑀 and 𝑉
may be learned without ever seeing the reward, provided the target
state is known. (By “known”, we mean we know the features or input
representation of the target state, as provided to the neural networks
that learn 𝑀 and 𝑉 .) This also extends to linear combinations of a
finite number of rewards at known states.

∙ For general (dense) rewards and without the FB representation, the
simplest option is to learn a model of 𝑉 based on 𝑉 = 𝑀𝑅. This
becomes a supervised learning problem. No matrix product is necessary:
we can perform a stochastic gradient descent of ‖𝑉 −𝑀𝑅‖2𝐿2(𝜌) with
respect to the parameters of 𝑉 , just by sampling states, either with
discrete or continuous states.
With 𝑉 parameterized as 𝑉𝜙, and with 𝑀 parameterized by the model
�̃�𝜃, we have

−𝜕𝜙 ‖𝑉𝜙 −𝑀𝑅‖2𝐿2(𝜌) = 2E𝑠∼𝜌, 𝑠1∼𝜌 [𝜕𝜙𝑉𝜙(𝑠1)(𝑟𝑠 �̃�(𝑠1, 𝑠)− 𝑉𝜙(𝑠1))]
(72)

where 𝑟𝑠 is the reward obtained when visiting state 𝑠. As for other algo-
rithms presented here, this requires sampling one or several additional
states 𝑠1 in addition to the state 𝑠 currently visited.
With 𝑀 parameterized by the model 𝑚𝜃 instead, we have

− 𝜕𝜙 ‖𝑉𝜙 −𝑀𝑅‖2𝐿2(𝜌) =

2E𝑠∼𝜌, 𝑠1∼𝜌 [𝑟𝑠 𝜕𝜙𝑉𝜙(𝑠) + (𝑟𝑠𝑚(𝑠1, 𝑠)− 𝑉𝜙(𝑠1)) 𝜕𝜙𝑉𝜙(𝑠1)] . (73)

∙ Learning 𝑉 via 𝑉 = 𝑀𝑅 assumes that the model of 𝑀 is reasonably
accurate: any error on 𝑀 shows up on 𝑉 . Another option is to just
use 𝑀𝑅 as a component in the model of 𝑉 , or as an initialization to
𝑉 . For instance, 𝑉 may be parameterized as

𝑉 := 𝑉𝜙1 + 𝑉𝜙2 (74)

where 𝑉𝜙1 is trained to match 𝑀𝑅 using (72), and 𝑉𝜙2 is learned via
ordinary TD.

48

In the FB representation this would yield

𝑉 (𝑠) = 𝐹 (𝑠)⊤𝐵(𝑅) + 𝑉𝜙2(𝑠) (75)

where 𝐵(𝑅) is estimated online as above, and 𝜙2 is estimated by
ordinary TD.
This makes particular sense for the FB representation: in Appendix E
we prove that the fb-FB algorithm minimizes a loss producing a trun-
cated SVD of 𝑀 , thus focussing on large eigenvalues of 𝑀 (large
eigenvalues of 𝑃 , long-range dependencies in the environment). Thus
𝐹 (𝑠)⊤𝐵(𝑅) will focus on large eigenvalues of 𝑃 . The training of 𝐹
and 𝐵 is reward-independent (“unsupervised” reinforcement learn-
ing). Thus, ordinary TD on 𝑉𝜙2 may be useful to catch short-range
(high-frequency) behavior in the reward.

∙ Another option is to directly use samples from 𝑀𝑅 instead of 𝑉 in the
policy gradient update. This emphasizes 𝑀 as a “credit assignment”
for past actions.
Abbreviate 𝑠𝑎𝑠′ ∼ 𝜌𝜋𝑃 for the sampling of a state 𝑠 ∼ 𝜌, action 𝑎 ∼
𝜋(𝑎|𝑠), and next state 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎). Starting with the policy gradient
(68) with baseline 𝑏 = 𝑉 , substituting 𝑉 (𝑠′) = E𝑠1∼𝜌�̃�(𝑠′, 𝑠1)𝑟𝑠1 , and
renaming variables so that all rewards are taken at the same point, we
find

𝛿𝜋 = E 𝑠𝑎𝑠′∼𝜌𝜋𝑃
𝑠1𝑎1𝑠′

1∼𝜌𝜋𝑃

[𝑟𝑠,𝑎 (𝜕 ln 𝜋(𝑎|𝑠) + (𝛾𝑚𝑠′1𝑠 −𝑚𝑠1𝑠)𝜕 ln 𝜋(𝑎1|𝑠1))]

(76)
where two independent transitions must be sampled from the dataset.
In this expression, the model 𝑚 serves as a credit assignment to
increase the likelihood of those actions 𝑎1 at other (past) states that
are estimated to lead to a reward 𝑟𝑠,𝑎 at the current state 𝑠. This
is compatible with the view of 𝑀 as a model of eligibility traces
(Appendix D).
However, this is probably a high-bias, high-variance option, requiring
a good model of 𝑀 .

∙ Finally, 𝑀 may be used as a preconditioner for TD on 𝑉 . Indeed, by
Theorem 17, the “true” change of the value function upon observing a
new transition 𝑠→ 𝑠′ with reward 𝑟𝑠 is

𝛿𝑉𝑠1 = 1
𝑛𝑠

(𝑟𝑠 + 𝛾𝑉𝑠′ − 𝑉𝑠) �̂�𝑠1𝑠 + 𝑜(1/𝑛𝑠) ∀𝑠1 (77)

namely, the Bellman gap 𝑟𝑠+𝛾𝑉𝑠′−𝑉𝑠 is sent back to every “predecessor
state” 𝑠1 with coefficient �̂�𝑠1𝑠. (See Appendix D for 𝑀 as an expected
eligibility trace.)
The resulting parametric update is obtained as follows.

49

Proposition 22 (TD preconditioned by 𝑀 for the value
function). Let 𝑉𝜙 be a smooth parametric model of the value func-
tion. Define an update of 𝑉 by setting 𝑉 tar := 𝑉𝜙𝑡 + 𝛿𝑉 with 𝜙𝑡 the
parameter at step 𝑡, and 𝛿𝑉 given by (77), and taking the gradient of
the loss 𝐽𝑉 (𝜙) := 1

2
⃦⃦
𝑉𝜙 − 𝑉 tar⃦⃦2

𝐿2(𝜌). Assume �̂� is equal to the model
(16) using 𝑚𝜃. Then this gradient is

− 𝜕𝜙𝐽
𝑉 (𝜙)|𝜙=𝜙𝑡

= 1
𝑡

(︀
𝑟𝑠 + 𝛾𝑉𝜙𝑡(𝑠′)− 𝑉𝜙𝑡(𝑠)

)︀
(𝜕𝜙𝑉𝜙𝑡(𝑠)

+E𝑠1∼𝜌[𝑚𝜃(𝑠1, 𝑠) 𝜕𝜙𝑉𝜙𝑡(𝑠1)]) + 𝑜(1/𝑡) (78)

where 𝑡 is the total number of observations. For the model (15) using
�̃�𝜃, this gradient is

−𝜕𝜙𝐽
𝑉 (𝜙)|𝜙=𝜙𝑡

= 1
𝑡

(︀
𝑟𝑠 + 𝛾𝑉𝜙𝑡(𝑠′)− 𝑉𝜙𝑡(𝑠)

)︀
E𝑠1∼𝜌 �̃�𝜃(𝑠1, 𝑠) 𝜕𝜙𝑉𝜙𝑡(𝑠1)

+ 𝑜(1/𝑡) (79)

The learning rate 1/𝑡 just results from the direct empirical averages
used to estimate the process in Section 7.1, and may be replaced with
any learning rate.
This involves sampling an additional state 𝑠1 ∼ 𝜌 and applying a TD
update at that point, with weight depending on 𝑀 . In the model of
𝑀 using 𝑚𝜃, this appears as a correction to ordinary TD; in the model
of 𝑀 using �̃�𝜃, everything is included in �̃�.
Notably, even if the model of 𝑀 is wrong, , the true value function
is still a fixed point of (78) and (79) in expectation over 𝑠′ and 𝑟𝑠; it
is the only fixed point provided �̂� is invertible and 𝜌 > 0. This is a
theoretical advantage over all other estimates of 𝑉 described above.
However, the sampling of 𝑠1 adds variance, and any negative eigenvalues
in the estimate of 𝑀 will produce divergence.

9 Small Learning Rates and the Continuous-Time
Analysis

This section is a more informal discussion about intuitions coming from a
continuous-time analysis when the learning rate is small. We will not present
formal statements. For simplicity we restrict ourselves to the tabular, finite
state case so that all objects are always well-defined without smoothness
conditions, but in principle the analysis extends to any state space.

We also assume that states are sampled uniformly (𝜌 is uniform) so that
the expected updates correspond to the Bellman operators. Introducing
non-uniform 𝜌 does not fundamentally change the results about the forward
and backward Bellman operators (indeed, the eigenvalues of the matrix

50

𝜌(Id−𝛾𝑃) have positive real part, just like those of Id−𝑃 , for any positive
𝜌).

For the Bellman–Newton operator, full non-asymptotic convergence rates
were provided in Theorem 16. Here, we provide a more intuitive asymptotic
analysis that clarifies how the error decreases faster than with TD.

9.1 Continuous-Time Analysis of the Forward and Backward
Bellman Operators

The forward Bellman operator on 𝑀 with learning rate 𝜂 > 0 is

𝑀 ← (1− 𝜂)𝑀 + 𝜂(Id +𝛾𝑃𝑀). (80)

When 𝜂 is small, after 𝑛 iterations, the value of 𝑀 approximates the value
at time 𝑡 = 𝑛𝜂 of the solution of the matrix ordinary differential equation

d𝑀𝑡

d𝑡 = Id +𝛾𝑃𝑀𝑡 −𝑀𝑡 = Id−Δ𝑀𝑡 (81)

where Δ = Id−𝛾𝑃 is the Laplacian associated with the Markov process.
The solution to this equation is

𝑀𝑡 = Δ−1 + 𝑒−𝑡Δ(𝑀0 −𝑀) (82)

where Δ−1 is the true successor state matrix, 𝑀0 is the initial value, and
𝑒−𝑡Δ is the exponential of the matrix 𝑡Δ.

Likewise, the backward Bellman operator on 𝑀 with learning rate 𝜂 > 0
is

𝑀 ← (1− 𝜂)𝑀 + 𝜂(Id +𝛾𝑀𝑃). (83)

When 𝜂 is small, after 𝑛 iterations, the value of 𝑀 approximates the value
at time 𝑡 = 𝑛𝜂 of the solution of the ordinary differential equation

d𝑀𝑡

d𝑡 = Id +𝛾𝑀𝑡𝑃 −𝑀𝑡 = Id−𝑀𝑡Δ (84)

process. The solution to this equation is

𝑀𝑡 = Δ−1 + (𝑀0 −𝑀)𝑒−𝑡Δ (85)

where 𝑀0 is the initial value. Letting 𝐸𝑡 be the error at time 𝑡:

𝐸𝑡 := 𝑀𝑡 −Δ−1 (86)

then the errors at time 𝑡 are 𝐸𝑡 = 𝑒−𝑡Δ𝐸0 and 𝐸𝑡 = 𝐸0𝑒
−𝑡Δ for the forward

and backward operators, respectively.
Thus the forward and backward equations converge at the same rate.

Indeed, assume for simplicity that Δ is diagonalizable, with eigenvalues 𝜆𝑖.

51

14 By the spectral properties of stochastic matrices, the eigenvalues of Δ
have positive real part: ℜ𝜆𝑖 > 1− 𝛾. (The largest eigenvalue of Δ is 1− 𝛾,
with multiplicity 1 if 𝑃 is irreducible.) This implies that the errors tend to 0.

For a more precise analysis, let 𝑢𝑖 and 𝑣𝑖 be respectively the right and
left eigenvectors of Δ, associated with eigenvalues 𝜆𝑖.

Since the 𝑢𝑖’s and the 𝑣𝑖’s form bases, one can decompose the initial error
𝐸0 as 𝐸0 =

∑︀
𝑖,𝑗 𝛼𝑖𝑗𝑢𝑖𝑣

⊤
𝑗. Then one checks that the error at time 𝑡 for the

continuous-time forward Bellman operator is

𝐸𝑡 =
∑︁
𝑖,𝑗

𝑒−𝑡𝜆𝑖𝛼𝑖𝑗𝑢𝑖𝑣
⊤
𝑗 (87)

for the forward operator, and

𝐸𝑡 =
∑︁
𝑖,𝑗

𝑒−𝑡𝜆𝑗𝛼𝑖𝑗𝑢𝑖𝑣
⊤
𝑗 (88)

for the backward operator.
The eigenvalues are the same for the forward and backward operator.

Each eigenvalue has multiplicity 𝑛 (the number of states) over the state of
matrices 𝑀 , corresponding to all choices of 𝑗 for a given 𝑖 or conversely.
Notably, the smallest eigenvalue of Δ is 1− 𝛾, corresponding to the direct of
slowest convergence. This eigenvalue has multiplicity 𝑛 when acting on 𝑀 .

9.2 Mixing Forward and Backward TD Improves Conver-
gence

Interestingly, if one mixes the forward and backward operators, then this
eigenvalue analysis changes. The smallest eigenvalue is still the same, but
its multiplicity decreases considerably, from 𝑛 to 1. Indeed, assume that
we perform alternatively one step of the forward and backward Bellman
operators, each with learning rate 𝜂. When 𝜂 is small, the dynamics tends
to that of the continuous-time ordinary differential equation

d𝑀𝑡

d𝑡 = 1
2 (Id +𝛾𝑃𝑀𝑡 −𝑀𝑡) + 1

2 (Id +𝛾𝑀𝑡𝑃 −𝑀𝑡) = Id−1
2(Δ𝑀𝑡 +𝑀𝑡Δ)

(89)
whose solution is

𝑀𝑡 = Δ−1 + 𝑒−𝑡Δ/2(𝑀0 −𝑀)𝑒−𝑡Δ/2 (90)

where Δ−1 is the true successor state matrix. Thus, the error 𝐸𝑡 := 𝑀𝑡−Δ−1

satisfies 𝐸𝑡 = 𝑒−𝑡Δ/2𝐸0𝑒
−𝑡Δ/2.

14This occurs for a dense subset of stochastic matrices 𝑃 . If not, the analysis is
more technical, with polynomials in front of the exponentials of the eigenvalues, but the
conclusions are similar.

52

But now, with the same eigenvector decomposition as above, we find

𝐸𝑡 =
∑︁
𝑖,𝑗

𝑒−𝑡(𝜆𝑖+𝜆𝑗)/2𝑢𝑖𝑣
⊤
𝑗. (91)

In particular, the error in the direction 𝑢𝑖𝑣
⊤
𝑗 decreases fast if at least one of

𝜆𝑖 or 𝜆𝑗 has large real part. Notably, the slowest convergence now occurs
ony if both 𝑖 and 𝑗 correspond to the smallest eigenvalue 1− 𝛾: this smallest
eigenvalue now has multiplicity 1.

Thus, mixing the forward and backward Bellman operator does produce
a positive effect on convergence speed, bringing the multiplicity of the worst
eivengalue from 𝑛 (the number of states) to 1, and generally picking the best
eigenvalue in each direction of the error.

9.3 Continuous-Time Analysis of the Bellman–Newton Op-
erator

Remember the Bellman–Newton operator 𝑀 ↦→ (1 + 𝜂)𝑀 − 𝜂𝑀(Id−𝛾𝑃)𝑀
(Definition 19) with learning rate 𝜂. When 𝜂 is small, after 𝑛 iterations of
this operator, the value of 𝑀 approximates the value at time 𝑡 = 𝑛𝜂 of the
solution of the matrix ordinary differential equation

d𝑀𝑡

d𝑡 = 𝑀𝑡 −𝑀𝑡Δ𝑀𝑡 (92)

where Δ = Id−𝛾𝑃 as above. Obviously 𝑀 = Δ−1 is a fixed point. However,
as with the Bellman–Newton operator, there are other fixed points, such
as 𝑀 = 0: since the differential equation preserves the kernel and image
of 𝑀𝑡, there is a (unique) fixed point for every choice of kernel and image,
amounting to computing the inverse of Δ in the associated subspaces. Still,
Δ−1 is the only full-rank fixed point.

The accelerated asymptotic convergence of the Bellman–Newton operator
compared to TD on 𝑀 becomes clear on this continuous-time version. Define
the error

𝐸𝑡 := Id−𝑀𝑡Δ (93)

(beware this differs from the definition of 𝐸𝑡 in the sections above). It evolves
according to

d𝐸𝑡

d𝑡 = −𝐸𝑡 + 𝐸2
𝑡 . (94)

This is generally convergent except for some initializations (more on this
below).

When the error is small, the dynamics is 𝐸′
𝑡 = −𝐸𝑡 +𝑂(𝐸2

𝑡) ≈ −𝐸𝑡. The
same holds for the error 𝑀𝑡−Δ−1 = −𝐸𝑡Δ−1. So, in the small error regime,
the error 𝐸𝑡 decreases at a constant exponential rate, independently of the
Markov process. This contrasts with the forward Bellman equation, whose

53

convergence depends on the eigenvalues of Id−𝛾𝑃 , and which will converge
slowly if 𝑃 has eigenvalues close to 1.

In this sense, the continuous-time Bellman–Newton dynamics is to the
Bellman operator what continuous-time second-order gradient descent is to
continuous-time gradient descent: it removes dependencies on the eigenvalues
for convergence close to the solution.

Global initialization and convergence outside of the small-error regime
is best understood by introducing a fictitious value of 𝑃 associated with
𝑀𝑡. Since 𝑀𝑡 converges to (Id−𝛾𝑃)−1, let us introduce 𝑃𝑡 such that 𝑀𝑡 =
(Id−𝛾𝑃𝑡)−1, namely, 𝛾𝑃𝑡 := Id−𝑀−1

𝑡 , assuming 𝑀𝑡 is invertible. On 𝑃𝑡, the
evolution equation of 𝑀𝑡 becomes

d𝑃𝑡

d𝑡 = −𝑃𝑡 + 𝑃 (95)

which is affine, with solution 𝑃𝑡 = 𝑃 + 𝑒−𝑡(𝑃0 − 𝑃). Thus, the solution for
𝑀𝑡 is

𝑀𝑡 = (Id−𝛾𝑃 + 𝛾𝑒−𝑡(𝑃0 − 𝑃))−1. (96)

Namely, on the variable 𝑃 , the solution just follows a straight line from
𝑃0 to 𝑃 at a fixed exponential decay rate. 𝑃𝑡 always converges; however, 𝑀𝑡

may be undefined if Id−𝛾𝑃𝑡 is not invertible for some 𝑡. This depends on
the initialization 𝑃0 (therefore, on 𝑀0).

For instance, if 𝑃0 is equal to any (sub)stochastic matrix, then 𝑃𝑡 is
(sub)stochastic as well, and Id−𝛾𝑃𝑡 is always invertible, so that 𝑀𝑡 converges.
This happens for instance: if 𝑃0 = 0, namely, 𝑀0 = Id; or if 𝑀0 is initialized
to the successor matrix of any Markov process.

More possible initializations appear if considering the dynamics of 𝐸𝑡.
Assume 𝐸𝑡 is diagonalizable (this is the case for random initializations).
Then from (94), the eigenvectors of 𝐸𝑡 stay the same over time, and each
associated eigenvalue 𝜆 evolves according to 𝜆′ = −𝜆+ 𝜆2. As long as 𝜆 ≠ 0,
this is equivalent to (𝜆−1)′ = 𝜆−1 − 1. So each eigenvalue 𝜆−1 reaches −∞,
so that each eigenvalue 𝜆 reaches 0. The exception is when 𝜆−1 = 0 at some
point, in which case 𝜆 diverges. Since (𝜆−1)′ = 𝜆−1 − 1, this happens if and
only if 𝜆−1 is initially equal to some positive real value in the complex plane.
So there is a half-line of eigenvalues of 𝐸0 in the complex plane which will
lead to divergence. 15

References
[AWR+17] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schnei-

der, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin,
15This does not show that a pure random initialization converges with probability 1:

indeed, a random real matrix will typically have some real eigenvalues, which will lie on
the wrong half-line with some positive probability.

54

OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight ex-
perience replay. In Advances in neural information processing
systems, pages 5048–5058, 2017.

[BB19] David Brandfonbrener and Joan Bruna. Geometric insights
into the convergence of nonlinear td learning. arXiv preprint
arXiv:1905.12185, 2019.

[BBQ+18] Diana Borsa, André Barreto, John Quan, Daniel Mankowitz,
Rémi Munos, Hado van Hasselt, David Silver, and Tom Schaul.
Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

[BDM+17] Andre Barreto, Will Dabney, Remi Munos, Jonathan J Hunt,
Tom Schaul, Hado P van Hasselt, and David Silver. Successor
features for transfer in reinforcement learning. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 4055–4065. Curran Associates, Inc.,
2017.

[Ber03] Marcel Berger. A panoramic view of Riemannian geometry.
Springer, 2003.

[Ber12] Dimitri P. Bertsekas. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, 4th edition, 2012.

[BHB+20] André Barreto, Shaobo Hou, Diana Borsa, David Silver, and
Doina Precup. Fast reinforcement learning with generalized
policy updates. Proceedings of the National Academy of Sciences,
117(48):30079–30087, 2020.

[Bré99] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo
simulation, and queues, volume 31. 1999.

[Day93] Peter Dayan. Improving generalization for temporal difference
learning: The successor representation. Neural Computation,
5(4):613–624, 1993.

[DSC96] Persi Diaconis and Laurent Saloff-Coste. Logarithmic Sobolev
inequalities for finite Markov chains. The Annals of Applied
Probability, 6(3):695–750, 1996.

[FLHI+18] Vincent François-Lavet, Peter Henderson, Riashat Islam,
Marc G Bellemare, and Joelle Pineau. An introduction to
deep reinforcement learning. arXiv preprint arXiv:1811.12560,
2018.

55

[GO19] Sam Greydanus and Chris Olah. The paths perspective on
value learning. Distill, 2019. https://distill.pub/2019/paths-
perspective-on-value-learning.

[GS97] Charles Miller Grinstead and James Laurie Snell. Introduction
to probability. American Mathematical Soc., 1997.

[Gå53] Lars Gårding. On the asymptotic distribution of the eigenval-
ues and eigenfunctions of elliptic differential operators. Math.
Scand., (1), 1953.

[Hai06] Martin Hairer. Ergodic properties of Markov processes. Lecture
notes, 2006.

[Hai10] Martin Hairer. Convergence of Markov processes. Lecture notes,
2010.

[JKSY20] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and
Tiancheng Yu. Reward-free exploration for reinforcement learn-
ing. ArXiv, abs/2002.02794, 2020.

[KS60] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van
Nostrand, New York, 1960.

[KSGG16] Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and
Samuel J Gershman. Deep successor reinforcement learning.
arXiv preprint arXiv:1606.02396, 2016.

[LTL17] Lucas Lehnert, Stefanie Tellex, and Michael L Littman. Advan-
tages and limitations of using successor features for transfer in
reinforcement learning. arXiv preprint arXiv:1708.00102, 2017.

[MBB19] Marlos C. Machado, Marc G. Bellemare, and Michael Bowl-
ing. Count-based exploration with the successor representation,
2019.

[MRG+18] Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao
Liu, Gerald Tesauro, and Murray Campbell. Eigenoption discov-
ery through the deep successor representation. In International
Conference on Learning Representations, 2018.

[MWB18] Chen Ma, Junfeng Wen, and Yoshua Bengio. Universal succes-
sor representations for transfer reinforcement learning. arXiv
preprint arXiv:1804.03758, 2018.

[Oll18] Yann Ollivier. Approximate temporal difference learning is a
gradient descent for reversible policies, 2018.

56

[Par05] Kalyanapuram R Parthasarathy. Probability measures on metric
spaces, volume 352. American Mathematical Soc., 2005.

[PG17] Lerrel Pinto and Abhinav Gupta. Learning to push by grasping:
Using multiple tasks for effective learning. 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages
2161–2168, 2017.

[PS91] Victor Pan and Robert Schreiber. An improved newton iteration
for the generalized inverse of a matrix, with applications. SIAM
Journal on Scientific and Statistical Computing, 12(5):1109–
1130, 1991.

[Put14] Martin L Puterman. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

[PW19] Ashwin Pananjady and Martin J. Wainwright. Value function
estimation in Markov reward processes: Instance-dependent
ℓ∞-bounds for policy evaluation. 2019.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018. 2nd edition.

[SBG17] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J
Gershman. The hippocampus as a predictive map. Nature
neuroscience, 20(11):1643, 2017.

[SHGS15] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver.
Universal value function approximators. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 1312–1320, Lille, France, 07–09
Jul 2015. PMLR.

[SJK+19] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal,
and John Langford. Model-based RL in contextual decision
processes: Pac bounds and exponential improvements over
model-free approaches. In COLT, 2019.

[SMD+11] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas
Degris, Patrick M Pilarski, Adam White, and Doina Precup.
Horde: A scalable real-time architecture for learning knowledge
from unsupervised sensorimotor interaction. The 10th Inter-
national Conference on Au- tonomous Agents and Multiagent
Systems-Volume 2, pages 761–768, 2011.

[Tsi94] John N Tsitsiklis. Asynchronous stochastic approximation and
q-learning. Machine learning, 16(3):185–202, 1994.

57

[TVR97] John N. Tsitsiklis and Benjamin Van Roy. An analysis of
temporal-difference learning with function approximation. IEEE
Transactions on Automatic Control, 42(5):674–690, 1997.

[vHMH+20] Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David
Silver, André Barreto, and Diana Borsa. Expected eligibility
traces. arXiv preprint arXiv:2007.01839, 2020.

[Wik] Wikipedia. Weyl law.

[WOS+03] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio
Verdu, and Marcelo J Weinberger. Inequalities for the L1
deviation of the empirical distribution. 2003.

[XZZ17] Jinchao Xu, Hongxuan Zhang, and Ludmil Zikatanov. On
the weyl’s law for discretized elliptic operators. arXiv preprint
arXiv:1705.07803, 2017.

[ZSBB17] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard.
Deep reinforcement learning with successor features for naviga-
tion across similar environments. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 2371–2378, 2017.

58

A Further Variants and Properties of TD for Suc-
cessor States

A.1 Using a Target Network

In parametric TD, it is possible to get closer to an exact application of the
Bellman operator, by performing several gradient steps to bring the model
𝑀𝜃 closer to the Bellman operator Id +𝛾𝑃𝑀𝜃tar for a fixed previous value of
the parameter 𝜃tar, and only update 𝜃tar ← 𝜃 once in a while. The formulas
are as follows.
Theorem 23 (Parametric TD for 𝑀 with a target net-
work). Keep the setting of Theorem 6, but set the target 𝑀 tar to 𝑀 tar :=
Id +𝛾𝑃𝑀𝜃tar for some value 𝜃tar of the parameter. Then the gradient step
to bring 𝑀𝜃 closer to 𝑀 tar is

− 𝜕𝜃𝐽(𝜃) = E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌

[︀
𝛾 𝜕𝜃𝑚𝜃(𝑠, 𝑠′)

+ 𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (𝛾𝑚𝜃tar(𝑠′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2))
]︀

(97)

for the model (16) using 𝑚𝜃, and

− 𝜕𝜃𝐽(𝜃) = E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌 [𝜕𝜃�̃�𝜃(𝑠, 𝑠)
+ 𝜕𝜃�̃�𝜃(𝑠, 𝑠2) (𝛾�̃�𝜃tar(𝑠′, 𝑠2)− �̃�𝜃(𝑠, 𝑠2))

]︀
(98)

for the model (15) using �̃�𝜃.

A.2 TD on 𝑀 with Multi-Step Returns

A multistep, horizon-ℎ version of TD on 𝑀 can be defined by iterating the
Bellman equation, which yields 𝑀 = Id +𝛾𝑃 + · · · + 𝛾ℎ−1𝑃 ℎ−1 + 𝛾ℎ𝑃 ℎ𝑀 .
This requires being able to observe ℎ consecutive transitions from the process.
The corresponding parametric update is as follows.
Theorem 24 (Multi-step TD for successor states with func-
tion approximation). Maintain a parametric model of 𝑀 as in Sec-
tion 3.2 via 𝑀𝜃𝑡(𝑠1,d𝑠2) = 𝛿𝑠1(d𝑠2) +𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2), with 𝜃𝑡 the value of
the parameter at step 𝑡, and with 𝑚𝜃 some smooth family of functions over
pairs of states.

For ℎ > 1, define a target update of 𝑀 via the horizon-ℎ Bellman
equation, 𝑀 tar := Id +𝛾𝑃 + · · · + 𝛾ℎ−1𝑃 ℎ−1 + 𝛾ℎ𝑃 ℎ𝑀𝜃𝑡 . Define the loss
between 𝑀 and 𝑀 tar via 𝐽(𝜃) := 1

2
⃦⃦
𝑀𝜃 −𝑀 tar⃦⃦2

𝜌 using the norm (1).
Then the gradient step on 𝜃 to reduce this loss is

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= E𝑠0∼𝜌, 𝑠1∼𝑃 (𝑠0,d𝑠1), ..., 𝑠ℎ∼𝑃 (𝑠ℎ−1,d𝑠ℎ), 𝑠tar∼𝜌[︁

𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠0, 𝑠1) + 𝛾2 𝜕𝜃𝑚𝜃𝑡(𝑠0, 𝑠2) + · · ·+ 𝛾ℎ 𝜕𝜃𝑚𝜃𝑡(𝑠0, 𝑠ℎ)

+ 𝜕𝜃𝑚𝜃𝑡(𝑠0, 𝑠tar) (𝛾ℎ𝑚𝜃𝑡(𝑠ℎ, 𝑠tar)−𝑚𝜃𝑡(𝑠0, 𝑠tar))
]︁
. (99)

59

For the model (15) using �̃�𝜃, this update is

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= E𝑠0∼𝜌, 𝑠1∼𝑃 (𝑠0,d𝑠1), ..., 𝑠ℎ∼𝑃 (𝑠ℎ−1,d𝑠ℎ), 𝑠tar∼𝜌[︁

𝜕𝜃�̃�𝜃𝑡(𝑠0, 𝑠0) + 𝛾 𝜕𝜃�̃�𝜃𝑡(𝑠0, 𝑠1) + · · ·+ 𝛾ℎ−1 𝜕𝜃�̃�𝜃𝑡(𝑠0, 𝑠ℎ−1)

+ 𝜕𝜃�̃�𝜃𝑡(𝑠0, 𝑠tar) (𝛾ℎ �̃�𝜃𝑡(𝑠ℎ, 𝑠tar)− �̃�𝜃𝑡(𝑠0, 𝑠tar))
]︁
. (100)

A.3 Tabular TD on 𝑀𝑅 Is Tabular TD on 𝑉

In the tabular case, if the reward is deterministic, learning 𝑉 via ordinary
TD is equivalent to learning 𝑉 via the matrix product 𝑉 = 𝑀𝑅 with 𝑀
learned via tabular TD, as follows.

Theorem 25. Consider a Markov reward process with deterministic reward
𝑅. Initialize an estimate 𝑉 of 𝑉 to 0 and an estimate �̂� of 𝑀 to 0. Each
time a transition 𝑠 → 𝑠′ with reward 𝑟𝑠 = 𝑅𝑠 is observed, update 𝑉 via
ordinary TD and �̂� via TD for successor states, with learning rate 𝜂, namely

𝑉𝑠 ← 𝑉𝑠 + 𝜂
(︁
𝑟𝑠 + 𝛾𝑉𝑠′ − 𝑉𝑠

)︁
, (101)

�̂�𝑠𝑠2 ← �̂�𝑠𝑠2 + 𝜂
(︁
1𝑠=𝑠2 + 𝛾�̂�𝑠′𝑠2 − �̂�𝑠𝑠2

)︁
∀𝑠2. (102)

Then at every time step, 𝑉 = �̂�𝑅.

Proof. By induction on the time step. This is true at time 0 thanks to the
initialization. If 𝑉 = �̂�𝑅 at one time step, then the update of �̂�𝑅 at the
next time step is

(�̂�𝑅)𝑠 =
∑︁
𝑠2

�̂�𝑠𝑠2𝑅𝑠2 (103)

←
∑︁
𝑠2

(︁
�̂�𝑠𝑠2𝑅𝑠2 + 𝜂

(︁
1𝑠=𝑠2 + 𝛾�̂�𝑠′𝑠2 − �̂�𝑠𝑠2

)︁
𝑅𝑠2

)︁
(104)

= (�̂�𝑅)𝑠 + 𝜂
(︁
𝑅𝑠 + 𝛾(�̂�𝑅)𝑠′ − (�̂�𝑅)𝑠

)︁
(105)

which is the same update as 𝑉𝑠. The values at the other states are not
updated. Therefore, if 𝑉 = �̂�𝑅 before the update, this still holds after the
update.

A.4 The Parametric Update for Backward TD

We now state the analogue of Theorem 6 for backward TD; this provides the
associated parametric update.

Theorem 26 (Backward TD for successor states with func-
tion approximation). Maintain a parametric model of 𝑀 as in Sec-
tion 3.2 via 𝑀𝜃𝑡(𝑠1,d𝑠2) = 𝛿𝑠1(d𝑠2) +𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2), with 𝜃𝑡 the value of

60

the parameter at step 𝑡, and with 𝑚𝜃 some smooth family of functions over
pairs of states.

Define a target update of𝑀 via the Bellman equation, 𝑀 tar := Id +𝛾𝑀𝜃𝑡𝑃 .
Define the loss between 𝑀 and 𝑀 tar via 𝐽(𝜃) := 1

2
⃦⃦
𝑀𝜃 −𝑀 tar⃦⃦2

𝜌 using the
norm (1).

Then the gradient step on 𝜃 to reduce this loss is

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠1∼𝜌

[︀
𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)

+ 𝑚𝜃𝑡(𝑠1, 𝑠) (𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠
′)− 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠))

]︀
. (106)

For the model variant in Eq. 15, 𝑀𝜃𝑡(𝑠1,d𝑠2) = �̃�𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2), the gradi-
ent step on 𝜃 to reduce the loss 𝐽(𝜃) is

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠1∼𝜌 [𝜕𝜃�̃�𝜃𝑡(𝑠, 𝑠)

+ �̃�𝜃𝑡(𝑠1, 𝑠) (𝛾 𝜕𝜃�̃�𝜃𝑡(𝑠1, 𝑠
′)− 𝜕𝜃�̃�𝜃𝑡(𝑠1, 𝑠))

]︀
. (107)

A.5 Having Targets on Features of the State

Learning 𝑀 is particularly suitable when the reward is located at a single
known goal state 𝑔: then, the value function 𝑉 (𝑠) is proportional to �̃�(𝑠, 𝑔).
For how to exploit 𝑀 with dense rewards, we refer to Section 8.

Another scenario is to have a target value for some features of the state,
not necessarily the whole state itself: namely, the reward is nonzero when
some known feature 𝜙(𝑠) of state 𝑠 is equal to some known goal 𝑔. In that
case, it is convenient to learn a smaller object than 𝑀 , from which the value
function can be read directly. This is also useful if the reward is known to
depend only on 𝜙(𝑠).

Definition 27. Let 𝜙 : 𝑆 → R𝑘 be any measurable map. The successor
feature operator 𝑀𝜙 is defined as follows: for each state 𝑠1, 𝑀𝜙(𝑠1, d𝑔)
is a measure on R𝑘 equal to the pushforward of 𝑀(𝑠1,d𝑠2) by the map
𝑠2 ↦→ 𝑔 = 𝜙(𝑠2).

This operator is different from successor representations: here we keep
track of the whole future distribution of values of 𝜙, not just the expected
future value of 𝜙.

𝑀𝜙 can be used to compute the value function of any reward that depends
only on 𝜙(𝑠).

Proposition 28. Assume that the reward function at state 𝑠 is equal to
𝑅(𝜙(𝑠)), namely, it depends only on 𝜙. Let 𝜏 be any probability distribu-
tion on features in R𝑘. Assume that 𝑀𝜙 is parameterized as 𝑀𝜙(𝑠, d𝑔) =
𝑚𝜙(𝑠, 𝑔)𝜏(d𝑔). Then the value function of a state 𝑠 for this reward is

𝑉 (𝑠) = E𝑔∼𝜏 [𝑚𝜙(𝑠, 𝑔)𝑅(𝑔)]. (108)

61

In particular, if the reward is nonzero exactly when the feature 𝜙(𝑠) is equal
to some target value 𝑔, then the value function is proportional to 𝑚𝜙(𝑠, 𝑔).

This is useful only if an algorithm to learn 𝑚𝜙 is available. Forward TD
can be defined on 𝑀𝜙, based on the following Bellman equation.

Proposition 29. 𝑀𝜙 satisfies the Bellman equation𝑀𝜙(𝑠, d𝑔) = 𝛿𝜙(𝑠)(d𝑔)+
𝛾E𝑠′∼𝑃 (𝑠,d𝑠′)𝑀

𝜙(𝑠′,d𝑔).

Theorem 30. Let 𝜏 be any probability distribution on features in R𝑘.
Assume that 𝑀𝜙 is parameterized as 𝑀𝜙

𝜃 (𝑠, d𝑔) = 𝑚𝜙
𝜃 (𝑠, 𝑔)𝜏(d𝑔) for some

parametric family of functions 𝑚𝜙
𝜃 (𝑠, 𝑔) with parameter 𝜃.

Let 𝜃0 be some value of the parameter, and define a target operator
𝑀 tar by the Bellman equation: 𝑀 tar := 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃 (𝑠,d𝑠′)𝑀

𝜙
𝜃0

(𝑠′, d𝑔).
Define the loss between 𝑀𝜙 and 𝑀 tar via 𝐽(𝜃) := E𝑠∼𝜌, 𝑔∼𝜏 ((𝑀𝜙

𝜃 (𝑠, d𝑔) −
𝑀 tar(𝑠, d𝑔))/𝜏(d𝑔))2.

Then the gradient step to bring 𝑀𝜙 closer to 𝑀 tar in this norm is

− 𝜕𝜃𝐽(𝜃) = E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑔∼𝜏

[︀
𝜕𝜃𝑚

𝜙
𝜃 (𝑠, 𝜙(𝑠))

+ 𝜕𝜃𝑚
𝜙
𝜃 (𝑠, 𝑔)

(︁
𝛾𝑚𝜙

𝜃0
(𝑠′, 𝑔)−𝑚𝜙

𝜃 (𝑠, 𝑔)
)︁]︁
. (109)

Once more, the term 𝜕𝜃𝑚
𝜙
𝜃 (𝑠, 𝜙(𝑠)) makes every transition informative:

when visiting state 𝑠, we increase the probability to reach the goal 𝜙(𝑠).

A.6 Taking 𝛾 Close to 1: Relative TD

For 𝛾 close to 1, it is known that the value function behaves like a large
constant plus an informative signal, 𝑉 (𝑠) = 𝑐

1−𝛾 + 𝑉 rel(𝑠). A similar phe-
nomenon occurs with 𝑀 . The large constant affects learning in practice,
especially for Bellman–Newton which has terms scaling like 𝑀2.

𝑉 rel can be learned directly via relative TD, adapted from relative value
iteration [Ber12, §5.3.1], [Put14, §6.6], just by removing the value of 𝑉 at a
reference state from the Bellman equation. Namely, with reference state 𝑠rel,
the relative TD update upon observing a transition 𝑠→ 𝑠′ with reward 𝑟𝑠 is

𝛿𝑉 rel
𝑠 = 𝑟𝑠 + 𝛾𝑉 rel

𝑠′ − 𝑉 rel
𝑠 − 𝛾𝑉 rel

𝑠rel . (110)

This makes it possible to use a 𝛾 very close to 1, or even 𝛾 = 1 if the Markov
process is ergodic or “unichain”.

Relative TD can be transposed to 𝑀 directly. The relative Bellman
equation above rewrites as 𝑉 rel = 𝑅 + 𝛾(𝑃 − 11

⊤
𝑠rel)𝑉

rel. Therefore, the
solution is given by

𝑉 rel = (Id−𝛾𝑃 + 𝛾11⊤
𝑠rel)

−1𝑅. (111)

Thus we can set 𝑀 rel := (Id−𝛾𝑃 + 𝛾11⊤
𝑠rel)

−1.

62

More generally, working with a distribution of reference states rather
than a single reference state, we will set

𝑀 rel := (Id−𝛾𝑃 + 𝛾1𝜌⊤rel)−1 (112)

where 𝜌rel is the probability vector for reference states. When 𝛾 = 1 and
𝜌rel = 𝜌 is the invariant distribution of the Markov process, this is exactly
the fundamental matrix of the Markov process [KS60].

The effect of relative TD is just to replace the operator 𝑃 with 𝑃 − 1𝜌⊤rel
everywhere. In practice, in the various formulas, for every term involving
the second state 𝑠′ of a transition 𝑠 → 𝑠′, a corresponding term is added
with 𝑠rel instead of 𝑠′ and with the opposite sign. Thus, the update (20) for
parametric TD for 𝑀 becomes

E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌, 𝑠rel∼𝜌rel

[︀
𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)− 𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠rel)

+ 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2) (𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)− 𝛾𝑚𝜃𝑡(𝑠rel, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2))
]︀
. (113)

The update for parametric backward TD becomes

E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠1∼𝜌, 𝑠rel∼𝜌rel

[︀
𝛾 𝜕𝜃𝑚𝜃(𝑠, 𝑠′)− 𝛾 𝜕𝜃𝑚𝜃(𝑠, 𝑠rel)

+ 𝑚𝜃(𝑠1, 𝑠)
(︀
𝛾 𝜕𝜃𝑚𝜃(𝑠1, 𝑠

′)− 𝛾 𝜕𝜃𝑚𝜃(𝑠1, 𝑠rel)− 𝜕𝜃𝑚𝜃(𝑠1, 𝑠)
)︀]︀
. (114)

The parametric update (78) of 𝑉 via 𝑀 becomes

E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠1∼𝜌, 𝑠rel∼𝜌rel

[︀(︀
𝑟𝑠 + 𝛾𝑉𝜙𝑡(𝑠′)− 𝛾𝑉𝜙𝑡(𝑠rel)− 𝑉𝜙𝑡(𝑠)

)︀
× (𝜕𝜙𝑉𝜙𝑡(𝑠) +𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜙𝑉𝜙𝑡(𝑠1))] . (115)

Finally, the parametric Bellman–Newton update (66) for 𝑀 becomes

E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠1∼𝜌, 𝑠2∼𝜌, 𝑠rel∼𝜌rel

[︀
𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)− 𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠rel)

+ 𝛾 𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠
′)− 𝛾 𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠rel)

+(𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)− 𝛾𝑚𝜃𝑡(𝑠rel, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)) (𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2) +𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2))
]︀
.

(116)

B Proofs for Sections 3, 4, 5, 7, 8, and Appendix A
In this text we consider two parametric models of 𝑀 , (15) and (16), given
by �̃�𝜃 and 𝑚𝜃 respectively. In most proofs, we only cover the more complex
model 𝑚𝜃; the proofs with �̃�𝜃 are similar but simpler.

B.1 Proofs for Sections 3 and 4: TD for 𝑀

Proof of Theorem 2. By the definition of 𝑀 in (9), for any measurable
set 𝐴 ⊂ 𝒮, for any 𝑠 ∈ 𝒮, 𝑀(𝑠,𝐴) is defined as

𝑀(𝑠,𝐴) =
∑︁
𝑛>0

𝛾𝑛𝑃𝑛(𝑠,𝐴). (117)

63

Since each 𝑃𝑛(𝑠, ·) is a probability distribution, 𝑃𝑛(𝑠,𝐴) 6 1 so that this sum
of non-negative terms is bounded by 1

1−𝛾 , and therefore the sum converges.
𝑀(𝑠, ·) is a positive measure as a convergent sum of positive measures (𝜎-
additivity for 𝑀(𝑠, ·) follows from the dominated convergence theorem). Its
total mass is 𝑀(𝑠,𝒮) =

∑︀
𝑛>0 𝛾

𝑛𝑃 (𝑠,𝒮) =
∑︀

𝑛>0 𝛾
𝑛 = 1

1−𝛾 .
As a positive measure with finite mass, 𝑀(𝑠, ·) acts on bounded mea-

surable functions, just like 𝑃 , via (𝑀𝑓)(𝑠) =
∫︀
𝑓(𝑠′)𝑀(𝑠, d𝑠′). Since 𝑀

has mass 1
1−𝛾 for any 𝑠, this integral is bounded by 1

1−𝛾 sup 𝑓 , so that
sup𝑀𝑓 6 1

1−𝛾 sup 𝑓 for any function 𝑓 ∈ 𝐵(𝒮). Thus, 𝑀 is well-defined as
an operator from 𝐵(𝒮) to 𝐵(𝒮).

As an operator, one has 𝛾𝑃𝑀 = 𝛾𝑃
∑︀

𝑛>0 𝛾
𝑛𝑃𝑛 =

∑︀
𝑛>1 𝛾

𝑛𝑃𝑛. There-
fore, (Id−𝛾𝑃)𝑀 = 𝑀 − 𝛾𝑃𝑀 =

∑︀
𝑛>0 𝛾

𝑛𝑃𝑛 −
∑︀

𝑛>1 𝛾
𝑛𝑃𝑛 = 𝛾0𝑃 0 = Id

(the sums converge absolutely by the same boundedness argument as before,
thus justifying the infinite sum manipulations). This proves that 𝑀 is a
right inverse of Id−𝛾𝑃 as operators. The computation is identical for the
left inverse; therefore, 𝑀 and Id−𝛾𝑃 are inverses as operators on 𝐵(𝒮).

Finally, let 𝑅 be any (bounded, measurable) reward function. Since
(Id−𝛾𝑃)𝑀 = Id, one has (Id−𝛾𝑃)𝑀𝑅 = 𝑅 namely 𝑀𝑅 = 𝑅 + 𝛾𝑃𝑀𝑅.
This proves that 𝑉 = 𝑀𝑅 satisfies the Bellman equation 𝑉 = 𝑅+ 𝛾𝑃𝑉 , and
so 𝑀𝑅 is the value function of the Markov reward process.

Proof of Theorems 3 and 9. An operator 𝑀 ′ satisfies the left Bellman
equation 𝑀 ′ = Id +𝛾𝑃𝑀 ′ if and only if 𝑀 ′ − 𝛾𝑃𝑀 ′ = Id, or (Id−𝛾𝑃)𝑀 ′ =
Id, namely, 𝑀 ′ is a right inverse of Id−𝛾𝑃 . By Theorem 2, Id−𝛾𝑃 is
invertible and its inverse is 𝑀 . Therefore, the only right inverse of Id−𝛾𝑃
is 𝑀 .

The proof is identical for the backward Bellman equation, with left
inverses instead of right inverses.

Proof of Propositions 4 and 10. By definition of the operator 𝑃 , for
any function 𝑓 we have ‖𝑃𝑓‖∞ = sup𝑠

∫︀
𝑓(𝑠′)𝑃 (𝑠, d𝑠′) 6 sup𝑠′ 𝑓(𝑠′) =

‖𝑓‖∞, so that 𝑃 is 1-contracting. Therefore, for any bounded operator
𝑀 and function 𝑓 , one has ‖𝑃𝑀𝑓‖∞ 6 ‖𝑀𝑓‖∞ 6 ‖𝑀‖op ‖𝑓‖∞, so that
‖𝑃𝑀‖op 6 ‖𝑀‖op for any 𝑀 . Therefore, given two operators 𝑀 and 𝑀 ′, one
has ‖(Id +𝛾𝑃𝑀)− (Id +𝛾𝑃𝑀 ′)‖op = 𝛾 ‖𝑃 (𝑀 −𝑀 ′)‖op 6 𝛾 ‖𝑀 −𝑀 ′‖op.

For the backward Bellman operator, 𝑀 ↦→ Id +𝛾𝑀𝑃 , the proof is similar,
using that for any bounded operator 𝑀 and function 𝑓 , one has ‖𝑀𝑃𝑓‖∞ 6
‖𝑀‖op ‖𝑃𝑓‖∞ 6 ‖𝑀‖op ‖𝑓‖∞, so that ‖𝑀𝑃‖op 6 ‖𝑀‖op for any 𝑀 .

Proof of Theorem 6. In this proof, we freely go back and forth between
𝑀 or 𝑀 tar as measure-valued functions, and 𝑀 or 𝑀 tar as operators on
bounded functions. Notably, the operator Id corresponds to the measure
𝛿𝑠1(d𝑠2).

64

We start with the statement for the first model, 𝑀𝜃𝑡(𝑠1, d𝑠2) = 𝛿𝑠1(d𝑠2) +
𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2).

By definition of 𝑀 tar = Id +𝛾𝑃𝑀𝜃𝑡 , and by definition of the action of
the operator 𝑃 , we have

𝑀 tar(𝑠, d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾

∫︁
𝑠′
𝑃 (𝑠, d𝑠′)𝑀𝜃𝑡(𝑠′,d𝑠2) (118)

= 𝛿𝑠(d𝑠2) + 𝛾

∫︁
𝑠′
𝑃 (𝑠, d𝑠′)𝛿𝑠′(d𝑠2) + 𝛾

∫︁
𝑠′
𝑃 (𝑠, d𝑠′)𝑚𝜃𝑡(𝑠′, 𝑠2)𝜌(d𝑠2)

(119)
= 𝛿𝑠(d𝑠2) + 𝛾𝑃 (𝑠, d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠,d𝑠′)[𝑚𝜃𝑡(𝑠′, 𝑠2)𝜌(d𝑠2)]

(120)

by the definition of the Dirac measure 𝛿𝑠′ . Therefore,

𝑀 tar(𝑠, d𝑠2)−𝑀𝜃(𝑠, d𝑠2) = 𝑀 tar(𝑠, d𝑠2)− 𝛿𝑠(d𝑠2)−𝑚𝜃(𝑠, 𝑠2)𝜌(d𝑠2)
= 𝛾𝑃 (𝑠, d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠,d𝑠′)[𝑚𝜃𝑡(𝑠′, 𝑠2)𝜌(d𝑠2)]−𝑚𝜃(𝑠, 𝑠2)𝜌(d𝑠2) (121)

By definition of 𝐽(𝜃) and of the norm ‖·‖𝜌, we have

𝐽(𝜃) = 1
2

∫︁∫︁
𝑗𝜃(𝑠, 𝑠2)2 𝜌(d𝑠)𝜌(d𝑠2) (122)

where 𝑗𝜃(𝑠, 𝑠2) := (𝑀 tar(𝑠, d𝑠2)−𝑀𝜃(𝑠, d𝑠2))/𝜌(d𝑠2) (assuming this density
exists). 16 Consequently,

𝜕𝜃𝐽(𝜃) =
∫︁∫︁

𝑗𝜃(𝑠, 𝑠2) 𝜕𝜃𝑗𝜃(𝑠, 𝑠2)𝜌(d𝑠)𝜌(d𝑠2) (123)

assuming 𝑗𝜃 is smooth enough so that the derivative makes sense and com-
mutes with the integral. From the definition of 𝑗𝜃 and from (121) we have

𝑗𝜃(𝑠, 𝑠2) = 𝛾
𝑃 (𝑠, d𝑠2)
𝜌(d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠,d𝑠′)[𝑚𝜃𝑡(𝑠′, 𝑠2)]−𝑚𝜃(𝑠, 𝑠2) (124)

and
𝜕𝜃𝑗𝜃(𝑠, 𝑠2) = −𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (125)

(and consequently, 𝑗𝜃 is smooth if 𝑚𝜃 is smooth). Therefore,

−𝜕𝜃𝐽(𝜃) =
∫︁∫︁

𝜕𝜃𝑚𝜃(𝑠, 𝑠2)
(︂
𝛾
𝑃 (𝑠, d𝑠2)
𝜌(d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠,d𝑠′)[𝑚𝜃𝑡(𝑠′, 𝑠2)]−𝑚𝜃(𝑠, 𝑠2)

)︂
𝜌(d𝑠)𝜌(d𝑠2)

(126)
16This proof involves 𝑃 (𝑠, d𝑠2)/𝜌(d𝑠2), but this quantity only appears as

(𝑃 (𝑠, d𝑠2)/𝜌(d𝑠2))𝜌(d𝑠2) in the final result (126). Therefore, the argument extends by
continuity to the case when 𝑃 (𝑠, ·) is not absolutely continuous with respect to 𝜌: in that
case the norm 𝐽(𝜃) is infinite but its gradient 𝜕𝜃𝐽(𝜃) is still well-defined by continuity.

65

The first term
∫︀∫︀
𝜕𝜃𝑚𝜃(𝑠, 𝑠2)𝛾 𝑃 (𝑠,d𝑠2)

𝜌(d𝑠2) 𝜌(d𝑠)𝜌(d𝑠2) rewrites as 𝛾
∫︀∫︀
𝜕𝜃𝑚𝜃(𝑠, 𝑠2)𝑃 (𝑠, d𝑠2)𝜌(d𝑠)

namely 𝛾E𝑠∼𝜌E𝑠2∼𝑃 (𝑠,d𝑠2)𝜕𝜃𝑚𝜃(𝑠, 𝑠2). Renaming 𝑠2 to 𝑠′ in this term ends
the proof.

Let us now turn to the model 𝑀𝜃𝑡(𝑠1, d𝑠2) = �̃�𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2). Here,
there is a hidden mathematical subtlety with continuous states. Indeed,
in that case, 𝑀𝜃𝑡 is absolutely continuous with respect to 𝜌, while 𝑀 tar

is not, due to the Id term, as discussed in Section 3.2. (With the other
model, the Id terms cancel between 𝑀𝜃𝑡 and 𝑀 tar.) This makes the norm
𝐽(𝜃) = 1

2
⃦⃦
𝑀𝜃 −𝑀 tar⃦⃦2

𝜌 infinite (see its definition in (1)). However, the
gradient of this norm is actually still well-defined. There are at least two
ways to handle this rigorously, which lead to the same result: either do the
computation in the finite case and observe that the resulting gradient still
makes sense in the continuous case (which can be obtained by a limiting
argument), or observe that the loss 𝐽(𝜃) is equal to 1

2 ‖𝑀𝜃‖2𝜌−⟨𝑀𝜃,𝑀
tar⟩𝜌 +

1
2
⃦⃦
𝑀 tar⃦⃦2

𝜌 and has the same minima and the same gradients as the loss
𝐽 ′(𝜃) = 1

2 ‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀
tar⟩𝜌 for a given 𝑀 tar. Namely, 𝐽 and 𝐽 ′ differ by

a constant in the finite case, and by an “infinite constant” in the continuous
case. We will work with the loss 𝐽 ′, which is finite even in the continuous
case.

Here ⟨𝑀1,𝑀2⟩𝜌 =
∫︀

𝑠,𝑠2
𝑀1(𝑠,d𝑠2)

𝜌(d𝑠2)
𝑀2(𝑠,d𝑠2)

𝜌(d𝑠2) 𝜌(d𝑠)𝜌(d𝑠2) is the dot product
associated with the norm (1). Since the integrand can be rewritten as
𝑀1(𝑠,d𝑠2)

𝜌(d𝑠2) 𝜌(d𝑠)𝑀2(𝑠, d𝑠2), it is well-defined as soon as at least one of 𝑀1 or
𝑀2 is absolutely continuous with respect to 𝜌. Namely,

⟨𝑀1,𝑀2⟩𝜌 =
∫︁

𝑠,𝑠2

𝑀1(𝑠, d𝑠2)
𝜌(d𝑠2) 𝜌(d𝑠)𝑀2(𝑠, d𝑠2). (127)

Let us compute 𝐽 ′(𝜃) = 1
2 ‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀

tar⟩𝜌. By definition of 𝑀 tar =
Id +𝛾𝑃𝑀𝜃𝑡 , and by definition of the action of the operator 𝑃 , we have

𝑀 tar(𝑠, d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾

∫︁
𝑠′
𝑃 (𝑠, d𝑠′)𝑀𝜃𝑡(𝑠′,d𝑠2) (128)

= 𝛿𝑠(d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠,d𝑠′)[�̃�𝜃𝑡(𝑠′, 𝑠2)𝜌(d𝑠2)] (129)

by definition of the model 𝑀𝜃𝑡(𝑠1, d𝑠2) = �̃�𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠2). Therefore,
by (127),

⟨𝑀𝜃,𝑀
tar⟩𝜌 =

∫︁
𝑠,𝑠2

�̃�𝜃(𝑠, 𝑠2) 𝜌(d𝑠)𝑀 tar(𝑠, d𝑠2)

=
∫︁

𝑠
�̃�𝜃(𝑠, 𝑠) 𝜌(d𝑠) + 𝛾

∫︁
𝑠, 𝑠′, 𝑠2

�̃�𝜃(𝑠, 𝑠2) �̃�𝜃𝑡(𝑠′, 𝑠2) 𝜌(d𝑠)𝑃 (𝑠, d𝑠′) 𝜌(d𝑠2)

(130)

thanks to (129). Next, since 𝑀𝜃(𝑠, d𝑠2) = �̃�𝜃(𝑠, 𝑠2)𝜌(d𝑠2), the definition of

66

the norm (1) yields

1
2 ‖𝑀𝜃‖2𝜌 = 1

2

∫︁
𝑠,𝑠2

�̃�𝜃(𝑠, 𝑠2)2 𝜌(d𝑠) 𝜌(d𝑠2). (131)

Collecting, and rewriting the integrals as expectations, we find

𝐽 ′(𝜃) = E𝑠∼𝜌, 𝑠2∼𝜌

[︂1
2�̃�𝜃(𝑠, 𝑠2)2 − �̃�𝜃(𝑠, 𝑠)

]︂
− 𝛾E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌[�̃�𝜃(𝑠, 𝑠2) �̃�𝜃𝑡(𝑠′, 𝑠2)] (132)

hence

𝜕𝜃𝐽
′(𝜃) = E𝑠∼𝜌, 𝑠2∼𝜌 [𝜕�̃�𝜃(𝑠, 𝑠2) �̃�𝜃(𝑠, 𝑠2)− 𝜕�̃�𝜃(𝑠, 𝑠)]

− 𝛾E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌[𝜕�̃�𝜃(𝑠, 𝑠2) �̃�𝜃𝑡(𝑠′, 𝑠2)] (133)

which is the expression given in Theorem 6 for 𝜃 = 𝜃𝑡. This ends the proof.

B.2 Proofs for Appendix A: Further properties of TD for 𝑀

Proof of Theorem 23. The proof is identical to that of Theorem 6, but
with 𝜃tar instead of 𝜃𝑡 and no substitution 𝜃 = 𝜃𝑡 in the last step.

Proof of Theorem 24. Exactly as in Theorem 6, setting 𝑗𝜃(𝑠, 𝑠′) :=
(𝑀 tar(𝑠, d𝑠′)−𝑀𝜃(𝑠, d𝑠′))/𝜌(d𝑠′), we have

𝜕𝜃𝐽(𝜃) =
∫︁∫︁

𝑗𝜃(𝑠, 𝑠′) 𝜕𝜃𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠)𝜌(d𝑠′) (134)

=
∫︁∫︁

𝜕𝜃𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠)(𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠′)) (135)

=
∫︁∫︁

𝜕𝜃𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠)(𝑀 tar(𝑠, d𝑠′)−𝑀𝜃(𝑠, d𝑠′)) (136)

and since 𝑀 tar depends on 𝜃𝑡 but not on 𝜃,

𝜕𝜃𝑗𝜃(𝑠, 𝑠′) = −𝜕𝜃

(︂
𝑀𝜃(𝑠, d𝑠′)
𝜌(d𝑠′)

)︂
= −𝜕𝜃𝑚𝜃(𝑠, 𝑠′). (137)

From the definition of 𝑀 tar we have

𝑀 tar(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′) +
ℎ−1∑︁
𝑖=1

𝛾𝑖𝑃 𝑖(𝑠, d𝑠′) + 𝛾ℎ(𝑃 ℎ𝑀𝜃𝑡)(𝑠, d𝑠′) (138)

and since 𝑀𝜃𝑡(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′) +𝑚𝜃𝑡(𝑠, 𝑠′)𝜌(d𝑠′) we have (𝑃 ℎ𝑀𝜃𝑡)(𝑠, d𝑠′) =
𝑃 ℎ(𝑠, d𝑠′) +

∫︀
𝑃 ℎ(𝑠, d𝑠′′)𝑚𝜃𝑡(𝑠′′, 𝑠′)𝜌(d𝑠′) so the above rewrites as

𝑀 tar(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′)+
ℎ−1∑︁
𝑖=1

𝛾𝑖𝑃 𝑖(𝑠, d𝑠′)+𝛾ℎ𝑃 ℎ(𝑠, d𝑠′)+𝛾ℎ
∫︁
𝑃 ℎ(𝑠, d𝑠′′)𝑚𝜃𝑡(𝑠′′, 𝑠′)𝜌(d𝑠′)

(139)

67

and so

𝑀 tar(𝑠, d𝑠′)−𝑀𝜃𝑡(𝑠, d𝑠′) =

−𝑚𝜃𝑡(𝑠, 𝑠′)𝜌(d𝑠′) +
ℎ∑︁

𝑖=1
𝛾𝑖𝑃 𝑖(𝑠, d𝑠′) + 𝛾ℎ

∫︁
𝑃 ℎ(𝑠, d𝑠′′)𝑚𝜃𝑡(𝑠′′, 𝑠′)𝜌(d𝑠′).

(140)

Let us plug this into (136) for 𝜃 = 𝜃𝑡, and study each contribution in
turn. The term −𝑚𝜃𝑡(𝑠, 𝑠′)𝜌(d𝑠′) produces a contribution

−
∫︁∫︁

𝜕𝜃𝑗𝜃𝑡(𝑠, 𝑠′)𝜌(d𝑠)𝑚𝜃𝑡(𝑠, 𝑠′)𝜌(d𝑠′) = E𝑠∼𝜌, 𝑠′∼𝜌𝑚𝜃𝑡(𝑠, 𝑠′) 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)
(141)

by (137). Each term 𝛾𝑖𝑃 𝑖 produces a contribution

𝛾𝑖
∫︁∫︁

𝜕𝜃𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠)𝑃 𝑖(𝑠, d𝑠′) (142)

which by definition of 𝑃 𝑖, can be rewritten as

𝛾𝑖 E𝑠0∼𝜌, 𝑠1∼𝑃 (𝑠0,d𝑠1), ..., 𝑠𝑖∼𝑃 (𝑠𝑖−1,d𝑠𝑖) 𝜕𝜃𝑗𝜃(𝑠0, 𝑠𝑖). (143)

For the same reason, the term 𝛾ℎ𝑃 ℎ𝑚𝜃𝑡 produces a contribution

𝛾ℎ E𝑠0∼𝜌, 𝑠1∼𝑃 (𝑠0,d𝑠1), ..., 𝑠ℎ∼𝑃 (𝑠𝑖−ℎ,d𝑠ℎ), 𝑠′∼𝜌[𝑚𝜃𝑡(𝑠ℎ, 𝑠
′) 𝜕𝜃𝑗𝜃(𝑠0, 𝑠

′)]. (144)

Collecting all terms and using (137) to replace 𝜕𝜃𝑗 with −𝜕𝜃𝑚 leads to the
expression in the theorem.

For the case of the model (15) using �̃�𝜃, proceed as for Theorem 6 and
use the loss 𝐽 ′(𝜃) = 1

2 ‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀
tar⟩𝜌, which has the same minima as

the loss 𝐽 but makes sense in a more general setting. In this case we have

𝑀 tar(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′) +
ℎ−1∑︁
𝑖=1

𝛾𝑖𝑃 𝑖(𝑠, d𝑠′) + 𝛾ℎ
∫︁
𝑃 ℎ(𝑠, d𝑠′′)�̃�𝜃𝑡(𝑠′′, 𝑠′)𝜌(d𝑠′)

(145)
The dot product ⟨𝑀𝜃,𝑀

tar⟩𝜌 is given by (127). Expand the value of 𝑀 tar

into (127), and proceed as above.

Proof of Theorem 26. As in the proof of Theorems 6 and 24, set
𝑗𝜃(𝑠, 𝑠′) := (𝑀 tar(𝑠, d𝑠′)−𝑀𝜃(𝑠, d𝑠′))/𝜌(d𝑠′). Then

𝜕𝜃𝐽(𝜃) =
∫︁∫︁

𝑗𝜃(𝑠, 𝑠′) 𝜕𝜃𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠)𝜌(d𝑠′) (146)

=
∫︁∫︁

𝜕𝜃𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠)(𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠′)) (147)

=
∫︁∫︁

𝜕𝜃𝑗𝜃(𝑠, 𝑠′)𝜌(d𝑠)(𝑀 tar(𝑠, d𝑠′)−𝑀𝜃(𝑠, d𝑠′)) (148)

68

and since 𝑀 tar depends on 𝜃𝑡 but not on 𝜃,

𝜕𝜃𝑗𝜃(𝑠, 𝑠′) = −𝜕𝜃

(︂
𝑀𝜃(𝑠, d𝑠′)
𝜌(d𝑠′)

)︂
= −𝜕𝜃𝑚𝜃(𝑠, 𝑠′). (149)

From the definition of 𝑀 tar and the composition of operators, we have

𝑀 tar(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′) + 𝛾

∫︁
𝑀𝜃𝑡(𝑠, d𝑠′′)𝑃 (𝑠′′, d𝑠′) (150)

= 𝛿𝑠(d𝑠′) + 𝛾𝑃 (𝑠, d𝑠′) + 𝛾

∫︁
𝑚𝜃𝑡(𝑠, 𝑠′′)𝜌(d𝑠′′)𝑃 (𝑠′′,d𝑠′) (151)

thanks to the parameterization 𝑀𝜃𝑡(𝑠, d𝑠′′) = 𝛿𝑠(d𝑠′′) + 𝑚𝜃𝑡(𝑠, 𝑠′′)𝜌(d𝑠′′).
Thus

𝑀 tar(𝑠, d𝑠′)−𝑀𝜃𝑡(𝑠, d𝑠′) = 𝛾𝑃 (𝑠, d𝑠′)+𝛾E𝑠′′∼𝜌[𝑚𝜃𝑡(𝑠, 𝑠′′)𝑃 (𝑠′′, d𝑠′)]−𝑚𝜃𝑡(𝑠, 𝑠′)𝜌(d𝑠′).
(152)

and plugging this into (148) at 𝜃 = 𝜃𝑡, substituting −𝜕𝜃𝑚𝜃 for 𝜕𝜃𝑗 as per
(149), and rewriting the integrals as expectations under 𝜌 and 𝑃 , we find

− 𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= 𝛾E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′) 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)

+𝛾E𝑠∼𝜌, 𝑠′′∼𝜌, 𝑠′∼𝑃 (𝑠′′,d𝑠′)[𝑚𝜃𝑡(𝑠, 𝑠′′) 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)]−E𝑠∼𝜌, 𝑠′∼𝜌[𝑚𝜃𝑡(𝑠, 𝑠′) 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′)]
(153)

which yields the expression in the theorem after renaming variables. The
proof for �̃� is similar, using the loss 𝐽 ′ instead of 𝐽 as in the proof of
Theorem 6.

Proof of Propositions 28 and 29. The pushforward by 𝜙 of a mea-
sure 𝜇 is the unique measure 𝜇𝜙 such that, for any function 𝑓 , one has∫︀
𝑓(𝑔)𝜇𝜙(d𝑔) =

∫︀
𝑓(𝜙(𝑠))𝜇(d𝑠).

For Proposition 28, assume that the reward function at a state 𝑠 is equal to
𝑅(𝜙(𝑠)). By definition of the successor state operator 𝑀 , the corresponding
value function satisfies 𝑉 (𝑠) =

∫︀
𝑠′ 𝑅(𝜙(𝑠′))𝑀(𝑠, d𝑠′). By definition of the

pushforward measure, the latter is equal to
∫︀

𝑔 𝑅(𝑔)𝑀𝜙(𝑠, d𝑔). If 𝑀𝜙(𝑠, d𝑔)
is equal to 𝑚𝜙(𝑠, 𝑔)𝜏(d𝑔) for some probability distribution 𝜏 , this rewrites
as E𝑔∼𝜏𝑚

𝜙(𝑠, 𝑔)𝑅(𝑔). This proves Proposition 28.
For Proposition 29, just start with the Bellman equation for𝑀 : 𝑀(𝑠, d𝑠2) =

𝛿𝑠(d𝑠2) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠)𝑀(𝑠′,d𝑠2). Then take the pushforward by 𝜙 on both
sides, using that the pushforward of measures is linear. Finally, use that the
pushforward of the Dirac mass at 𝑠 is the Dirac mass at 𝜙(𝑠). This provides
the Bellman equation for 𝑀𝜙.

Proof of Theorem 30. The proof is entirely analogous to the proof of
Theorem 6 for the model �̃�.

69

B.3 Proofs for Section 5: Goal-Dependent Methods

Proof of Theorem 12. The proof is very similar to that of Theorem 6
and is omitted. Theorem 12 can also be obtained as a particular case of
Theorem 13 applied to the state-action process.

Proof of Theorem 13. Proceed similarly to Theorem 6. Define a norm
on 𝑉 (𝑠, d𝑔) similarly to (1), as the 𝐿2 norm of its density with respect to
𝜌𝐺:

‖𝑉 (𝑠, d𝑔)‖2𝜌𝑆𝐺,𝜌 := E(𝑠,𝑔)∼𝜌𝑆𝐺

[︃
𝑉 (𝑠, d𝑔)
𝜌𝐺(d𝑔)

2]︃
. (154)

Let 𝑣𝜃(𝑠, 𝑔) be any smooth parametric model, and set 𝑉𝜃(𝑠, d𝑔) :=
𝑣𝜃(𝑠, 𝑔)𝜌𝐺(d𝑔).

Let 𝜃0 be some value of the parameter 𝜃, and define a target update 𝑉 tar

via the Bellman equation (41):

𝑉 tar(𝑠, d𝑔) := 𝛼(𝑠, 𝑔) 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑔)𝑉𝜃0(𝑠′,d𝑔). (155)

For any parameter 𝜃, define the loss

𝐽(𝜃) := 1
2

⃦⃦⃦
𝑉𝜃 − 𝑉 tar

⃦⃦⃦2

𝜌𝑆𝐺,𝜌
. (156)

Then, as in Theorem 6 one finds

− 𝜕𝜃𝐽(𝜃) =
∫︁∫︁

𝑠,𝑔
𝜌𝑆𝐺(d𝑠, d𝑔) 𝜕𝜃𝑉𝜃(𝑠, d𝑔)

𝜌𝐺(d𝑔)
𝑉 tar(𝑠, d𝑔)− 𝑉𝜃(𝑠, d𝑔)

𝜌𝐺(d𝑔)

=
∫︁∫︁

𝑠,𝑔
𝜌𝑆𝐺(d𝑠, d𝑔) 𝜕𝜃𝑣𝜃(𝑠, 𝑔)

(︃
𝛼(𝑠, 𝑔) 𝛿𝜙(𝑠)(d𝑔)

𝜌𝐺(d𝑔)

+ 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑔)𝑣𝜃0(𝑠′, d𝑔)− 𝑣𝜃(𝑠, d𝑔)
)︁

(157)

The second part of this equation matches the Bellman gap part of the
TD update in the statement of the theorem, with 𝜃0 = 𝜃. (This also provides
the TD update with an arbitrary target network defined by 𝜃0.)

For the first part with the Dirac term, remember that 𝛼(𝑠, 𝑔) = 𝜌𝑆(d𝑔)𝜌𝐺(d𝑔)/𝜌𝑆𝐺(d𝑠, d𝑔).
Thus,

∫︁∫︁
𝑠,𝑔
𝜌𝑆𝐺(d𝑠, d𝑔) 𝜕𝜃𝑣𝜃(𝑠, 𝑔)

𝛼(𝑠, 𝑔) 𝛿𝜙(𝑠)(d𝑔)
𝜌𝐺(d𝑔)

=
∫︁

𝑠
𝜌𝑆(d𝑠)

∫︁
𝑔
𝜕𝜃𝑣𝜃(𝑠, 𝑔) 𝛿𝜙(𝑠)(d𝑔) =

∫︁
𝑠
𝜌𝑆(d𝑠) 𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) = E𝑠∼𝜌𝑆 𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠))

(158)

as needed. This proves that the TD update is as announced in the statement.
Obviously, 𝛼 = 1 when 𝑠 and 𝑔 are independent.

70

For the statement about 𝜙 = Id, note that the Bellman equation only
depends on the value of 𝛼 on pairs (𝑠, 𝑔) such that 𝜙(𝑠) = 𝑔. Therefore, if
the statement holds for some function 𝛼, then it also holds for any other
function 𝛼′ such that 𝛼′(𝑠, 𝑔) = 𝛼(𝑠, 𝑔) when 𝜙(𝑠) = 𝑔, because this will
define the same 𝑉 tar. With 𝜙 = Id, this means that the statement holds
for any other function 𝛼′ with 𝛼′(𝑔, 𝑔) = 𝛼(𝑔, 𝑔). Define 𝛼′(𝑠, 𝑔) := 𝛼(𝑔, 𝑔).
Then 𝛼′(𝑔, 𝑔) = 𝛼(𝑔, 𝑔), and 𝛼′ only depends on 𝑔. This completes the proof.

Proof of Theorem 14. Assume the action space 𝐴 is countable. Let 𝒬
be the set of measurable functions from 𝑆 ×𝐴 to the set of measures on 𝑆.

For 𝑄1 and 𝑄2 in 𝒬, we write 𝑄1 6 𝑄2 if 𝑄1(𝑠, 𝑎,𝑋) 6 𝑄2(𝑠, 𝑎,𝑋) for
any state-action (𝑠, 𝑎) and measurable set 𝑋 ⊂ 𝑆. The Bellman operator
of Definition 11 acts on 𝒬 and is obviously monotonous: if 𝑄1 6 𝑄2 then
𝑇𝑄1 6 𝑇𝑄2.

Since the zero measure 0 ∈ 𝒬 is the smallest measure, we have 𝑇0 > 0.
Since 𝑇 is monotonous, by induction we have 𝑇 𝑡+10 > 𝑇 𝑡0 for any 𝑡 > 0.
Thus, the (𝑇 𝑡0)𝑡>0 form an increasing sequence of measures. Therefore, for
every state-action (𝑠, 𝑎) and measurable set 𝑋, the sequence (𝑇 𝑡0)(𝑠, 𝑎,𝑋) is
increasing, and thus converges to a limit. We denote this limit by 𝑄*(𝑠, 𝑎,𝑋).
We have to prove that 𝑄* ∈ 𝒬, namely, that for each (𝑠, 𝑎), 𝑄*(𝑠, 𝑎, ·) is a
measure. The only non-trivial point is 𝜎-additivity.

Denote 𝑄𝑡 := 𝑇 𝑡0. If (𝑋𝑖) is a countable collection of disjoint measurable
sets, we have

𝑄*(𝑠, 𝑎,∪𝑖𝑋𝑖) = lim
𝑡→∞

𝑄𝑡(𝑠, 𝑎,∪𝑖𝑋𝑖) = lim
𝑡→∞

∑︁
𝑖

𝑄𝑡(𝑠, 𝑎,𝑋𝑖)

=
∑︁

𝑖

lim
𝑡→∞

𝑄𝑡(𝑠, 𝑎,𝑋𝑖) =
∑︁

𝑖

𝑄*(𝑠, 𝑎,𝑋𝑖) (159)

where the limit commutes with the sum thanks to the monotone convergence
theorem, using that 𝑄𝑡 is non-decreasing. Therefore, 𝑄* is a measure.

Let us prove that 𝑇𝑄* = 𝑄*. We have

𝑇𝑄*(𝑠, 𝑎, ·) = 𝛿𝑠 + 𝛾E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑎′
𝑄*(𝑠′, 𝑎′, ·) (160)

by definition. For any 𝑠′, denote �̃�𝑡(𝑠′, ·) := sup𝑎′ 𝑄𝑡(𝑠′, 𝑎′, ·) where the
supremum is as measures over 𝑆. Since 𝑄𝑡 is non-decreasing, so is �̃�𝑡.

For any state 𝑠′, we have

sup
𝑎′
𝑄*(𝑠′, 𝑎′, ·) = sup

𝑎′
sup

𝑡
𝑄𝑡(𝑠′, 𝑎′, ·) = sup

𝑡
sup

𝑎′
𝑄𝑡(𝑠′, 𝑎′, ·) = sup

𝑡
�̃�𝑡(𝑠′, ·)

(161)
since supremums commute. Now, since �̃�𝑡 is non-decreasing, thanks to the
monotone convergence theorem, the supremum commutes with integration

71

over 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) (which does not depend on 𝑡), namely,

E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑎′
𝑄*(𝑠′, 𝑎′, ·) = E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup

𝑡
�̃�𝑡(𝑠′, ·)

= sup
𝑡

E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)�̃�𝑡(𝑠′, ·) = sup
𝑡

E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑎′
𝑄𝑡(𝑠′, 𝑎′, ·) (162)

and so 𝑇𝑄* = sup𝑡 𝑇𝑄𝑡. Now, since 𝑄𝑡 = 𝑇 𝑡0, we have 𝑇𝑄𝑡 = 𝑇 𝑡+10, so
that sup𝑡>0 𝑇𝑄

𝑡 = sup𝑡>1 𝑇
𝑡0 = 𝑄*. So 𝑄* is a fixed point of 𝑇 .

Let us prove that 𝑄* is the smallest such fixed point. Let 𝑄′ such that
𝑇𝑄′ = 𝑄′. Since 0 6 𝑄′ and 𝑇 is monotonous, we have 𝑇0 6 𝑇𝑄′ = 𝑄′. By
induction, 𝑇 𝑡0 6 𝑄′ for any 𝑡 > 0. Therefore, sup𝑡 𝑇

𝑡0 6 𝑄′, i.e., 𝑄* 6 𝑄′.
The statement for finite state spaces reduces to the classical uniqueness

property of the usual 𝑄 function, separately for each goal state.

B.4 Examples of MDPs with Infinite Mass for 𝑄*

Here are two simple examples of MDPs with finite action space, for which
the mass of the goal-dependent 𝑄-function 𝑄*(𝑠, 𝑎, 𝑠2) is infinite. The first
has discrete states, the second, continuous ones.

Take for 𝑆 an infinite rooted dyadic tree, namely, 𝑆 = {∅, 0, 1, 00, 01, . . .}
the set of binary strings of finite length 𝑘 > 0. Consider the two actions “add
a 0 at the end” and “add a 1 at the end”. Then, for every state 𝑠, 𝑄*(𝑠, 𝑎, ·)
is a measure that gives mass 𝛾𝑘 to all states 𝑠2 that are extensions of 𝑠 by a
length-𝑘 string that starts with 𝑎. Thus, its mass is 1 +

∑︀
𝑘>1 𝛾

𝑘2𝑘−1. This
is infinite as soon as 𝛾 > 1/2. This extends to any number of actions by
considering higher-degree trees.

A similar example with continuous states is obtained as follows. Let
𝑆 = [0; 1) × [0; 1). Let 𝐶 = {∅, 0, 1, 00, 01, . . .} the dyadic tree above. For
each string 𝑤 ∈ 𝑋, consider the set 𝐵𝑤 ⊂ 𝑆 defined as follows: 𝐵𝑤 is made
of those points (𝑥, 𝑦) ∈ 𝑆 such that the binary expansion of 𝑥 starts with
𝑤, and 𝑦 ∈ [1− 1/2𝑘; 1 − 1/2𝑘+1) where 𝑘 is the length of 𝑤. Graphically,
this creates a tree-like partition of the square 𝑆, where the empty string
corresponds to the bottom half, the strings 𝑤 = 0 and 𝑤 = 1 correspond
to two sets on the left and right above the bottom hald, etc. Define the
following MDP with two actions 0 and 1: with action 0, every state 𝑠 ∈ 𝐵𝑤

goes to a uniform random state in 𝐵𝑤0, and with action 1, every state 𝑠 ∈ 𝐵𝑤

goes to a uniform random state in 𝐵𝑤1. The goal-dependent 𝑄-function 𝑄*

is similar to the dyadic tree above, but is continuous. Its mass is infinite for
the same reasons.

B.5 Proofs for Sections 7 and 8: Second-Order Methods

Proof of Theorem 17. Define �̂� := (Id−𝛾𝑃)−1 where 𝑃 is updated by
(58). The update (58) can be rewritten as 𝑃 ← 𝑃 + (1/𝑛𝑠)1𝑠(1⊤

𝑠′− 1
⊤
𝑠𝑃).

72

This is a rank-one update of 𝑃 . The update of Id−𝛾𝑃 is −𝛾 times the
update of 𝑃 , and is still rank-one: it is equal to 𝑢𝑣⊤ with 𝑢 := −(𝛾/𝑛𝑠)1𝑠

and 𝑣⊤ := (1⊤
𝑠′− 1⊤

𝑠𝑃). The Sherman–Morrison formula gives the update of
the inverse of a matrix after a rank-one update. By this formula, the update
of �̂� = (Id−𝛾𝑃)−1 is

�̂� ←�̂� − �̂�𝑢𝑣⊤�̂�

1 + 𝑣⊤�̂�𝑢
= �̂� + 1

𝑛𝑠

�̂�1𝑠(𝛾1⊤
𝑠′− 𝛾1⊤

𝑠𝑃)�̂�
1− 1

𝑛𝑠
(𝛾1⊤

𝑠′− 𝛾1⊤
𝑠𝑃)�̂�1𝑠

(163)

Now, since �̂� = (Id−𝛾𝑃)−1, we have 𝛾𝑃�̂� = �̂� − Id. Therefore, the terms
(𝛾1⊤

𝑠′− 𝛾1⊤
𝑠𝑃)�̂� are equal to 𝛾1⊤

𝑠′�̂� − 1⊤
𝑠�̂� + 1

⊤
𝑠, and the update is

�̂� ←�̂� + 1
𝑛𝑠

�̂�1𝑠(𝛾1⊤
𝑠′�̂� − 1⊤

𝑠�̂� + 1
⊤
𝑠)

1− 1
𝑛𝑠

(𝛾1⊤
𝑠′�̂� − 1⊤

𝑠�̂� + 1⊤
𝑠)1𝑠

(164)

= �̂� + 1
𝑛𝑠

�̂�1𝑠(𝛾1⊤
𝑠′�̂� − 1⊤

𝑠�̂� + 1
⊤
𝑠)

1− 1
𝑛𝑠

(𝛾�̂�𝑠′𝑠 − �̂�𝑠𝑠 + 1)
(165)

which is the exact update of �̂� . This provides the update (61).
The value function 𝑉 of the estimated process is (𝐼𝑑− 𝛾𝑃)−1�̂� = �̂��̂�.

When �̂� ← �̂�+𝛿𝑀 and �̂�← �̂�+𝛿𝑅 one has 𝑉 ← 𝑉 +�̂� 𝛿𝑅+𝛿𝑀�̂�+𝛿𝑀 𝛿𝑅.
From (58) we have 𝛿𝑅 = 1

𝑛𝑠
(𝑟𝑠− �̂�𝑠)1𝑠 = 1

𝑛𝑠
(𝑟𝑠1𝑠−1𝑠1

⊤
𝑠�̂�). Plugging in the

value of 𝛿𝑀 from (165), keeping only first-order terms in 1/𝑛𝑠, and using
1

⊤
𝑠�̂��̂� = 1

⊤
𝑠𝑉 = 𝑉𝑠, provides the update of 𝑉 in (62).

Proof of Theorem 18. First, note that the expectation in the statement
is averaged over the next step, but conditional to all quantities �̂� , 𝑉 , etc.,
computed in the previous steps. In this proof, we will just write E for short.

Since the the denominator in (165) is 1 + 𝑜(1/𝑛𝑠), the update (165) of
�̂� is �̂� ← �̂� + 𝛿𝑀 with

𝛿𝑀 = 1
𝑛𝑠
�̂�1𝑠(𝛾1⊤

𝑠′�̂� − 1⊤
𝑠�̂� + 1

⊤
𝑠) + 𝑜(1/𝑛𝑠). (166)

We want to compute the expectation of this update when 𝑠 is sampled from
𝜌 and 𝑠′ from 𝑃𝑠𝑠′ . This yields

E[𝛿𝑀] =
∑︁
𝑠,𝑠′

𝜌𝑠𝑃𝑠𝑠′
1
𝑛𝑠
�̂�1𝑠(𝛾1⊤

𝑠′�̂� − 1⊤
𝑠�̂� + 1

⊤
𝑠) + 𝑜(1/𝑛𝑠) (167)

= 1
𝑡

∑︁
𝑠,𝑠′

𝑃𝑠𝑠′�̂�1𝑠(𝛾1⊤
𝑠′�̂� − 1⊤

𝑠�̂� + 1
⊤
𝑠) + 𝑜(1/𝑡) (168)

where the last equality holds because 𝑛𝑠 = 𝑡𝜌𝑠 + 𝑜(𝑡) by the law of large
numbers (since 𝑠 is sampled from 𝜌). Now, we have

∑︀
𝑠,𝑠′ 𝑃𝑠𝑠′1𝑠1

⊤
𝑠′ = 𝑃 and∑︀

𝑠,𝑠′ 𝑃𝑠𝑠′1𝑠1
⊤
𝑠 =

∑︀
𝑠 1𝑠1

⊤
𝑠 = Id. Thus,

E[𝛿𝑀] = 1
𝑡
�̂�(𝛾𝑃�̂� − �̂� + Id) + 𝑜(1/𝑡) (169)

73

as needed.
To compute the update of 𝑉 = �̂��̂�, let us first compute the update of

�̂�. By (58), the latter is �̂�← �̂�+ 𝛿𝑅 with

𝛿𝑅 = 1
𝑛𝑠

(𝑟𝑠 − �̂�𝑠)1𝑠 = 1
𝑡𝜌𝑠

(𝑟𝑠 − �̂�𝑠)1𝑠 + 𝑜(1/𝑡). (170)

Now, the update of 𝑉 = �̂��̂� is 𝛿𝑉 = 𝛿𝑀�̂�+ �̂� 𝛿𝑅+ 𝛿𝑀 𝛿𝑅. The last term
𝛿𝑀 𝛿𝑅 is 𝑂(1/𝑡2), so we can drop it. We find

E[𝛿𝑉] = E[𝛿𝑀�̂�] + E[�̂� 𝛿𝑅] + 𝑜(1/𝑡) (171)
= E[𝛿𝑀]�̂�+ �̂�E[𝛿𝑅] + 𝑜(1/𝑡) (172)

since the expectations are averaged over the next step but conditional on
the previous steps, which comprises the previous values of �̂� and �̂� . Next,

E[𝛿𝑀]�̂� = 1
𝑡
�̂�(𝛾𝑃�̂� − �̂� + Id)�̂�+ 𝑜(1/𝑡) (173)

= 1
𝑡
�̂�(𝛾𝑃𝑉 − 𝑉 + �̂�) + 𝑜(1/𝑡) (174)

since 𝑉 = �̂��̂�. Next,

�̂�E[𝛿𝑅] = �̂�
∑︁

𝑠

𝜌𝑠
1
𝑡𝜌𝑠

(E[𝑟𝑠]− �̂�𝑠)1𝑠 + 𝑜(1/𝑡) (175)

= 1
𝑡
�̂�(𝑅− �̂�) + 𝑜(1/𝑡) (176)

since
∑︀

𝑠 E[𝑟𝑠]1𝑠 = 𝑅 and
∑︀

𝑠 �̂�𝑠1𝑠 = �̂�. Summing, we find E[𝛿𝑉] =
1
𝑡 �̂�(𝛾𝑃𝑉 − 𝑉 + �̂�+𝑅− �̂�) + 𝑜(1/𝑡) as needed.

Proof of Theorem 21. First, note that we expressed this theorem for
a single transition 𝑠 → 𝑠′, while we expressed the similar theorem for TD
using the Bellman operator 𝑀 tar = Id +𝛾𝑃𝑀 , which is the sum of the
single-transition update for all values of 𝑠.

This is because the single-transition update is more informative in this
case, especially given the exact update of 𝑀 in Theorem 17. (At first, we
worked at the operator level, and found a parametric expression which was
the same in expectation over transitions 𝑠→ 𝑠′, but did not correspond to a
single-transition update, had a larger variance, and performed much worse
in practice.)

However, the single-transition updates (58) and (61) only make sense in a
discrete-state setting. Thus, to best preserve the information from observing
a single transition, we state and derive Theorem 21 in a discrete-state setting.
The resulting parametric update makes sense for continuous states.

74

(In Appendix H we rigorously derive this same update for continuous
states, in expectation over 𝑠 → 𝑠′, as we did for TD. The analogue of the
Bellman operator 𝛿𝑀 = Id +𝛾𝑃𝑀 −𝑀 for implicit process updating is the
Newton–Bellman operator 𝛿𝑀 = 𝑀 −𝑀(Id−𝛾𝑃)𝑀 of Definition 19.)

Thus, let us work in a discrete setting, using matrix notation. Let us
consider 𝛿𝑀 and 𝛿𝑉 given by (61)–(62). For simplicity we omit the 𝑜(1/𝑛𝑠)
terms in (61)–(62): they are absorbed in the 𝑜(1/𝑡) of the final statement
of the theorem, because 𝑛𝑠 ∼ 𝜌(𝑠)𝑡 by the law of large numbers. (Indeed,
𝜌(𝑠) is defined as the probability to sample a transition from 𝑠 in our data
model.)

With 𝑀 tar := 𝑀𝜃𝑡 + 𝛿𝑀 and from the definition (1) of ‖·‖𝜌, we obtain

⃦⃦⃦
𝑀𝜃 −𝑀 tar

⃦⃦⃦2

𝜌
= E𝑠1∼𝜌, 𝑠2∼𝜌

(𝑀𝜃 −𝑀 tar)2
𝑠1𝑠2

𝜌(𝑠2)2 (177)

=
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝜌(𝑠2)(𝑀𝜃 −𝑀 tar)2

𝑠1𝑠2 (178)

so that the gradient step on the loss is

−𝜕𝜃𝐽(𝜃) = −𝜕𝜃

(︂
1
2

⃦⃦⃦
𝑀𝜃 −𝑀 tar

⃦⃦⃦2

𝜌

)︂
(179)

=
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝜌(𝑠2) (𝑀 tar −𝑀𝜃)𝑠1𝑠2 𝜕𝜃(𝑀𝜃)𝑠1𝑠2 (180)

and we compute the gradient step at 𝜃 = 𝜃𝑡; since 𝑀 tar−𝑀𝜃𝑡 = 𝛿𝑀 , we get

−𝜕𝜃𝐽(𝜃)𝜃=𝜃𝑡 =
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝜌(𝑠2) (𝛿𝑀)𝑠1𝑠2 𝜕𝜃(𝑀𝜃)𝑠1𝑠2 . (181)

Now, remember that the parameterization is (𝑀𝜃)𝑠1𝑠2 = 1𝑠1=𝑠2+𝑚𝜃(𝑠1, 𝑠2)𝜌(𝑠2).
We obtain

𝜕𝜃(𝑀𝜃)𝑠1𝑠2 = 𝜕𝜃𝑚𝜃(𝑠1, 𝑠2)𝜌(𝑠2) (182)

and from the expression (61) for 𝛿𝑀 , up to 𝑂(1/𝑛2
𝑠) terms, we have

−𝜕𝜃𝐽(𝜃)𝜃=𝜃𝑡 =
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝜌(𝑠2)

1
𝑛𝑠

(𝑀𝜃𝑡)𝑠1𝑠 (1𝑠2=𝑠 + 𝛾(𝑀𝜃𝑡)𝑠′𝑠2 − (𝑀𝜃𝑡)𝑠𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(𝑠2)

(183)
so that 𝜌(𝑠2) cancels out. Now let us expand (𝑀𝜃𝑡)𝑠1𝑠2 = 1𝑠1=𝑠2+𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(𝑠2)
into this expression. We have

1𝑠2=𝑠 + 𝛾(𝑀𝜃𝑡)𝑠′𝑠2 − (𝑀𝜃𝑡)𝑠𝑠2 = 1𝑠′=𝑠2 + 𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)𝜌(𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)𝜌(𝑠2)
(184)

75

and after tediously collecting all terms, we arrive at

− 𝜕𝜃𝐽(𝜃)𝜃=𝜃𝑡 =
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝑛𝑠

1𝑠1=𝑠 1𝑠′=𝑠2 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)

+
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝑛𝑠

𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(𝑠)1𝑠′=𝑠2 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)

+
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝑛𝑠

1𝑠1=𝑠
(︀
𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)

)︀
𝜌(𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)

+
∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝑛𝑠

𝑚𝜃𝑡(𝑠1, 𝑠) 𝜌(𝑠)
(︀
𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)

)︀
𝜌(𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2).

(185)

The first term rewrites∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝑛𝑠

1𝑠1=𝑠 1𝑠′=𝑠2 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2) = 𝜌(𝑠)
𝑛𝑠

𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′). (186)

The second one rewrites∑︁
𝑠1,𝑠2

𝜌(𝑠1)
𝑛𝑠

𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(𝑠)1𝑠′=𝑠2 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2) = 𝜌(𝑠)
𝑛𝑠

E𝑠1∼𝜌[𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠
′)].

(187)
Similarly, the third term in (185) rewrites as

𝜌(𝑠)
𝑛𝑠

E𝑠2∼𝜌
(︀
𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)

)︀
𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2) (188)

and the fourth as
𝜌(𝑠)
𝑛𝑠

E𝑠1∼𝜌, 𝑠2∼𝜌
(︀
𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)

)︀
𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2). (189)

Now, by definition of 𝜌 in our data model, 𝜌(𝑠) is the frequency with which
a transition starting at 𝑠 is sampled. Therefore, by the law of large numbers,
𝑛𝑠 ∼ 𝑡𝜌(𝑠) when 𝑡→∞. Therefore,

𝜌(𝑠)
𝑛𝑠

= 1/𝑡+ 𝑜(1/𝑡) (190)

when 𝑡→∞. (This is the advantage of defining all norms with respect to 𝜌;
anyway, in a general setting, 𝜌 is the only available measure on 𝒮 to define
norms with.)

Thus, when 𝑡→∞,

− 𝜕𝜃𝐽(𝜃)𝜃=𝜃𝑡 = 1
𝑡

(︀
𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′) + E𝑠1∼𝜌[𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠

′)]

+E𝑠2∼𝜌
(︀
𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)

)︀
𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2)

+E𝑠1∼𝜌, 𝑠2∼𝜌
(︀
𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2)

)︀
𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)

)︀
+ 𝑜(1/𝑡) (191)

76

which is the expression (66) given in Theorem 21.
This ends the proof of Theorem 21 for discrete states, which is the only

setting in which the single-transition update 𝛿𝑀 makes sense. Yet the
expressions obtained also make sense for continuous states. Appendix H
contains a rigorous derivation for continuous states, in expectation over
𝑠→ 𝑠′, as we did for parametric TD.

Proof of Proposition 22. Given a parametric model 𝑉𝜙 with parameter
𝜙, at each step 𝑡, define a target 𝑉 tar := 𝑉𝜙𝑡 + 𝛿𝑉 with 𝛿𝑉 given by (62).
As for Theorem 21, the update (62) is defined via a single transition 𝑠→ 𝑠′

and only makes sense in a discrete space, as does 𝑉 tar. So we work with a
parametric model on a discrete space and observe that the resulting update
is well-defined in continuous spaces. (As with Theorem 21, continuous spaces
can be treated rigorously by considering the expectation over 𝑠 → 𝑠′, see
Appendix H.)

The loss function on 𝜙 is 𝐽𝑉 (𝜙) := 1
2
⃦⃦
𝑉𝜙 − 𝑉 tar⃦⃦2

𝐿2(𝜌). Then

−𝜕𝜙𝐽
𝑉 (𝜙) =

∑︁
𝑠1

𝜌(𝑠1) (𝑉𝜙𝑡(𝑠1) + 𝛿𝑉𝑠1 − 𝑉𝜙(𝑠1)) 𝜕𝜙𝑉𝜙(𝑠1) (192)

and so
−𝜕𝜙𝐽

𝑉 (𝜙)|𝜙=𝜙𝑡
=
∑︁
𝑠1

𝜌(𝑠1) 𝛿𝑉𝑠1 𝜕𝜙𝑉𝜙𝑡(𝑠1). (193)

Plugging in the expression (62) for 𝛿𝑉 (with 𝑉𝑠 = 𝑉𝜙𝑡(𝑠) and �̂�𝑠1𝑠2 =
𝑀𝜃𝑡(𝑠1, 𝑠2)) yields, again omitting the 𝑜(1/𝑛𝑠) terms,

−𝜕𝜙𝐽
𝑉 (𝜙)|𝜙=𝜙𝑡

= (𝑟𝑠 + 𝛾𝑉𝜙𝑡(𝑠′)− 𝑉𝜙𝑡(𝑠))
∑︁
𝑠1

𝜌(𝑠1)
𝑛𝑠

𝑀𝜃𝑡(𝑠1, 𝑠) 𝜕𝜙𝑉𝜙𝑡(𝑠1)

(194)
and plugging in the parametric model 𝑀𝜃𝑡(𝑠1, 𝑠) = 1𝑠1=𝑠 + 𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(𝑠)
yields

−𝜕𝜙𝐽
𝑉 (𝜙)|𝜙=𝜙𝑡

= (𝑟𝑠 + 𝛾𝑉𝜙𝑡(𝑠′)− 𝑉𝜙𝑡(𝑠))
∑︁
𝑠1

𝜌(𝑠1)
𝑛𝑠

(1𝑠1=𝑠 +𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(𝑠)) 𝜕𝜙𝑉𝜙𝑡(𝑠1)

(195)

= (𝑟𝑠 + 𝛾𝑉𝜙𝑡(𝑠′)− 𝑉𝜙𝑡(𝑠))
(︂
𝜌(𝑠)
𝑛𝑠

𝜕𝜙𝑉𝜙𝑡(𝑠) + 𝜌(𝑠)
𝑛𝑠

E𝑠1∼𝜌[𝑚𝜃𝑡(𝑠1, 𝑠)𝜕𝜙𝑉𝜙𝑡(𝑠1)]
)︂

(196)

and as above, 𝜌(𝑠)/𝑛𝑠 = 1/𝑡 + 𝑜(1/𝑡) when 𝑡 → ∞, so this yields the
expression (78) in the theorem.

Proof of Theorem 16. This convergence analysis is partially inspired by
[PW19]. The main differences are the data model and the metrics computed.

77

We assume that 𝜌 is an invariant probability measure of 𝑃 , and that
the reward is bounded by 𝑅max with probability 1. We define the empirical
distribution of states 𝜌𝑡 as: (𝜌𝑡)𝑠 = 𝑛𝑠

𝑡 , with 𝑛𝑠 the number of visits to state
𝑠 up to time 𝑡. We also consider 𝑃𝑡 and �̂�𝑡 as defined in (58).

The initialization of 𝑃 and �̂� does not matter, as it is erased the first time
a state is visited. To fix ideas, we initialize 𝑃 and �̂� to 0; this helps if 𝜌 = 0
for some states. (In particular, 𝑃 may be substochastic: 0 6

∑︀
𝑗 𝑃𝑖𝑗 6 1 for

all 𝑖.)
We define ̂︁𝜌𝑃 𝑡 as the empirical distribution of transitions: (̂︁𝜌𝑃 𝑡)𝑠1𝑠2 :=

𝑛𝑠1𝑠2
𝑡 where 𝑛𝑠1𝑠2 is the number of observations of a transition (𝑠1, 𝑠2) up

to time 𝑡. We have (𝑃𝑡)𝑠1𝑠2 = 𝑛𝑠1𝑠2
𝑛𝑠1

if 𝑛𝑠1 > 0, or 0 if 𝑛𝑠1 = 0. Hence(︁̂︁𝜌𝑃 𝑡

)︁
𝑠1𝑠2

= 𝜌𝑠1(𝑃𝑡)𝑠1𝑠2 .

The proof strategy is to bound the errors ‖�̂� −𝑀‖𝜌,TV and ‖𝑉 −𝑉 ‖𝜌 by
errors on ̂︁𝜌𝑃 and �̂�. The error on ̂︁𝜌𝑃 can then be controlled by concentration
inequalities on empirical distributions, and the error on �̂� can be bounded
via the Hoeffding inequality.

The successor state operator estimate �̂� is (Id−𝛾𝑃)−1. By the Bellman
equation for 𝑀 and �̂� ,

�̂� −𝑀 = 𝛾𝑃�̂� − 𝛾𝑃𝑀 (197)
= 𝛾𝑃 (�̂� −𝑀) + 𝛾(𝑃 − 𝑃)�̂� (198)

and therefore
(Id−𝛾𝑃)(�̂� −𝑀) = 𝛾(𝑃 − 𝑃)�̂� (199)

and thus
�̂� −𝑀 = 𝛾𝑀(𝑃 − 𝑃)�̂� (200)

by definition of 𝑀 .
Therefore,

‖�̂� −𝑀‖𝜌,TV = 𝛾‖𝑀(𝑃 − 𝑃)�̂�‖𝜌,TV (201)

= 𝛾

2
∑︁
𝑖,𝑗

𝜌𝑖

⃒⃒⃒⃒
⃒⃒∑︁

𝑘,𝑙

𝑀𝑖𝑘(𝑃 − 𝑃)𝑘𝑙�̂�𝑙𝑗

⃒⃒⃒⃒
⃒⃒ (202)

6
𝛾

2
∑︁

𝑖,𝑗,𝑘,𝑙

𝜌𝑖𝑀𝑖𝑘|𝑃 − 𝑃 |𝑘𝑙�̂�𝑙𝑗 . (203)

We know that (1 − 𝛾)𝑀 is a stochastic matrix, and 𝜌 is an invariant
probability measure. Therefore,

∑︀
𝑖 𝜌𝑖𝑀𝑖𝑘 = 1

1−𝛾𝜌𝑘. Moreover, if 𝑃 is sub-
stochastic,

∑︀
𝑗 �̂�𝑙𝑗 6

1
1−𝛾 (with equality if 𝑃 is stochastic). Therefore,

‖�̂� −𝑀‖𝜌,TV 6
𝛾

(1− 𝛾)2 ‖𝑃 − 𝑃‖𝜌,TV. (204)

78

We define (𝜌𝑃) as the matrix Diag(𝜌)𝑃 . We now bound the error ‖𝑃 −
𝑃‖𝜌,TV by the error ‖̂︁𝜌𝑃 − (𝜌𝑃)‖TV, in order to use standard concentration
inequalities on empirical distributions:

‖𝑃 − 𝑃‖𝜌,TV = 1
2‖Diag(𝜌)𝑃 − (𝜌𝑃)‖1 (205)

6 ‖̂︁𝜌𝑃 − (𝜌𝑃)‖TV + 1
2‖Diag(𝜌− 𝜌)𝑃‖1 (206)

6 ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV + ‖𝜌− 𝜌‖TV (207)

6 ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV + 1
2
∑︁

𝑖

|
∑︁

𝑗

𝜌𝑖𝑃𝑖𝑗 − 𝜌𝑖𝑃𝑖𝑗 | (208)

6 ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV + 1
2
∑︁
𝑖,𝑗

|𝜌𝑖𝑃𝑖𝑗 − 𝜌𝑖𝑃𝑖𝑗 | (209)

6 2‖̂︁𝜌𝑃 − 𝜌𝑃‖TV (210)

Therefore,
‖�̂� −𝑀‖𝜌,TV 6

2𝛾
(1− 𝛾)2 ‖

̂︁𝜌𝑃 − 𝜌𝑃‖TV. (211)

We now consider the error on 𝑉 . We have:

‖𝑉 − 𝑉 ‖𝜌 = ‖�̂��̂�−𝑀𝑅‖𝜌 (212)
6 ‖(�̂� −𝑀)�̂�‖𝜌 + ‖𝑀(�̂�−𝑅)‖𝜌 (213)

6 2𝑅max‖�̂� −𝑀‖𝜌,TV + 1
1− 𝛾 ‖�̂�−𝑅‖𝜌 (214)

6
4𝑅max

(1− 𝛾)2 ‖
̂︁𝜌𝑃 − 𝜌𝑃‖TV + 1

1− 𝛾 ‖
̂︀𝑅−𝑅‖𝜌 (215)

We now bound ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV and ‖ ̂︀𝑅−𝑅‖𝜌.
We can bound the error ‖ ̂︀𝑅−𝑅‖𝜌 with the Hoeffding inequality. ̂︀𝑅𝑠 is

the average of 𝑛𝑠 independent samples of expectation 𝑅𝑠. Since the reward
is bounded by 𝑅𝑚𝑎𝑥 with probability 1, we can use Hoeffding’s inequality.
For any 𝑠 with 𝑛𝑠 > 0, we have:

P(| ̂︀𝑅−𝑅|𝑠 > 𝑢) 6 2 exp
(︃
− 𝑛𝑠𝑢

2

2𝑅2
max

)︃
(216)

Hence, for any 𝑠 with 𝑛𝑠 > 0, we have with probability 1− 𝛿
𝑆 :

|̂︁𝑅𝑡 −𝑅|𝑠 6 𝑅max

√︃
2
𝑛𝑠

log 2𝑆
𝛿

(217)

and since 𝜌𝑠 = 𝑛𝑠/𝑡, this rewrites as

𝜌𝑠|̂︁𝑅𝑡 −𝑅|𝑠 6
𝑅max
𝑡

√︃
2𝑛𝑠 log 2𝑆

𝛿
. (218)

79

For states with 𝑛𝑠 = 0, 𝜌𝑠 = 0 and the inequality still holds. If for all 𝑠,
P(|̂︁𝑅𝑡 −𝑅|𝑠 > 𝜀𝑠) 6 𝛿

𝑆 , then

P(‖�̂�−𝑅‖𝜌 >
∑︁

𝑠

𝜀𝑠) 6
∑︁

𝑠

P(𝜌𝑠|̂︁𝑅𝑡 −𝑅|𝑠 > 𝜀𝑠) (219)

6
∑︁

𝑠

𝛿

𝑆
= 𝛿 (220)

Thus, with probability 1− 𝛿,

‖ ̂︀𝑅−𝑅‖𝜌 6 𝑅max
𝑡

√︃
2 log 2𝑆

𝛿

∑︁
𝑠

√
𝑛𝑠 (221)

6
𝑅max
𝑡

√︃
2 log 2𝑆

𝛿

√︃∑︁
𝑠

𝑛𝑠

√
𝑆 (222)

6
𝑅max√

𝑡

√︃
2𝑆 log 2𝑆

𝛿
(223)

since
∑︀

𝑠 𝑛𝑠 = 𝑡.
We now bound ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV. ̂︁𝜌𝑃 is the empirical distribution over all

possible transitions. The set of all possible transitions is of size 𝑆2. However,
if (𝜌𝑃)𝑠1𝑠2

= 0, then with probability 1, ̂︁𝜌𝑃 𝑠1𝑠2 = 0. Therefore, if 𝐸 is the
number of edges of the MDP ((𝑠, 𝑠′) is an edge if 𝑃𝑠𝑠′ > 0), ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV
can be bounded by an inequality on the total variation error of the empirical
measure on a set of size 𝐸. We use Theorem 2.2 from [WOS+03]17, and have
with with probability 1− 𝛿:

‖̂︁𝜌𝑃 𝑡 − 𝜌𝑃‖TV 6
1

2
√
𝑡

√︂
2𝐸 log 2

𝛿
(224)

By plugging equation (224) into (211), with probability 1− 𝛿,

‖�̂� −𝑀‖𝜌,TV 6
𝛾

(1− 𝛾)2
√
𝑡

√︂
2𝐸 log 2

𝛿
(225)

Finally, by plugging (223) and (224) into (215), with probability 1− 𝛿,
we obtain

‖𝑉 − 𝑉 ‖𝜌 6
2𝑅max

(1− 𝛾)2
1√
𝑡

√︂
2𝐸 log 4

𝛿
+ 1

1− 𝛾
𝑅max√

𝑡

√︃
2𝑆 log 4𝑆

𝛿
(226)

6
3𝑅max

(1− 𝛾)2

√︃
2𝐸
𝑡

log 4𝑆
𝛿

(227)

which ends the proof.
17We use the trivial bound 𝜙(𝜋) > 2 with the notation of the original paper.

80

C The Bellman–Newton Operator and Path Com-
position

In Section 4.3, we explained the link between learning successor states
and counting paths in a Markov process. Here, we formalize that link,
by studying how updating 𝑀 via the Bellman equation (or the backward
Bellman equation) updates the paths represented in 𝑀 . We will prove that
after 𝑡 steps, the estimate of 𝑀 via Bellman–Newton exactly contains all
paths up to length 2𝑡 − 1 with their correct probabilities in the Markov
process, while forward and backward TD exactly contain all paths up to
length 𝑡.

Thus for each algorithm (forward TD, backward TD, and Bellman–
Newton), we consider the exact (deterministic, non-sampled) update: we
set 𝑀0 = Id and then define at step 𝑡 + 1 the update 𝑀𝑡+1 as the target
update given by the corresponding fixed point equation. For forward TD,
the operator update is defined as:

𝑀TD
𝑡+1 = Id +𝛾𝑃𝑀TD

𝑡 . (228)

For backward TD, the operator update is defined as:

𝑀BTD
𝑡+1 = Id +𝛾𝑀BTD

𝑡 𝑃. (229)

The Bellman–Newton update (Definition 19) with learning rate 1 is

𝑀BN
𝑡+1 = 2𝑀BN

𝑡 −𝑀BN
𝑡 (Id−𝛾𝑃)𝑀BN

𝑡 . (230)

In expectation over the transition 𝑠→ 𝑠′, the expected exact online update
is 𝛿𝑀 = 1

𝑡 (𝑀 − 𝑀2 + 𝛾𝑀𝑃𝑀) (Eq. 63). Here for the corresponding
deterministic operator we use a learning rate 1 instead of 1/𝑡, which yields
𝛿𝑀 = 𝑀 −𝑀(Id−𝛾𝑃)𝑀 , hence the update (230). The successor state
operator 𝑀 = (Id−𝛾𝑃)−1 is a fixed point of this update. 18 This corresponds
to the Newton method 𝑀 ← 2𝑀 −𝑀𝐴𝑀 for inverting a matrix 𝐴 [PS91].

We now relate the forward TD, backward TD, and Bellman–Newton
updates to path composition. For each algorithm, we prove by induction that
at step 𝑡, there exists an integer 𝑛𝑡 such that (𝑀𝑡)𝑠𝑠′ is equal to the number
of paths from 𝑠 to 𝑠′ with length at most 𝑛𝑡, weighted by their probability
and discounted by their length, namely,

(𝑀𝑡)𝑠𝑠′ =
∑︁

𝑝 path from 𝑠 to 𝑠′,|𝑝|6𝑛𝑡

𝛾|𝑝|P(𝑝) =
𝑛𝑡∑︁

𝑘=0
𝛾𝑘

∑︁
𝑠=𝑠0,...,𝑠𝑘−1,𝑠𝑘=𝑠′

𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛𝑡

(231)
18It is not the only fixed point; for instance, 𝑀 = 0 is another. But it is the only

full-rank fixed point.

81

where as in Section 2, |𝑝| denotes the length of a path 𝑝 and P(𝑝) =
𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛 its probability in the Markov process. Equivalently,

𝑀𝑡 =
∑︁

06𝑘6𝑛𝑡

𝛾𝑘𝑃 𝑘. (232)

The three algorithms will differ by the value of 𝑛𝑡.
For 𝑡 = 0, 𝑀0 = Id, and the induction hypothesis is satisfied.
If the end point of a path 𝑝1 corresponds to the starting point of a path

𝑝2, we denote 𝑝1 · 𝑝2 the concatenation of the two paths.
For forward TD, we have 𝑀TD

𝑡+1 = Id +𝛾𝑃𝑀TD
𝑡 . By induction, if 𝑀TD

𝑡 =∑︀
06𝑘6𝑛TD

𝑡
𝛾𝑘𝑃 𝑘, then we find𝑀TD

𝑡+1 = Id +𝛾𝑃
∑︀

06𝑘6𝑛TD
𝑡
𝛾𝑘𝑃 𝑘 =

∑︀
06𝑘6𝑛TD

𝑡 +1 𝛾
𝑘𝑃 𝑘.

Equivalently, looking at paths we have

(𝑀TD
𝑡+1)𝑠𝑠′ = 𝛿𝑠=𝑠′ + 𝛾(𝑃𝑀TD

𝑡)𝑠𝑠′ (233)
= 𝛿𝑠=𝑠′ + 𝛾

∑︁
𝑠′′

𝑃𝑠𝑠′′
∑︁

𝑝 path from 𝑠′′ to 𝑠′, |𝑝|6𝑛TD
𝑡

𝛾|𝑝|P(𝑝) (234)

= 𝛿𝑠=𝑠′ +
∑︁
𝑠′′

∑︁
𝑝 path from 𝑠′′ to 𝑠′, |𝑝|6𝑛TD

𝑡

𝛾|𝑝|+1P((𝑠, 𝑠′′) · 𝑝) (235)

= 𝛿𝑠=𝑠′ +
∑︁

𝑝 path from 𝑠 to 𝑠′, 16|𝑝|6𝑛TD
𝑡

𝛾|𝑝|P(𝑝) (236)

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|6𝑛TD
𝑡 +1

𝛾|𝑝|P(𝑝) (237)

Thus the induction hypothesis is satisfied with 𝑛TD
𝑡+1 = 𝑛TD

𝑡 +1. By induction,
𝑛TD

𝑡 = 𝑡: at step 𝑡, 𝑀TD
𝑡 is the weighted sum of paths of length at most

𝑡. 𝑀TD
𝑡+1 is obtained from 𝑀TD

𝑡 by adding a transition to the left to every
known path (and re-adding the length-0 paths via the Id term).

Likewise, with backward TD we have

(𝑀BTD
𝑡+1)𝑠𝑠′ = 𝛿𝑠=𝑠′ + 𝛾(𝑀BTD

𝑡 𝑃)𝑠𝑠′ (238)
= 𝛿𝑠=𝑠′ +

∑︁
𝑠′′

∑︁
𝑝 path from 𝑠′′ to 𝑠′, |𝑝|6𝑛BTD

𝑡

𝛾|𝑝|+1P(𝑝 · (𝑠′′, 𝑠′)) (239)

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|6𝑛BTD
𝑡 +1

𝛾|𝑝|P(𝑝) (240)

Contrary to forward TD, 𝑀BTD
𝑡+1 is obtained from 𝑀BTD

𝑡 by adding a transi-
tion to the right to every known path. This still leads to 𝑛BTD

𝑡 = 𝑡.
We now consider the Bellman–Newton operator update. We have

𝑀BN
𝑡+1 = 2𝑀BN

𝑡 −𝑀BN
𝑡 (Id−𝛾𝑃)𝑀BN

𝑡 . (241)

82

Let us first compute (Id−𝛾𝑃)𝑀BN
𝑡 . By the induction hypothesis and by the

same reasoning as for forward TD, we have

((Id−𝛾𝑃)𝑀BN
𝑡)𝑠𝑠′ = 𝑀BN

𝑡 − 𝛾𝑃𝑀BN
𝑡 (242)

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|6𝑛BN
𝑡

𝛾|𝑝|P(𝑝)−
∑︁

𝑝 path from 𝑠 to 𝑠′, 16|𝑝|6𝑛BN
𝑡 +1

𝛾|𝑝|P(𝑝)

(243)

= 𝛿𝑠=𝑠′ − 𝛾𝑛BN
𝑡 +1

(︁
𝑃𝑛BN

𝑡 +1
)︁

𝑠𝑠′
. (244)

Therefore,

𝑀BN
𝑡+1 = 2𝑀BN

𝑡 −𝑀BN
𝑡 (Id−𝛾𝑃)𝑀BN

𝑡 (245)

= 2𝑀BN
𝑡 −𝑀BN

𝑡 (Id−𝛾𝑛BN
𝑡 +1𝑃𝑛BN

𝑡 +1) (246)

= 𝑀BN
𝑡 + 𝛾𝑛BN

𝑡 +1𝑀BN
𝑡 𝑃𝑛BN

𝑡 +1 (247)
=

∑︁
𝑝 path from 𝑠 to 𝑠′, |𝑝|6𝑛BN

𝑡

𝛾|𝑝|P(𝑝) +
∑︁

𝑝 path from 𝑠 to 𝑠′, 𝑛BN
𝑡 +16|𝑝|62𝑛BN

𝑡 +1

𝛾|𝑝|P(𝑝)

(248)
=

∑︁
𝑝 path from 𝑠 to 𝑠′, |𝑝|62𝑛BN

𝑡 +1

𝛾|𝑝|P(𝑝) (249)

Therefore, 𝑛BN
𝑡+1 = 2𝑛BN

𝑡 + 1. At every step the Bellman–Newton operator
update is doubling the maximal length of all known paths.

The efficiency of the operator Bellman–Newton update can also be ex-
plained from properties of the Newton method. Indeed, the Bellman–Newton
update in (230) corresponds to the Newton update 𝑀 ← 2𝑀 −𝑀𝐴𝑀 for
inverting the matrix 𝐴, applied to 𝐴 = Id−𝛾𝑃 [PS91]. With this method,
the error Id−𝐴𝑀 gets squared at each iteration: Id−𝐴𝑀 ← (Id−𝐴𝑀)2

[PS91]. Here at each step, if 𝑀𝑡 exactly contains all paths up to length
𝑛𝑡, then the error Id−𝐴𝑀𝑡 contains all paths of length 𝑛𝑡 + 1, namely, if
𝑀𝑡 =

∑︀
𝑘6𝑛𝑡

𝛾𝑘𝑃 𝑘 then Id−𝐴𝑀𝑡 = 𝛾𝑛𝑡+1𝑃𝑛𝑡+1. Thus squaring the error
corresponds to doubling 𝑛𝑡 + 1.

D Successor States, Eligibility Traces, and the Back-
ward Process

In this section, we relate the update equation (78) for the value function
using 𝑀 , to the algorithm TD(𝜆) and eligibility traces. We also prove the
statement that backward TD is forward TD on the time-reversed process
(Theorem 33).

More precisely, we prove (Theorem 31) that the expectation of the TD(1)
update (expectation over the eligibility traces given the current state) is

83

the update (78) of the value function using the successor state operator.
Thus, updating 𝑉 via (78) using a learned model 𝑚𝜃 of 𝑀 is equivalent to
estimating the true 𝑀 via a model, while eligibility traces are an unbiased
Monte Carlo estimator of the true 𝑀 . This suggests the possibility of using
mixed estimates, such as eligibility traces over a few past steps, and a model
𝑚𝜃 for the older past.

Eligibility traces require access to an arbitrarily long trajectory (𝑠𝑡)𝑡∈Z
(which, for convenience, we index with both positive and negative integers,
with 𝑠0 the state at the current time). Thus, contrary to the rest of this
text, we assume that the Markov process is ergodic and that the data are
coming from a stationary random trajectory of the process. In this case,
the sampling measure 𝜌 is the stationary distribution, and the law of any
sequence of consecutive observations (𝑠𝑡, . . . , 𝑠𝑡+𝑛) from the trajectory is
𝜌(d𝑠𝑡)𝑃 (𝑠𝑡,d𝑠𝑡+1) · · ·𝑃 (𝑠𝑡+𝑛−1,d𝑠𝑡+𝑛).

We also assume that for every 𝑠, 𝑃 (𝑠, d𝑠′) is absolutely continuous with
respect to 𝜌(d𝑠′). This is not necessary but leads to nicer expressions. In
that case, 𝑀(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′) +𝑚(𝑠, 𝑠′)𝜌(d𝑠′) for some function 𝑚.

In the tabular setting, TD(𝜆) maintains a vector 𝑒𝑡 over states; 𝑒𝑡 is
updated by

𝑒𝑡(𝑠) = 1𝑠𝑡 + 𝛾𝜆𝑒𝑡−1(𝑠) ∀𝑠 (250)
𝛿𝑉 (𝑠) = 𝑒𝑡(𝑠)(𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡)) ∀𝑠. (251)

This can be generalized to continuous environments and to a parametric
model 𝑉𝜙 of 𝑉 , by formally defining 𝑒 as the discounted empirical measure
of the past:

𝑒𝑡(d𝑠) :=
∑︁
𝑛>0

(𝛾𝜆)𝑛𝛿𝑠𝑡−𝑛(d𝑠) = 𝛿𝑠𝑡(d𝑠) + 𝛾𝜆𝑒𝑡−1(d𝑠) (252)

corresponding to the parametric update of 𝑉𝜙 by

𝛿𝜙 = (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))
∫︁

𝑠
𝜕𝜙𝑉𝜙(𝑠) 𝑒𝑡(d𝑠) (253)

= (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))
∑︁
𝑛>0

(𝛾𝜆)𝑛𝜕𝜙𝑉𝜙(𝑠𝑡−𝑛). (254)

We have the following statement:

Theorem 31. Let 𝜌 be the invariant measure of the Markov process, and
𝑀𝛾𝜆 := (Id−𝛾𝜆𝑃)−1 the successor state operator with discount factor 𝛾𝜆.
Let 𝑚𝛾𝜆 be the density of (𝑀𝛾𝜆 − Id) with respect to 𝜌: 𝑀𝛾𝜆(𝑠, d𝑠2) =
𝛿𝑠(d𝑠2) +𝑚𝛾𝜆(𝑠, 𝑠2)𝜌(d𝑠2).

Then, the expected eligibility trace 𝑒𝑡(d𝑠) knowing 𝑠𝑡 = 𝑠 is:

E [𝑒𝑡(d𝑠)|𝑠𝑡 = 𝑠] = 𝛿𝑠(d𝑠) +𝑚𝛾𝜆(𝑠, 𝑠)𝜌(d𝑠) = 𝑀𝛾𝜆(𝑠, d𝑠)𝜌(d𝑠)
𝜌(d𝑠) (255)

84

Moreover, the expectation of the parametric TD(𝜆) update (254) when a
transition (𝑠, 𝑠′) is observed is equal to the update (78) of 𝑉 using 𝑚𝛾𝜆:

E[𝛿𝜙|(𝑠𝑡, 𝑠𝑡+1) = (𝑠, 𝑠′)] = (𝑟𝑡 + 𝛾𝑉𝜙(𝑠′)− 𝑉𝜙(𝑠)) (𝜕𝜙𝑉𝜙(𝑠) + E𝑠∼𝜌 [𝑚𝛾𝜆(𝑠, 𝑠) 𝜕𝜙𝑉𝜙(𝑠)])
(256)

with 𝜌-probability 1 over 𝑠𝑡.

The proof of this theorem involves the time-reversal of the Markov process;
indeed, eligibility traces are a Monte Carlo estimate of the discounted measure
of predecessor states.

Define the backward process 𝑃back(𝑠′,d𝑠) by reversing time: it is the law
of 𝑠 given 𝑠′ in a transition 𝑠→ 𝑠′. More precisely, let (𝑠, 𝑠′) be a random
pair of states distributed according to 𝜌(d𝑠)𝑃 (𝑠, d𝑠′), and define 𝑃back(𝑠′, d𝑠)
to be the conditional distribution of 𝑠 given 𝑠′ under this distribution. (This
exists by the general theory of conditional distributions [Par05, Thm. 8.1],
and is well-defined up to a set of 𝜌-measure 0.) Since 𝜌 is the invariant
measure of the process, the law of both 𝑠 and 𝑠′ is 𝜌, and one has

𝜌(d𝑠)𝑃 (𝑠, d𝑠′) = 𝜌(d𝑠′)𝑃back(𝑠′, d𝑠) (257)

by definition of conditional probabilities.
Then, given 𝑠𝑡, the distribution of 𝑠𝑡−𝑛 follows the backward process

from 𝑠𝑡. Namely, the law of any sequence of observations (𝑠𝑡−𝑛, . . . , 𝑠𝑡) from
the stationary distribution of the process satisfies

𝜌(d𝑠𝑡−𝑛)𝑃 (𝑠𝑡−𝑛, d𝑠𝑡−𝑛+1) · · ·𝑃 (𝑠𝑡−1, d𝑠𝑡) = 𝜌(d𝑠𝑡)𝑃back(𝑠𝑡, d𝑠𝑡−1) · · ·𝑃back(𝑠𝑡−𝑛+1,d𝑠𝑡−𝑛).
(258)

Lemma 32. Let 𝑚 be the density of 𝑀 , namely, 𝑀(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′) +
𝑚(𝑠, 𝑠′)𝜌(d𝑠′). (This exists under the assumption above that 𝑃 is absolutely
continuous with respect to 𝜌.)

Let 𝑀back := (Id−𝛾𝑃back)−1 be the successor state operator of the
backward process, and let 𝑚back be the associated density, 𝑀back(𝑠, d𝑠′) =
𝛿𝑠(d𝑠′) +𝑚back(𝑠, 𝑠′)𝜌(d𝑠′). Then 𝜌(d𝑠′)𝑀back(𝑠′,d𝑠) = 𝜌(d𝑠)𝑀(𝑠, d𝑠′) and

𝑚back(𝑠′, 𝑠) = 𝑚(𝑠, 𝑠′) (259)

for 𝜌-almost every (𝑠, 𝑠′).

Proof. By induction from the definition of the backward process, we have
𝜌(d𝑠′)𝑃𝑛

back(𝑠′, d𝑠) = 𝜌(d𝑠)𝑃𝑛(𝑠, d𝑠′). Then by definition of 𝑀back,

𝜌(d𝑠′)𝑀backward(𝑠′, d𝑠) = 𝜌(d𝑠′)
∑︁
𝑛>0

𝛾𝑛𝑃𝑛
backward(𝑠′,d𝑠) =

∑︁
𝑛>0

𝛾𝑛𝜌(d𝑠)𝑃𝑛(𝑠, d𝑠′)

(260)
= 𝜌(d𝑠)𝑀(𝑠, d𝑠′) (261)

85

Since 𝑀(𝑠, d𝑠′) = 𝛿𝑠(d𝑠′)+𝑚(𝑠, 𝑠′)𝜌(d𝑠′), and likewise for 𝑀back, this implies

𝜌(d𝑠′)𝑚back(𝑠′, 𝑠)𝜌(d𝑠) = 𝜌(d𝑠)𝑚(𝑠, 𝑠′)𝜌(d𝑠′) (262)

as needed.

Proof of Theorem 31. By definition of eligibility traces, one has 𝑒𝑡(d𝑠) =∑︀
𝑛>0(𝛾𝜆)𝑛𝛿𝑠𝑡−𝑛(d𝑠). Therefore, the expectation of 𝑒𝑡 over the past of 𝑠𝑡

knowing 𝑠𝑡 is:

E[𝑒𝑡(d𝑠)|𝑠𝑡 = 𝑠] = E

⎡⎣∑︁
𝑛>0

(𝛾𝜆)𝑛𝛿𝑠𝑡−𝑛(d𝑠)|𝑠𝑡 = 𝑠

⎤⎦ (263)

=
∑︁
𝑛>0

(𝛾𝜆)𝑛𝑃𝑛
back(𝑠, d𝑠) (264)

= 𝑀back
𝛾𝜆 (𝑠, d𝑠) (265)

where 𝑀back
𝛾𝜆 := (Id−𝛾𝜆𝑃back)−1 is the successor state operator of the back-

ward process. By Lemma 32, this is

E[𝑒𝑡(d𝑠)|𝑠𝑡 = 𝑠] = 𝛿𝑠(d𝑠) +𝑚(𝑠, 𝑠)𝜌(d𝑠) (266)

as needed.
Therefore, the expectation of the update (254) of 𝑉 with TD(𝜆) is:

E
[︀
𝛿𝜙|𝑠𝑡 = 𝑠, 𝑠𝑡+1 = 𝑠′]︀ = (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))

∫︁
𝑠
𝜕𝜙𝑉𝜙(𝑠)E[𝑒𝑡(d𝑠)|𝑠𝑡 = 𝑠, 𝑠𝑡+1 = 𝑠′]

(267)

= (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))
∫︁

𝑠
𝜕𝜙𝑉𝜙(𝑠)(𝛿𝑠(d𝑠) +𝑚(𝑠, 𝑠)𝜌(d𝑠))

(268)
= (𝑟𝑡 + 𝛾𝑉𝜙(𝑠′)− 𝑉𝜙(𝑠)) (𝜕𝜙𝑉𝜙(𝑠) + E𝑠∼𝜌 [𝜕𝜙𝑉𝜙(𝑠)𝑚𝛾𝜆(𝑠, 𝑠)])

(269)

Finally, the backward process provides a simple proof that backward
TD is forward TD on the backward process. Remember that the forward
and backward successor state operators are linked by 𝜌(d𝑠1)𝑀(𝑠1,d𝑠2) =
𝜌(d𝑠2)𝑀back(𝑠2, d𝑠1).

Theorem 33 (Backward TD is forward TD on the back-
ward process). Let 𝑀 and 𝑀back be measure-valued functions such that
𝑀back is the time-reverse of𝑀 , namely 𝜌(d𝑠1)𝑀(𝑠1,d𝑠2) = 𝜌(d𝑠2)𝑀back(𝑠2, d𝑠1).
Then the backward TD update

𝑀 ← Id +𝛾𝑀𝑃 (270)

is equivalent (𝜌-almost everywhere) to

𝑀back ← Id +𝛾𝑃back𝑀
back. (271)

86

Proof. Let 𝐷𝜌(d𝑠1,d𝑠2) be the diagonal measure with marginal 𝜌, namely,
𝐷𝜌(d𝑠1,d𝑠2) = 𝜌(d𝑠1)𝛿𝑠1(d𝑠2) = 𝜌(d𝑠2)𝛿𝑠2(d𝑠1). Remember that the opera-
tor Id corresponds to the process 𝛿𝑠1(d𝑠2). By multiplying the backward TD
update by 𝜌(d𝑠1) one gets

𝜌(d𝑠1)𝑀(𝑠1,d𝑠2)← 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾𝜌(d𝑠1)(𝑀𝑃)(𝑠1, d𝑠2) (272)

= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾

∫︁
𝑠′
𝜌(d𝑠1)𝑀(𝑠1,d𝑠′)𝑃 (𝑠′,d𝑠2) (273)

= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾

∫︁
𝑠′
𝑀back(𝑠′, d𝑠1)𝜌(d𝑠′)𝑃 (𝑠′, d𝑠2)

(274)

= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾

∫︁
𝑠′
𝑀back(𝑠′, d𝑠1)𝜌(d𝑠2)𝑃back(𝑠2,d𝑠′)

(275)
= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾𝜌(d𝑠2)(𝑃back𝑀

back)(𝑠2,d𝑠1) (276)

and since 𝜌(d𝑠1)𝑀(𝑠1,d𝑠2) = 𝜌(d𝑠2)𝑀back(𝑠2, d𝑠1), this rewrites as

𝜌(d𝑠2)𝑀back(𝑠2, d𝑠1)← 𝜌(d𝑠2)𝛿𝑠2(d𝑠1) + 𝛾𝜌(d𝑠2)(𝑃back𝑀
back)(𝑠2, d𝑠1)

(277)
namely (𝜌-almost everywhere),

𝑀back(𝑠2, d𝑠1)← 𝛿𝑠2(d𝑠1) + 𝛾(𝑃back𝑀
back)(𝑠2,d𝑠1) (278)

which is forward TD on 𝑀back for the time-reversed process.

E Fixed Points for the FB Representation of 𝑀

Here we state precisely, and prove, the fixed points properties for the four
variants of successor state learning in the FB representation (Section 6), in
the tabular and in the overparameterized case. The “tabular” case for 𝐹 and
𝐵 means that the state space is finite and the values of 𝐹 (𝑠) and 𝐵(𝑠) are
stored explicitly for every state 𝑠.

We fully describe the fixed points of the four algorithms ff-FB, bb-FB,
fb-FB, and bf-FB, which have quite different properties.

We state these properties for the tabular case; by a simple argument the
fixed points are the same for overparameterized 𝐹 and 𝐵. 19

In this section, we abuse notation by considering 𝐹 and 𝐵 both as
functions from the state space to R𝑟 (as in Section 6), and as 𝑟×#𝑆-matrices.
The model 𝑀(𝑠1,d𝑠2) = 𝐹 (𝑠1)⊤𝐵(𝑠2)𝜌(d𝑠2) rewrites as 𝑀 = 𝐹⊤𝐵 diag(𝜌) or

19Namely, parameterizations 𝐹𝜃𝐹 and 𝐵𝜃𝐵 such that any function 𝐹 can be realized for
some 𝜃𝐹 , and moreover the map 𝜕𝜃𝐹 𝐹𝜃𝐹 is surjective for any 𝜃𝐹 , and likewise for 𝐵. In
short, any 𝐹 and 𝐵 can be realized, and any small change of 𝐹 or 𝐵 can be realized by a
small change in 𝜃𝐹 and 𝜃𝐵 .

87

�̃� = 𝐹⊤𝐵, viewing everything as matrices with entries indexed by the state
space.

We also assume that 𝜌𝑠 > 0 for every state 𝑠: every state is sampled with
nonzero probability.

By direct identification in Proposition 15, in the tabular case we find the
following expressions for the updates of 𝐹 and 𝐵.

Proposition 34 (Tabular FB updates). Assume the state space
is finite and let 𝐹 and 𝐵 be two 𝑟 ×#𝑆-matrices. Let the parameter 𝜃𝐹 of
𝐹 be the matrix 𝐹 itself and likewise for 𝐵.

Abbreviate 𝜌 for the diagonal matrix with entries 𝜌𝑠 for each state 𝑠.
Then the updates 𝛿𝜃𝐹 and 𝛿𝜃𝐵 of Proposition 15 for the FB representation

of 𝑀 are equal to

𝛿𝐹 = 𝐵𝜌− Σ𝐵𝐹Δ⊤𝜌, 𝛿𝐵 = 𝐹𝜌− 𝐹𝜌Δ𝐹⊤𝐵𝜌 (279)

for forward TD on 𝐹 and 𝐵 respectively, and to

𝛿𝐹 = 𝐵𝜌−𝐵(𝜌Δ)⊤𝐵⊤𝐹𝜌, 𝛿𝐵 = 𝐹𝜌− Σ𝐹𝐵𝜌Δ (280)

for backward TD on 𝐹 and 𝐵 respectively. Here Δ is the matrix Id−𝛾𝑃 ,
Σ𝐵 = 𝐵𝜌𝐵⊤, and Σ𝐹 = 𝐹𝜌𝐹⊤.

Proposition 35 (The fixed points of fb-FB approximate 𝑀
in 𝐿2(𝜌) norm). The fixed points of the tabular fb-FB algorithm are the
local extrema of the error

ℓ(𝐹,𝐵) := E𝑠1∼𝜌, 𝑠2∼𝜌

(︁
𝐹⊤(𝑠1)𝐵(𝑠2)− �̃�(𝑠1, 𝑠2)

)︁2
(281)

where �̃�(𝑠1, 𝑠2) := 𝑀(𝑠1,d𝑠2)/𝜌(d𝑠2) is the value of �̃� for the true successor
state operator 𝑀 . 20

In that case, 𝐹⊤𝐵𝜌 is a truncated singular value decomposition of the
operator 𝑀 acting on the space of functions over 𝑆 equipped with the 𝐿2(𝜌)
norm.

Proposition 36 (Fixed points of ff-FB correspond to eigenspaces
of 𝑀). The set of approximations 𝐹⊤𝐵𝜌 of 𝑀 that appear as a fixed point
of the tabular ff-FB algorithm is exactly the set of operators such that there
exists an 𝐿2(𝜌)-orthogonal decomposition R#𝑆 = 𝐸⊕𝐸′ of functions over the
state space such that 𝐸 is stable by 𝑀 (namely, 𝑀𝐸 ⊂ 𝐸), 𝐸 has dimension
at most 𝑟, and 𝐹⊤𝐵𝜌 is equal to 𝑀 on 𝐸 and to 0 on 𝐸′.

20This is the Hilbert-Schmidt norm of the difference between 𝑀 and its approximation
𝐹⊤𝐵𝜌, as operators on the space of functions over 𝑆 equipped with the 𝐿2(𝜌) norm
(Appendix I).

88

Proposition 37 (Fixed points of bb-FB). The set of approxima-
tions 𝐹⊤𝐵𝜌 of 𝑀 that appear as a fixed point of the tabular bb-FB algorithm
is exactly the set of operators such that there exists an 𝐿2(𝜌)-orthogonal
decomposition R#𝑆 = 𝐸 ⊕ 𝐸′ of functions over the state space such that
𝐸′ is stable by 𝑀 (namely, 𝑀𝐸′ ⊂ 𝐸′), 𝐸 has dimension at most 𝑟, and
𝐹⊤𝐵𝜌 is the projection of 𝑀 onto 𝐸, namely, 𝐹⊤𝐵𝜌 = Π𝐸𝑀 with Π𝐸 the
𝐿2(𝜌)-orthogonal projector onto 𝐸.

Remark 38 (Fixed points of bb-FB correspond to eigen-prob-
ability densities of 𝑀). Stability of 𝐸′ by 𝑀 is equivalent to stability
of 𝐸 by 𝜌−1𝑀⊤𝜌. This corresponds to the Markov operator acting on proba-
bility densities: if the state at time 𝑡 has probability distribution 𝑓𝜌 for some
vector 𝑓 , then the state at time 𝑡+1 has probability distribution (𝜌−1𝑃⊤𝜌𝑓)𝜌.

Thus, in bb-FB, the space 𝐸 is a stable space of probability densities for
𝑃 and 𝑀 .

In contrast, the bf-FB algorithm can stabilize on any subspace of features.
For instance, in rank 1, set 𝐹⊤ to any vector, then set 𝐵⊤ = 𝛼𝐹⊤ where
𝛼 = 1/(𝐹𝜌(Id−𝛾𝑃)𝐹⊤) (assuming this is nonzero). In fact, fixed points of bf-
FB just compute a weak inverse of 𝜌(Id−𝛾𝑃) in an arbitrary 𝑟-dimensional
subspace.

Proposition 39 (Fixed points of bf-FB). The set of approxima-
tions 𝐹⊤𝐵𝜌 of 𝑀 that appear as a fixed point of the tabular bf-FB algorithm
is exactly the set of operators such that there exists a subspace 𝐸 of 𝐿2(𝜌)
of dimension at most 𝑟 such that 𝐹⊤𝐵𝜌 has image 𝐸 and kernel 𝐸⊥, and
𝐹⊤𝐵𝜌 is the inverse of Π(Id−𝛾𝑃)Π as operators from 𝐸 to 𝐸, where Π is
the 𝐿2(𝜌)-orthogonal projector on 𝐸.

Moreover, if 𝜌 is an invariant probability distribution of the Markov
process, then every subspace 𝐸 of 𝐿2(𝜌) of dimension at most 𝑟 provides
such a fixed point 𝐹⊤𝐵𝜌.

Proof of Proposition 35. Viewing �̃�, 𝐹 and 𝐵 as matrices, the loss is

ℓ(𝐹,𝐵) =
∑︁
𝑖𝑗

𝜌(𝑖)𝜌(𝑗)
(︃∑︁

𝑘

𝐹𝑘𝑖𝐵𝑘𝑗 − �̃�𝑖𝑗

)︃2

(282)

so that
𝜕ℓ(𝐹,𝐵)
𝜕𝐹𝑘𝑖

= 2
∑︁

𝑗

𝜌(𝑖)𝜌(𝑗)𝐵𝑘𝑗

(︃∑︁
𝑘′

𝐹𝑘′𝑖𝐵𝑘′𝑗 − �̃�𝑖𝑗

)︃
(283)

which is the 𝑘𝑖 entry of the matrix 2𝐵𝜌(𝐵⊤𝐹 − �̃�⊤)𝜌.
Now, 𝐹 is a local extremum of this loss if and only if this derivative

is 0 for every 𝑘𝑖, namely, if and only if the matrix 𝐵𝜌(𝐵⊤𝐹 − �̃�⊤)𝜌 is 0.
Now, by definition of �̃� we have 𝑀 = �̃�𝜌, namely, �̃� = Δ−1𝜌−1. So
𝐵𝜌(𝐵⊤𝐹 − �̃�⊤)𝜌 = 0 is equivalent to 𝐵𝜌𝐵⊤𝐹𝜌−𝐵(Δ−1)⊤𝜌 = 0. Since 𝜌 and

89

Δ are invertible, by multiplying by 𝜌−1Δ⊤𝜌 on the right, this is equivalent to
𝐵𝜌𝐵⊤𝐹Δ⊤𝜌−𝐵𝜌 = 0. This is equivalent to 𝛿𝐹 = 0 in (279), namely, to 𝐹
being a fixed point of forward TD.

A similar computation with 𝐵 proves that 𝜕ℓ(𝐹,𝐵)/𝜕𝐵 = 0 if and only
if 𝛿𝐵 = 0 in (280), namely, if and only if 𝐵 is a fixed point of backward TD.
Therefore, 𝐹 and 𝐵 are a local optimum of ℓ if and only if they are a fixed
point of the fb-FB algorithm.

Let us turn to the statement about singular value decompositions. Gen-
erally speaking, we know that the matrices of a given rank which are local
extrema of the matrix norm of the difference with �̃� are truncated singular
value decompositions of �̃�; however, here these matrices are parameterized
as 𝐹⊤𝐵, and a priori this parameterization might change the local extrema,
so we give a full proof.

By Lemma 46, the matrix 𝐹⊤𝐵𝜌 is a truncated SVD of 𝑀 if and only if
𝐹⊤𝐵𝜌 and 𝑀 coincide on (Ker𝐹⊤𝐵𝜌)⊥ and 𝑀(Ker𝐹⊤𝐵𝜌)⊥ Im𝐹⊤𝐵𝜌. Here
all orthogonality relations are defined with respect to the 𝐿2(𝜌) inner product,
namely, ⟨𝑥, 𝑦⟩ = 𝑥⊤𝜌𝑦.

If 𝐹 is a fixed point of (279), then 0 = 𝐵𝜌 − Σ𝐵𝐹Δ⊤𝜌. Since 𝜌 is
invertible and since Σ𝐵 = 𝐵𝜌𝐵⊤, this rewrites as 𝐵(Id−𝜌𝐵⊤𝐹Δ⊤) = 0.
Taking transposes, this is (Id−Δ𝐹⊤𝐵𝜌)𝐵⊤ = 0. By definition, 𝑀 is the
inverse of Δ; multiplying by 𝑀 , we find (𝑀 − 𝐹⊤𝐵𝜌)𝐵⊤ = 0. This implies
that 𝑀 and 𝐹⊤𝐵𝜌 coincide on the image of 𝐵⊤. A fortiori, they coincide on
the image of 𝐵⊤𝐹𝜌, which is included in the image of 𝐵⊤.

In general, for an operator 𝐴 on a Euclidean space, Im𝐴 = (Ker𝐴*)⊥

with 𝐴* the adjoint of 𝐴. Here, with the inner product from 𝐿2(𝜌), the adjoint
of 𝐴 is 𝜌−1𝐴⊤𝜌 (Appendix I). So the adjoint of 𝐵⊤𝐹𝜌 is 𝐹⊤𝐵𝜌. Therefore,
Im𝐵⊤𝐹𝜌 is (Ker𝐹⊤𝐵𝜌)⊥. So 𝑀 and 𝐹⊤𝐵𝜌 coincide on (Ker𝐹⊤𝐵𝜌)⊥. This
was the first point to be proved.

Next, if 𝐵 is a fixed point of (280), then 0 = 𝐹𝜌−𝐹𝜌𝐹⊤𝐵𝜌Δ. Multiplying
on the right by 𝑀 = Δ−1 this is equivalent to 𝐹𝜌(𝑀 − 𝐹⊤𝐵𝜌) = 0. This
states that the image of 𝑀 −𝐹⊤𝐵𝜌 is 𝜌-orthogonal to the image of 𝐹⊤. So for
any 𝑥, (𝑀 −𝐹⊤𝐵𝜌)𝑥⊥ Im𝐹⊤. Take 𝑥 ∈ Ker𝐹⊤𝐵𝜌. Then 𝑀𝑥⊥ Im𝐹⊤. Since
Im𝐹⊤𝐵𝜌 ⊂ Im𝐹⊤, we have 𝑀𝑥⊥ Im𝐹⊤𝐵𝜌 as well. Therefore, the image of
Ker𝐹⊤𝐵𝜌 by 𝑀 is orthogonal to the image of 𝐹⊤𝐵𝜌. This was the second
point to be proved.

Proof of Proposition 36. In this proof, we denote

𝑓 := 𝐹𝜌1/2, 𝑏 := 𝐵𝜌1/2, 𝐷 := 𝜌1/2Δ𝜌−1/2, (284)

using that 𝜌 is invertible. Then the fixed point equations 𝛿𝐹 = 0 and 𝛿𝐵 = 0
for the forward TD updates (279) rewrite as

0 = 𝑏− 𝑏𝑏⊤𝑓𝐷⊤, 0 = 𝑓 − 𝑓𝐷𝑓⊤𝑏. (285)

90

This change of variables cancels the 𝜌 factors and maps 𝐿2(𝜌)-orthogonality
to usual orthogonality.

(⇒). Assume that 𝐹⊤𝐵𝜌 is a fixed point of ff-FB, so that the fixed point
equations above are satisfied.

The first fixed point equation yields 𝐷𝑓⊤𝑏𝑏⊤ = 𝑏⊤. Let 𝑏′ be the Moore-
Penrose pseudoinverse of 𝑏⊤ (equal to (𝑏𝑏⊤)−1𝑏 if invertible). By the general
properties of the Moore-Penrose pseudoinverse, 𝑏⊤𝑏′ is the orthogonal pro-
jector onto Im 𝑏⊤, and 𝑏𝑏⊤𝑏′ = 𝑏. Thus, multiplying 𝐷𝑓⊤𝑏𝑏⊤ = 𝑏⊤ by 𝑏′ on the
right, we find 𝐷𝑓⊤𝑏 = Π where Π is the orthogonal projector onto Im 𝑏⊤. This
rewrites as 𝑓⊤𝑏 = 𝐷−1Π, so that 𝑓⊤𝑏 is equal to 𝐷−1 on Im Π and to 0 on its
orthogonal.

The second fixed point equation reads 𝑓𝐷𝑓⊤𝑏 = 𝑓 . Since 𝐷𝑓⊤𝑏 = Π this
means that 𝑓Π = 𝑓 , or 𝑓⊤ = Π𝑓⊤. Consequently, Im 𝑓⊤⊂ Im Π, and a fortiori
Im 𝑓⊤𝑏 ⊂ Im Π. Thus, Im𝐷−1Π ⊂ Im Π, namely, Im Π is stable by 𝐷−1.

Note that Im Π = Im 𝑏⊤, so its dimension is at most the rank of 𝑏 which
is at most 𝑟.

Unwinding the change of variables with 𝜌1/2, we see that Π𝐸 := 𝜌−1/2Π𝜌1/2

is an 𝐿2(𝜌)-orthogonal projector, whose image 𝐸 := Im Π𝐸 is stable by Δ−1,
and such that 𝐹⊤𝐵𝜌 is equal to Δ−1Π𝐸 . Thus 𝐹⊤𝐵𝜌 is equal to Δ−1 on 𝐸
and to 0 on its 𝐿2(𝜌)-orthogonal.

(⇐). Let 𝐸 be a stable subspace of 𝑀 , of dimension at most 𝑟, such that
𝐹⊤𝐵𝜌 is equal to 𝑀 on 𝐸 and to 0 on the 𝐿2(𝜌)-orthogonal 𝐸′ of 𝐸.

Let Π𝐸 be the 𝐿2(𝜌)-orthogonal projector onto 𝐸. Since 𝐸 is stable by
𝑀 , we have 𝑀Π𝐸 = Π𝐸𝑀Π𝐸 . Moreover, the condition that 𝐹⊤𝐵𝜌 is equal
to 𝑀 on 𝐸 and to 0 on 𝐸′ is equivalent to saying that 𝐹⊤𝐵𝜌 = 𝑀Π𝐸 .

Define 𝐻 = 𝜌1/2𝐸 and 𝐻 ′ = 𝜌1/2𝐸′, so that 𝐻 and 𝐻 ′ are orthogonal in
the usual sense. Note that 𝐻 ′ is stable by 𝜌1/2𝑀𝜌−1/2 = 𝐷−1. The property
𝑀Π𝐸 = Π𝐸𝑀Π𝐸 rewrites as 𝐷−1Π = Π𝐷−1Π with Π the orthogonal
projector onto 𝐻. Moreover, 𝐹⊤𝐵𝜌 = 𝑀Π𝐸 rewrites as 𝑓⊤𝑏 = 𝐷−1Π.

Let 𝑏 be any matrix such that Im 𝑏⊤ = 𝐻 (e.g., made of a basis of𝐻 padded
with 0’s up to dimension 𝑟). Let 𝑏′ be its Moore–Penrose pseudoinverse.
Define 𝑓 := 𝑏′(𝐷−1)⊤. Then 𝑏𝑏⊤𝑓𝐷⊤ = 𝑏𝑏⊤𝑏′ = 𝑏 so that the first fixed point
equation 0 = 𝑏− 𝑏𝑏⊤𝑓𝐷⊤ is satisfied.

Since𝐷−1Π = Π𝐷−1Π, we have Π(𝐷−1)⊤ = Π(𝐷−1)⊤Π, thus 𝑏′Π(𝐷−1)⊤ =
𝑏′Π(𝐷−1)⊤Π. As above, Π = 𝑏⊤𝑏′. Therefore, 𝑏′𝑏⊤𝑏′(𝐷−1)⊤ = 𝑏′𝑏⊤𝑏′(𝐷−1)⊤Π.
Now, the Moore–Penrose pseudoinverse of 𝑏⊤ satisfies 𝑏′𝑏⊤𝑏′ = 𝑏′. Thus
𝑏′(𝐷−1)⊤ = 𝑏′(𝐷−1)⊤Π, namely, 𝑓 = 𝑓Π. Since 𝑓⊤𝑏 = 𝐷−1Π this rewrites as
𝑓 = 𝑓𝐷𝑓⊤𝑏, namely, the second fixed point equation is satisfied.

This proves that 𝐹⊤𝐵𝜌 satisfies the fixed point equations. Moreover,
given 𝐸, many such fixed points exist: a fixed point can be built using any
matrix 𝐵 which spans 𝐸, then defining 𝐹 from 𝐵.

Proof of Proposition 37. Denoting

𝑓 := 𝐹𝜌1/2, 𝑏 := 𝐵𝜌1/2, 𝐷 := (𝜌1/2Δ𝜌−1/2)⊤, (286)

91

the fixed point equations 𝛿𝐹 = 0 and 𝛿𝐵 = 0 for the backward TD updates
(280) rewrite as

0 = 𝑓 − 𝑓𝑓⊤𝑏𝐷⊤, 0 = 𝑏− 𝑏𝐷𝑏⊤𝑓. (287)

These are the same equations as (285) with 𝑓 and 𝑏 swapped. Therefore,
the same proof yields the following. Let Π be the orthogonal projector on
Im 𝑓⊤, we obtain that 𝑏⊤𝑓 is equal to 𝐷−1Π, and that Im Π is stable by 𝐷−1.

Equivalently, 𝑓⊤𝑏 is equal to Π(𝐷−1)⊤ and Ker Π is stable by (𝐷−1)⊤.
Set Π𝐸 := 𝜌−1/2Π𝜌1/2. Then Ker Π𝐸 is stable by 𝜌−1/2(𝐷−1)⊤𝜌1/2. More-

over, Π𝐸 is an 𝐿2(𝜌)-orthogonal projector.
Here (𝐷−1)⊤ = 𝜌1/2𝑀𝜌−1/2. Therefore, Ker Π𝐸 is stable by 𝑀 . Moreover,

the relationship 𝑓⊤𝑏 = Π(𝐷−1)⊤ rewrites as 𝐹⊤𝐵𝜌 = Π𝐸𝑀 .

Lemma 40. Let 𝜌 be an invariant probability distribution of 𝑃 . Then for
any vector 𝑓 ,

𝑓⊤𝜌(Id−𝛾𝑃)𝑓 = (1− 𝛾)E𝑠∼𝜌[𝑓(𝑠)2] + 𝛾

2E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)[(𝑓(𝑠)− 𝑓(𝑠′))2]
(288)

and in particular, this is positive for any nonzero 𝑓 .

Proof. The proof is left as an exercise. The second term is known as the
Dirichlet form of a Markov chain [DSC96], and plays an important role in
the convergence analysis of TD in some situations [Oll18].

Proof of Proposition 39. Denoting again

𝑓 := 𝐹𝜌1/2, 𝑏 := 𝐵𝜌1/2, 𝐷 := 𝜌1/2Δ𝜌−1/2, (289)

then the fixed point equations 𝛿𝐹 = 0 and 𝛿𝐵 = 0 in (279)–(280) for
backward TD for 𝐹 and forward TD for 𝐵 rewrite as

0 = 𝑓 − 𝑓𝐷𝑓⊤𝑏, 0 = 𝑏− 𝑏𝐷⊤𝑏⊤𝑓. (290)

Moreover, if 𝜌 is an invariant probability distribution of the Markov process,
then Lemma 40 implies

𝑥⊤𝐷𝑥 > 0 (291)

for any nonzero vector 𝑥.
We will work on 𝑓 , 𝑏, and 𝐷; the statements on 𝐹⊤𝐵𝜌 follow by unwinding

the change of variables.
(⇐). Assume that 𝑋 is an operator with image 𝐻 and kernel 𝐻⊥,

such that 𝑋 and Π𝐷Π are inverses as operators from 𝐻 to 𝐻, with Π the
orthogonal projector onto 𝐻. Let 𝑂 be any isometry from 𝐻 to R𝑟. Set
𝑓 = 𝑂Π and 𝑏 = 𝑂𝑋, so that 𝑓⊤𝑏 = Π𝑋 = 𝑋. Note that Im 𝑓⊤ = Im 𝑏⊤ = 𝐻.
Moreover, 𝑓Π = 𝑓 , and 𝑏Π = 𝑏 because 𝑋Π = 𝑋. So 𝑓⊤𝑏 and Π𝐷Π

92

are inverses as operators on 𝐻. Therefore, for any 𝑥, 𝑦 ∈ 𝐻, we have
𝑥⊤(Π𝐷Π)(𝑓⊤𝑏)𝑦 = 𝑥⊤𝑦 and 𝑥⊤(𝑓⊤𝑏)(Π𝐷Π)𝑦 = 𝑥⊤𝑦. Since 𝑥 and 𝑦 lie in 𝐻
and Im 𝑓⊤ = 𝐻, we can write 𝑥 = 𝑓⊤𝑧 and 𝑦 = Π𝑧′, with 𝑧 and 𝑧′ not
necessarily in 𝐻. Then 𝑥⊤(Π𝐷Π)(𝑓⊤𝑏)𝑦 = 𝑧⊤𝑓Π𝐷Π𝑓⊤𝑏Π𝑧′ = 𝑥⊤𝑦 = 𝑧⊤𝑓Π𝑧′

for any 𝑧 and 𝑧′ in the whole space. Since 𝑓Π = 𝑓 and 𝑏Π = 𝑏 this rewrites as
𝑧⊤𝑓𝐷𝑓⊤𝑏𝑧′ = 𝑧⊤𝑓𝑧′ for any 𝑧 and 𝑧′ in the whole space. Therefore, 𝑓𝐷𝑓⊤𝑏 = 𝑓 ,
namely, the first fixed point equation is satisfied. The second fixed point
equation 𝑏⊤ = 𝑓⊤𝑏𝐷𝑏⊤ is similar, starting with 𝑥⊤(𝑓⊤𝑏)(Π𝐷Π)𝑦 = 𝑥⊤𝑦 and
substituting 𝑥 = Π𝑧, 𝑦 = 𝑏⊤𝑧′.

(⇒). Assume that the two fixed point equations are satisfied. Since
𝑓 = 𝑓𝐷𝑓⊤𝑏 we have Ker 𝑏 ⊂ Ker 𝑓 . Using the other equation proves that
Ker 𝑓 ⊂ Ker 𝑏, thus 𝑓 and 𝑏 have the same kernel. Therefore 𝑓⊤ and 𝑏⊤ have
the same image. Let 𝐻 be this image, and let Π be the orthogonal projector
onto 𝐻.

The second fixed point equation is 𝑏⊤ = 𝑓⊤𝑏𝐷𝑏⊤. Thus 𝐻 = Im 𝑏⊤ =
Im 𝑓⊤𝑏𝐷𝑏⊤⊂ Im 𝑓⊤𝑏 ⊂ Im 𝑓⊤ = 𝐻. Therefore the image of 𝑓⊤𝑏 is 𝐻. Likewise,
the first equation 𝑓 = 𝑓𝐷𝑓⊤𝑏 implies that the kernel of 𝑓⊤𝑏 is 𝐻⊥.

Let us prove that 𝑓⊤𝑏 and Π𝐷Π are inverses as operators from 𝐻 to 𝐻.
This is equivalent to proving that for any 𝑥, 𝑦 ∈ 𝐻, we have 𝑥⊤(Π𝐷Π)(𝑓⊤𝑏)𝑦 =
𝑥⊤𝑦 and 𝑥⊤(𝑓⊤𝑏)(Π𝐷Π)𝑦 = 𝑥⊤𝑦. Since Im 𝑓⊤ = 𝐻, we can write 𝑥 = 𝑓⊤𝑧.
Hence 𝑥⊤(Π𝐷Π)(𝑓⊤𝑏)𝑦 = 𝑧⊤𝑓Π𝐷Π𝑓⊤𝑏𝑦. Since Im 𝑓⊤ = 𝐻 we have Π𝑓⊤ = 𝑓⊤

and 𝑓Π = Π, so 𝑧⊤𝑓Π𝐷Π𝑓⊤𝑏𝑦 = 𝑧⊤𝑓𝐷𝑓⊤𝑏𝑦, which is 𝑧⊤𝑓𝑦 = 𝑥⊤𝑦 by the first
fixed point equation. Therefore, we have 𝑥⊤(Π𝐷Π)(𝑓⊤𝑏)𝑦 = 𝑥⊤𝑦. For the other
equality, since Im 𝑏⊤ = 𝐻, we can write 𝑦 = 𝑏⊤𝑧. Hence 𝑥⊤(𝑓⊤𝑏)(Π𝐷Π)𝑦 =
𝑥⊤𝑓⊤𝑏Π𝐷Π𝑏⊤𝑧. Again, Π𝑏⊤ = 𝑏⊤ and 𝑏Π = 𝑏, so 𝑥⊤𝑓⊤𝑏Π𝐷Π𝑏⊤𝑧 = 𝑥⊤𝑓⊤𝑏𝐷𝑏⊤𝑧.
By the second fixed point equation, this is 𝑥⊤𝑏⊤𝑧 = 𝑥⊤𝑦. This proves the
claim.

Finally, let us turn to the statement about realizing any subspace 𝐸 this
way. Let 𝐸 be an arbitrary subspace of R#𝑆 , of dimension 𝑟. Let 𝐻 := 𝜌1/2𝐸.
Let Π be the rectangular orthogonal projector onto 𝐻 (namely, its range is
𝐻 only; its transpose Π⊤ is the inclusion map from 𝐻 to R#𝑆), and let 𝐴 be
any invertible linear map from 𝐻 to R𝑟. Set 𝑓 := 𝐴Π.

First, we claim that the square matrix 𝑓𝐷𝑓⊤ is invertible. Indeed, assume
there exists a vector 𝑥 ∈ R𝑟 such that 𝑓𝐷𝑓⊤𝑥 = 0. Then 𝑥⊤𝑓𝐷𝑓⊤𝑥 = 0.
By (291) this implies 𝑓⊤𝑥 = 0, or Π⊤𝐴⊤𝑥 = 0. Since 𝐴⊤𝑥 ∈ 𝐻 we have
Π⊤𝐴⊤𝑥 = 𝐴⊤𝑥, so 𝐴⊤𝑥 = 0. But since 𝐴 is invertible this implies 𝑥 = 0.
Therefore, 𝑓𝐷𝑓⊤ is invertible.

Then we set 𝑏 := (𝑓𝐷𝑓⊤)−1𝑓 . Let us check that the fixed point equations
are satisfied. Obviously, 𝑓 = 𝑓𝐷𝑓⊤𝑏, so the first fixed point equation holds.
For the second one, we have

𝑏𝐷⊤𝑏⊤𝑓 = (𝑓𝐷𝑓⊤)−1𝑓𝐷⊤𝑓⊤(𝑓𝐷⊤𝑓⊤)−1𝑓 = (𝑓𝐷𝑓⊤)−1𝑓 = 𝑏. (292)

Therefore, the second equation holds as well, so that 𝑓 and 𝑏 are a fixed
point of the bf-FB algorithm.

93

F The FB Representation and Bellman–Newton

F.1 The FB Representation Coincides With Bellman–Newton
for Symmetric 𝑃

Here we prove that the tabular FB updates (all four versions) coincide with
the Bellman–Newton update in the small-learning-rate (continuous-time)
limit, on-policy, with suitable initializations, and provided that the transition
matrix 𝑃 of the Markov process is symmetric.

On a finite space, if 𝑃 is symmetric then the uniform measure is an
invariant distribution of the process. Therefore, being on-policy means that
𝜌 is uniform.

Theorem 41 (The FB update is Bellman–Newton for sym-
metric 𝑃). Assume that the state space 𝑆 is finite, and that the transition
matrix 𝑃 is symmetric.

Let 𝜌 be the uniform distribution on 𝑆, which is invariant under the
Markov process. Let 𝜌 = 1

#𝑆 Id be the diagonal matrix with entries 𝜌.
Let 𝐹0 and 𝐵0 be two 𝑟 × #𝑆-matrices Consider the continuous-time

equation
d𝐹𝑡

d𝑡 = 𝛿𝐹,
d𝐵𝑡

d𝑡 = 𝛿𝐵 (293)

initialized at 𝐹0 and 𝐵0, where 𝛿𝐹 and 𝛿𝐵 are the tabular FB updates of
Proposition 34, computed at 𝐹𝑡 and 𝐵𝑡. Any of the four variants ff-FB,
fb-FB, bf-FB, bb-FB of Proposition 34 may be used.

Assume that 𝐹0 = 𝐵0. For the ff-FB, fb-FB, and bb-FB variants, further-
more assume that Δ commutes with 𝐹⊤

0𝐵0 (e.g., initialize to 𝐹0 = 𝐵0 = Id).
Let 𝑀𝑡 := 𝐹⊤

𝑡𝐵𝑡𝜌 be the resulting estimate of the successor state matrix.
Then 𝑀𝑡 evolves according to the Bellman–Newton update

d𝑀𝑡

d𝑡 = 𝜂𝑀𝑡 − 𝜂𝑀𝑡(Id−𝛾𝑃)𝑀𝑡 (294)

with learning rate 𝜂 = 2/#𝑆.

This bears some discussion with respect to feature learning. As discussed
elsewhere, the Bellman–Newton update does not learn features (the kernel
and image of 𝑀𝑡 are preserved), and neither does the bf-FB variant in the
case of uniform 𝜌. All other variants (ff-FB, bf-FB, bb-FB) learn features by
changing the kernel of 𝐹 or 𝐵, and have fixed points corresponding to various
eigenspaces of Δ (Appendix E). Thus, how is it possible that these FB updates
coincide with Bellman–Newton? This is where the assumption [Δ, 𝐹⊤

0𝐵0] = 0
comes in: this commutation occurs, broadly speaking, if 𝐹⊤

0𝐵0] is already
aligned with the eigenspaces of Δ. In that case, the FB updates will coincide
with Bellman–Newton and enjoy its improved asymptotic convergence. If
not, they will avoid the shortcoming of Bellman–Newton and learn features,
stabilizing to such an alignment.

94

Proof. We abbreviate 𝐹 ′
𝑡 for d𝐹𝑡/ d𝑡 and likewise for all other quantities.

According to Proposition 34, the forward-TD equations for 𝐹 and 𝐵 are

𝐹 ′
𝑡 = 𝐵𝑡𝜌−𝐵𝑡𝜌𝐵

⊤
𝑡𝐹𝑡Δ⊤𝜌, 𝐵′

𝑡 = 𝐹𝑡𝜌− 𝐹𝑡𝜌Δ𝐹⊤
𝑡𝐵𝑡𝜌 (295)

and the backward-TD equations are

𝐹 ′
𝑡 = 𝐵𝑡𝜌−𝐵𝑡(𝜌Δ)⊤𝐵⊤

𝑡𝐹𝑡𝜌, 𝐵′
𝑡 = 𝐹𝑡𝜌− 𝐹𝑡𝜌𝐹

⊤
𝑡𝐵𝑡𝜌Δ (296)

Here we have 𝜌 = 1
#𝑆 Id. Moreover, since 𝑃 is symmetric, we have Δ = Δ⊤.

Let us start with the bf-FB variant (backward-TD on 𝐹 and forward-TD
on 𝐵). In that case, the evolution equations are symmetric between 𝐹 and
𝐵, because Δ = Δ⊤. Therefore, if 𝐹 = 𝐵 at startup then 𝐹 = 𝐵 at all times.
Thus, we have 𝑀𝑡 = 𝐹⊤

𝑡 𝐹𝑡𝜌. Since 𝜌 is proportional to Id, it commutes with
all other terms. Thus, using 𝐹𝑡 = 𝐵𝑡 and Δ = Δ⊤, we find

𝑀 ′
𝑡 = (𝐹 ′

𝑡)⊤𝐹𝑡𝜌+ 𝐹⊤
𝑡 𝐹

′
𝑡𝜌 (297)

= 2𝐹⊤
𝑡 𝐹𝑡𝜌

2 − 2𝐹⊤
𝑡 𝐹𝑡Δ𝐹⊤

𝑡 𝐹𝑡𝜌
3 (298)

= 2𝑀𝑡𝜌− 2𝑀𝑡Δ𝑀𝑡𝜌 (299)

= 2
#𝑆 (𝑀𝑡 −𝑀𝑡Δ𝑀𝑡) (300)

as 𝜌 = 1
#𝑆 Id. This is the Bellman–Newton update.

In the other cases there is one more argument, after which the computation
is similar. At startup, by assumption we have 𝐹 = 𝐵 and Δ commutes
with 𝐹⊤𝐵. Assume that, at some particular time 𝑡, we have 𝐹𝑡 = 𝐵𝑡 and Δ
commutes with 𝐹⊤

𝑡𝐵𝑡. Then, since Δ = Δ⊤ and 𝜌 commutes with everything,
all the updates of 𝐹 and 𝐵 at that time 𝑡 amount to just

𝐹 ′
𝑡 = 𝐹𝑡𝜌− 𝐹𝑡𝐹

⊤
𝑡 𝐹𝑡Δ𝜌2. (301)

Therefore, at that time 𝑡, the derivative of the commutator between Δ and
𝐹⊤

𝑡𝐵𝑡 is

[Δ, 𝐹⊤
𝑡𝐵𝑡]′ = [Δ, (𝐹⊤

𝑡 𝐹𝑡)′] (302)
= [Δ, 2𝐹⊤

𝑡 𝐹𝑡𝜌− 𝐹⊤
𝑡 𝐹𝑡𝐹

⊤
𝑡 𝐹𝑡Δ𝜌2 −Δ𝐹⊤

𝑡 𝐹𝑡𝐹
⊤
𝑡 𝐹𝑡𝜌

2] (303)
= 0 (304)

since Δ commutes with 𝐹⊤
𝑡 𝐹𝑡 and 𝜌 commutes with everything.

Thus, if at some time 𝑡 one has 𝐹𝑡 = 𝐵𝑡 and Δ commutes with 𝐹⊤
𝑡𝐵𝑡,

then 𝐹𝑡 and 𝐵𝑡 have the same derivative at time 𝑡, and the derivative of
the commutator of Δ and 𝐹⊤

𝑡𝐵𝑡 is 0. Therefore, if these conditions hold
at startup, they hold at all times 𝑡. In that case, the evolution equations
become identical to the bf-FB case, and the conclusion holds as above.

95

F.2 The BN-FB update

Here we introduce Bellman–Newton FB (BN-FB), a variant of the FB updates
that coincides with Bellman–Newton in the tabular case for arbitrary 𝑃 , not
only symmetric 𝑃 . It is compatible with sampling, without the sampling
issues of the Bellman–Newton update, and admits a parametric version.

However, it still keeps the main shortcoming of the Bellman–Newton
update, namely, that the kernel and image of the estimate of 𝑀 are fixed
(no features are learned).

In the tabular case, let 𝐹 and 𝐵 be two 𝑟 ×#𝑆-matrices, and define the
updates

𝛿𝐹⊤ := 𝐹⊤− 𝐹⊤𝐵𝜌Δ𝐹⊤, 𝛿𝐵 = 𝐵 −𝐵𝜌Δ𝐹⊤𝐵 (305)

where as usual 𝜌 is the diagonal matrix with entries 𝜌, and Δ = Id−𝛾𝑃 .
The updates with learning rate 𝜂 lead to a Bellman–Newton udpate on

the model 𝑀 = 𝐹⊤𝐵𝜌:

𝐹 ← 𝐹 + 𝜂 𝛿𝐹, 𝐵 ← 𝐵 + 𝜂 𝛿𝐵

⇒ 𝑀 ← (1 + 𝜂)𝑀 − 𝜂𝑀Δ𝑀 +𝑂(𝜂2) (306)

at first order in 𝜂. In particular, the continuous-time dynamics will be an
exact Bellman–Newton update.

The parametric version is obtained as before, by approximating these ideal
updates in 𝜌-norm, and by sampling Δ using 𝜌Δ = E𝑠∼𝜌, 𝑠′∼𝑃 (d𝑠′|𝑠)(1𝑠1

⊤
𝑠−

𝛾1𝑠1
⊤
𝑠′). Letting 𝜃𝐹 and 𝜃𝐵 be the parameters of 𝐹 and 𝐵 respectively, this

yields
E𝑠1∼𝜌 (𝜕𝜃𝐹

𝐹 (𝑠1)⊤)(𝐹 (𝑠1)−𝐷⊤𝐹 (𝑠1)) (307)

for the update of the parameters of 𝐹 , and

E𝑠1∼𝜌 (𝜕𝜃𝐵
𝐵(𝑠1)⊤)(𝐵(𝑠1)−𝐷𝐵(𝑠1)) (308)

for the parameters of 𝐵. Here 𝐷 is an 𝑟 × 𝑟 matrix (even for continuous
states) given by

𝐷 := E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)𝐵(𝑠)(𝛾𝐹 (𝑠′)− 𝐹 (𝑠))⊤. (309)

It is possible to use a single sampled transition 𝑠 → 𝑠′ for 𝐷 (this option
requires no storage of 𝐷 since the updates simplify), or to estimate 𝐷 online
using a moving average over a number of past transitions 𝑠→ 𝑠′. This second
option reduces variance but introduces some bias due to old values in the
moving average.

G Sampling Simplified States for 𝑠1 and 𝑠2

This section addresses two potential shortcomings of the parametric TD and
Bellman–Newton algorithms for 𝑀 .

96

∙ The parametric updates for TD and for Bellman–Newton involve sam-
pling additional states 𝑠1 and 𝑠2 unrelated to the states 𝑠→ 𝑠′ currently
visited (and actually use every state 𝑠1 and 𝑠2 for the tabular case).
A simple option is to sample 𝑠1 and 𝑠2 at random among a dataset
of past visited states. But if actual states and transitions are few, or
complicated to come by, or if it is inconvenient to store many states
(pure online setting), sampling additional states according to the data
distribution 𝜌 may be a limitation.
We show that 𝑠1 and 𝑠2 can be sampled according to any “simple”
distribution 𝜌simple. This could help learning by making it possible to
use many samples of 𝑠1 and 𝑠2 for each observed transition 𝑠 → 𝑠′,
thus bringing the parametric updates closer to the tabular updates
(which use every 𝑠1 and 𝑠2).

∙ Defining 𝑚𝜃 as a density with respect to the unknown distribution 𝜌
may pose numerical problems: In regions where 𝑀 is not small but 𝜌 is
small, this attributes a large value to 𝑚𝜃, which may perturb learning.

Here, we show that using simplified states 𝑠1, 𝑠2 ∼ 𝜌simple in the paramet-
ric updates, and defining 𝑚𝜃 with respect to an arbitrary reference measure
𝜌ref on 𝒮, just amounts to using different learning rates on different parts
of the state, and different norms to define the parametric updates. Thus,
these simplified algorithms still make sense; however, proper factors must be
included, given in (310)–(312) below.

We consider three different measures on states: the main “data” measure
𝜌(d𝑠) from which we obtain observations 𝑠 → 𝑠′, and which we do not
control; a “simple”, user-chosen probability measure 𝜌simple from which we
can cheaply sample states, real or synthetic (such as a uniform distribution,
or a Gaussian with the same mean and variance as real states, or real
states with added Gaussian noise); and a user-chosen reference measure
𝜌ref used to parameterize 𝑀 via 𝑀(𝑠1, d𝑠2) = 𝛿𝑠1(d𝑠2) +𝑚𝜃(𝑠1, 𝑠2) 𝜌ref(d𝑠2).
The measure 𝜌ref is not necessarily of mass 1, and may for instance be the
Lebesgue measure.

We assume that the ratio 𝜌simple/𝜌ref is known; this is the case for
instance if we take 𝜌ref := 𝜌simple, or if 𝜌ref is the Lebesgue measure and
𝜌simple is Gaussian. The simplest case is to use an arbitrary 𝜌simple and set
𝜌ref = 𝜌simple: in that case all expressions are the same as before, but they
correspond to different learning rates at different states depending on 𝜌simple
(since 𝜌simple controls how we sample states), and to learning the density 𝑚𝜃

of 𝑀 with respect to 𝜌simple not 𝜌.

97

The parametric TD update for 𝑀 becomes

E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌simple

[︂
𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′) 𝜌simple(d𝑠′)

𝜌ref(d𝑠′)
+ 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2) (𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2))

]︀
. (310)

The parametric update (78) for 𝑉 becomes

(︀
𝑟𝑠 + 𝛾𝑉𝜙𝑡(𝑠′)− 𝑉𝜙𝑡(𝑠)

)︀ (︂
𝜕𝜙𝑉𝜙𝑡(𝑠)

𝜌simple(d𝑠)
𝜌ref(d𝑠)

+ E𝑠1∼𝜌simple [𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜙𝑉𝜙𝑡(𝑠1)]
)︂
.

(311)
The parametric Bellman–Newton update (66) for 𝑀 becomes

E𝑠1∼𝜌simple, 𝑠2∼𝜌simple

[︂
𝛾 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′) 𝜌simple(d𝑠)

𝜌ref(d𝑠)
𝜌simple(d𝑠′)
𝜌ref(d𝑠′)

+ 𝛾 𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠
′) 𝜌simple(d𝑠′)

𝜌ref(d𝑠′)

+(𝛾𝑚𝜃𝑡(𝑠′, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2))
(︂
𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2) 𝜌simple(d𝑠)

𝜌ref(d𝑠)
+𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)

)︂]︂
.

(312)

We now justify each of these updates in turn, by deriving them in the
same way as above, but using different norms and learning rates.

On the other hand, for various reasons this does not work for backward TD
(even if 𝜌 is the invariant distribution from the Markov process). Reversing
time changes the parameterization of 𝑀 : instead of Id +𝑚(𝑠1, 𝑠2)𝜌ref(d𝑠2)
with a user-chosen factor on 𝑠2, one gets a user-chosen factor on 𝑠1.

Given three measures 𝜌1, 𝜌2, and 𝜌ref (not necessarily of mass 1), and
two measure-valued functions 𝑀1(𝑠, d𝑠′) and 𝑀2(𝑠, d𝑠′) on 𝒮, we define the
norm

‖𝑀1 −𝑀2‖2𝜌1,𝜌2,𝜌ref
:=
∫︁∫︁

(𝑚1(𝑠, 𝑠′)−𝑚2(𝑠, 𝑠′))2 𝜌1(d𝑠) 𝜌2(d𝑠′) (313)

where 𝑚1(𝑠, 𝑠′) := 𝑀1(𝑠, d𝑠′)/𝜌ref(d𝑠′) is the density of 𝑀1 with respect to
𝜌ref (if it exists; if not, the norm is infinite), and likewise for 𝑀2. This
generalizes the norm (1).

Theorem 42 (TD for successor states with function ap-
proximation and simple sample states). Maintain a parametric
model of 𝑀 via 𝑀𝜃𝑡(𝑠1,d𝑠2) = 𝛿𝑠1(d𝑠2) + 𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌ref(d𝑠2), with 𝜃𝑡 the
value of the parameter at step 𝑡, and with 𝑚𝜃 some smooth family of functions
over pairs of states.

Define a target update of𝑀 via the Bellman equation, 𝑀 tar := Id +𝛾𝑃𝑀𝜃𝑡 .
Define the loss between 𝑀 and 𝑀 tar via 𝐽(𝜃) := 1

2
⃦⃦
𝑀𝜃 −𝑀 tar⃦⃦2

𝜌,𝜌simple,𝜌ref

using the norm (313).
Then the update (310) is equal to the gradient step −𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡

.

98

For the updates of 𝑉 and 𝑀 , we will assume that we learn the implicit
Markov process 𝑃 and �̂� with state-dependent learning rates inversely
proportional to 𝜌ref . (The standard case has 1/𝑛𝑠 for the learning rates;
since 𝑛𝑠 ∼ 𝑡𝜌𝑠, this produces learning rates inversely proportional to 𝜌.)

Namely, let 𝜂𝑡 → 0 be an overall learning rate schedule. Upon observing
a transition 𝑠→ 𝑠′ with reward 𝑟𝑠, learn 𝑃 and �̂� via

𝑃𝑠𝑠2 ← 𝑃𝑠𝑠2 + 𝜂𝑡

𝜌ref(𝑠)
(1𝑠2=𝑠′ − 𝑃𝑠𝑠2) ∀𝑠2 (314)

�̂�𝑠 ← �̂�𝑠 + 𝜂𝑡

𝜌ref(𝑠)
(𝑟𝑠 − �̂�𝑠). (315)

Thus, different states learn at different speeds, but this still converges to the
true values when 𝑡→∞.

Theorem 43 (Value function update via successor states
with simple sample states). Consider the empirical estimates 𝑃 and
�̂� of a finite Markov reward process. Let 𝑠 → 𝑠′ be the transition in the
Markov process observed at step 𝑡, with reward 𝑟𝑠. Let 𝛿𝑉 be the update of
the value function (Id−𝛾𝑃)−1�̂� of the estimated process when 𝑃 and �̂� are
updated by (314)–(315).

Given a parametric model 𝑉𝜙 of the value function, define a target
update of 𝑉 via 𝑉 tar := 𝑉𝜙𝑡 + 𝛿𝑉 with 𝜙𝑡 the parameter at step 𝑡. Define
the loss between 𝑉 and 𝑉 tar via 𝐽𝑉 (𝜙) := 1

2
⃦⃦
𝑉𝜙 − 𝑉 tar⃦⃦2

𝐿2(𝜌simple). Assume
�̂� = (Id−𝛾𝑃)−1 is given by (16).

Then, up to 𝑂(𝜂2
𝑡), the gradient step −𝜕𝜙𝐽

𝑉 (𝜙)𝜙=𝜙𝑡 is 𝜂𝑡 times (311).

Theorem 44 (Successor states via online inversion, with
function approximation and simple sample states). Maintain
a parametric model of 𝑀 via 𝑀𝜃𝑡(𝑠1,d𝑠2) = 𝛿𝑠1(d𝑠2) +𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌ref(d𝑠2),
with 𝜃𝑡 the value of the parameter at step 𝑡, and with 𝑚𝜃 some smooth family
of functions over pairs of states.

Let 𝑠 → 𝑠′ be the transition in the Markov process observed at step 𝑡,
with reward 𝑟𝑠. Let 𝛿𝑀 be the update of (Id−𝑃)−1 corresponding to the
update (314) of 𝑃 .

Define a target update of 𝑀 by 𝑀 tar := 𝑀𝜃𝑡 + 𝛿𝑀 . Define the loss
between 𝑀 and 𝑀 tar via 𝐽(𝜃) := 1

2
⃦⃦
𝑀𝜃 −𝑀 tar⃦⃦

𝜌simple,𝜌simple,𝜌ref
using the

norm (313).
Then, up to 𝑂(𝜂2

𝑡) the gradient step −𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
is 𝜂𝑡 times (312).

The proofs of these theorems are identical to their analogues with a
single measure 𝜌, up to tracking where 𝜌simple and 𝜌ref appear instead of 𝜌
at suitable places; they are omitted.

99

H Formal Approach to Theorem 21 for Continu-
ous Environments

Contrary to TD on 𝑀 , for Theorem 21, we have defined the update for a
single transition 𝑠→ 𝑠′. The resulting parametric update makes sense in any
state space. But strictly speaking, this restricts the statement of Theorem 21
to discrete spaces, since it is defined via the tabular update (61) which is
defined only in discrete spaces.

For TD on 𝑀 in general spaces (Theorem 6), we directly defined the
Bellman operator on any space; the Bellman operator does not depend on a
single transition 𝑠→ 𝑠′, but it updates all states 𝑠 at once.

It is possible to proceed analogously for Theorem 21: this provides a
rigorous proof of Theorem 21 for general state spaces, in expectation over
the transition 𝑠→ 𝑠′.

We first have to define the analogue of the Bellman operator. We do
this by going back to discrete states and averaging the updates 𝛿𝑀 and 𝛿𝑉
over transitions 𝑠→ 𝑠′. Averaging (61) and (62) yields (omitting again the
𝑜(1/𝑛𝑠) = 𝑜(1/𝑡) terms)

E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ 𝛿𝑀𝑠1𝑠2 =
∑︁

𝑠

∑︁
𝑠′

𝜌𝑠

𝑛𝑠
𝑃𝑠𝑠′�̂�𝑠1𝑠(1𝑠2=𝑠 + 𝛾�̂�𝑠′𝑠2 −𝑀𝑠𝑠2) (316)

and
E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ 𝛿𝑉𝑠1 =

∑︁
𝑠

∑︁
𝑠′

𝜌𝑠

𝑛𝑠
𝑃𝑠𝑠′(𝑟𝑠 + 𝛾𝑉𝑠′ − 𝑉𝑠)�̂�𝑠1𝑠. (317)

Once more, since 𝑛𝑠 ∼ 𝑡𝜌𝑠 when 𝑠→∞, we have 𝜌𝑠

𝑛𝑠
= 1/𝑡+ 𝑜(1/𝑡). Thus,

up to 𝑜(1/𝑡) terms, the above rewrite as

E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ 𝛿𝑀𝑠1𝑠2 = 1
𝑡

∑︁
𝑠

∑︁
𝑠′

𝑃𝑠𝑠′�̂�𝑠1𝑠(1𝑠2=𝑠 + 𝛾�̂�𝑠′𝑠2 −𝑀𝑠𝑠2) (318)

E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ 𝛿𝑉𝑠1 = 1
𝑡

∑︁
𝑠

∑︁
𝑠′

𝑃𝑠𝑠′(𝑟𝑠 + 𝛾𝑉𝑠′ − 𝑉𝑠)�̂�𝑠1𝑠. (319)

Since
∑︀

𝑠′ 𝑃𝑠𝑠′ = 1 and
∑︀

𝑠,𝑠′ �̂�𝑠1𝑠𝑃𝑠𝑠′�̂�𝑠′𝑠2 = (�̂�𝑃�̂�)𝑠1𝑠2 and likewise∑︀
𝑠 �̂�𝑠1𝑠�̂�𝑠𝑠2 = (�̂�2)𝑠1𝑠2 , the update of 𝑀 rewrites as

E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ 𝛿𝑀 = 1
𝑡 (�̂� + 𝛾�̂�𝑃�̂� − �̂�2). (320)

Likewise, for the update of 𝑉 , since E𝑟𝑠 = 𝑅𝑠 and
∑︀

𝑠′ 𝑃𝑠𝑠′(𝛾𝑉𝑠′ − 𝑉𝑠) =
(𝛾𝑃𝑉 − 𝑉)𝑠, we have

E𝑠∼𝜌, 𝑠′∼𝑃𝑠𝑠′ 𝛿𝑉 = 1
𝑡 �̂�(𝑅+ 𝛾𝑃𝑉 − 𝑉). (321)

Thus, in the continuous case, we can define target updates at step 𝑡 by

𝑀 tar := 𝑀𝜃𝑡 + 1
𝑡
(𝑀𝜃𝑡 −𝑀𝜃𝑡(Id−𝛾𝑃)𝑀𝜃𝑡) (322)

100

(well-defined for continuous states as an operator on functions) and

𝑉 tar := 𝑉𝜙𝑡 + 1
𝑡
𝑀𝜃𝑡(𝑅+ 𝛾𝑃𝑉𝜙𝑡 − 𝑉𝜙𝑡) (323)

and define, as before, the losses

𝐽(𝜃) := 1
2

⃦⃦⃦
𝑀𝜃 −𝑀 tar

⃦⃦⃦2

𝜌
(324)

and
𝐽𝑉 (𝜙) := 1

2

⃦⃦⃦
𝑉𝜙 − 𝑉 tar

⃦⃦⃦2

𝐿2(𝜌)
. (325)

From now on we only work with 𝑀 , as the computation for 𝑉 is similar
but simpler.

As in the proof of Theorem 6, by definition of 𝐽(𝜃) and of the norm ‖·‖𝜌,
we have

𝐽(𝜃) = 1
2

∫︁∫︁
𝑗𝜃(𝑠1, 𝑠2)2 𝜌(d𝑠1)𝜌(d𝑠2) (326)

and
𝜕𝜃𝐽(𝜃) =

∫︁∫︁
𝑗𝜃(𝑠1, 𝑠2) 𝜕𝜃𝑗𝜃(𝑠1, 𝑠2)𝜌(d𝑠1)𝜌(d𝑠2) (327)

where
𝑗𝜃(𝑠1, 𝑠2) := (𝑀 tar(𝑠1,d𝑠2)−𝑀𝜃(𝑠1, d𝑠2))/𝜌(d𝑠2) (328)

Since 𝑀 tar does not depend on 𝜃 (it depends on 𝜃𝑡, but we optimize with
respect to 𝜃 for fixed 𝑀 tar), we have

𝜕𝜃𝑗𝜃(𝑠1, 𝑠2) = 𝜕𝜃

(︂
−𝑀𝜃(𝑠1,d𝑠2)

𝜌(d𝑠2)

)︂
= −𝜕𝜃𝑚𝜃(𝑠1, 𝑠2) (329)

in the parameteriation 𝑀𝜃(𝑠1, d𝑠2) = Id +𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2).
Consequently, by (327), (328) and (329), at 𝜃 = 𝜃𝑡 we have

−𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
=
∫︁∫︁ (︃

𝑀 tar(𝑠1, d𝑠2)−𝑀𝜃𝑡(𝑠1,d𝑠2)
𝜌(d𝑠2)

)︃
𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)𝜌(d𝑠2)

(330)

=
∫︁∫︁ (︁

𝑀 tar(𝑠1, d𝑠2)−𝑀𝜃𝑡(𝑠1,d𝑠2)
)︁
𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)

(331)

Define 𝐴𝜃 := 𝑀𝜃−Id. By definition of the parameterization𝑀𝜃(𝑠1,d𝑠2) =
Id +𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2), we have

𝐴𝜃(𝑠1, d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2). (332)

By a direct but tedious substitution of 𝑀𝜃𝑡 = Id +𝐴𝜃𝑡 in the expression
(322) for 𝑀 tar, we find

𝑀 tar −𝑀𝜃𝑡 = 1
𝑡 (𝛾𝑃 + 𝛾𝐴𝜃𝑡𝑃 + 𝛾𝑃𝐴𝜃𝑡 −𝐴𝜃𝑡 +𝐴𝜃𝑡𝛾𝑃𝐴𝜃𝑡 −𝐴2

𝜃𝑡
) (333)

101

as operators, with the product of operator denoting composition. (For in-
stance, for a function 𝑓 , the operator 𝑃𝐴 acts by (𝑃𝐴𝑓)(𝑠) =

∫︀
𝑃 (𝑠, d𝑠′)𝐴(𝑠′,d𝑠2)𝑓(𝑠2).)

Let us study the contributions of all the terms of 𝑀 tar −𝑀𝜃𝑡 to the
gradient step (331). The 𝛾𝑃 term provides a contribution∫︁∫︁

𝛾𝑃 (𝑠1,d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1) = 𝛾E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′) 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′). (334)

Next, by (332) we have

(𝐴𝜃𝑡𝑃)(𝑠1, d𝑠2) =
∫︁
𝐴𝜃𝑡(𝑠1, d𝑠)𝑃 (𝑠, d𝑠2) (335)

=
∫︁
𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(d𝑠)𝑃 (𝑠, d𝑠2) (336)

and therefore, the 𝛾𝐴𝜃𝑡𝑃 term provides a contribution∫︁∫︁
𝛾(𝐴𝜃𝑡𝑃)(𝑠1,d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)

= 𝛾

∫︁∫︁∫︁
𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(d𝑠)𝑃 (𝑠, d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)

= 𝛾E𝑠1∼𝜌, 𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)[𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠
′)]. (337)

Next, by (332) we have

(𝑃𝐴𝜃𝑡)(𝑠, d𝑠2) =
∫︁
𝑃 (𝑠, d𝑠′)𝐴𝜃𝑡(𝑠′, d𝑠2) = E𝑠′∼𝑃 (𝑠,d𝑠′)𝑚𝜃𝑡(𝑠′, 𝑠2)𝜌(d𝑠2)

(338)
and therefore, the 𝛾𝑃𝐴𝜃𝑡 term provides a contribution∫︁∫︁

𝛾(𝑃𝐴𝜃𝑡)(𝑠1,d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1) = 𝛾E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌𝑚𝜃𝑡(𝑠′, 𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2)
(339)

and by (332), the term −𝐴𝜃𝑡 provides a contribution

−
∫︁∫︁

𝐴𝜃𝑡(𝑠1,d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1) = −E𝑠∼𝜌, 𝑠2∼𝜌𝑚𝜃𝑡(𝑠, 𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠2).
(340)

Next, the term −𝐴2
𝜃𝑡

provides a contribution

−
∫︁∫︁

(𝐴2
𝜃𝑡

)(𝑠1, d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)

= −
∫︁∫︁∫︁

𝐴𝜃𝑡(𝑠1, d𝑠)𝐴𝜃𝑡(𝑠, d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)

= −
∫︁∫︁∫︁

𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(d𝑠)𝑚𝜃𝑡(𝑠, 𝑠2)𝜌(d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)

= −E𝑠∼𝜌, 𝑠1∼𝜌, 𝑠2∼𝜌𝑚𝜃𝑡(𝑠1, 𝑠)𝑚𝜃𝑡(𝑠, 𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2). (341)

102

For the final tem 𝛾𝐴𝜃𝑡𝑃𝐴𝜃𝑡 , observe that

(𝐴𝜃𝑡𝑃𝐴𝜃𝑡)(𝑠1, d𝑠2) =
∫︁∫︁

𝐴𝜃𝑡(𝑠1,d𝑠)𝑃 (𝑠, d𝑠′)𝐴𝜃𝑡(𝑠′,d𝑠2) (342)

=
∫︁∫︁

𝑚𝜃𝑡(𝑠1, 𝑠)𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝑚𝜃𝑡(𝑠′,𝑠2)𝜌(d𝑠2) (343)

= E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)𝑚𝜃𝑡(𝑠1, 𝑠)𝑚𝜃𝑡(𝑠′, 𝑠2)𝜌(d𝑠2) (344)

and therefore, the contribution of the term 𝛾𝐴𝜃𝑡𝑃𝐴𝜃𝑡 is

𝛾

∫︁∫︁
(𝐴𝜃𝑡𝑃𝐴𝜃𝑡)(𝑠1, d𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)𝜌(d𝑠1)

= 𝛾E𝑠1∼𝜌, 𝑠2∼𝜌, 𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)𝑚𝜃𝑡(𝑠1, 𝑠)𝑚𝜃𝑡(𝑠′,𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2). (345)

Collecting everything, we find

−𝜕𝜃𝐽(𝜃)|𝜃=𝜃𝑡
= E𝑠1∼𝜌, 𝑠2∼𝜌, 𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′)

[︀
𝛾𝜕𝜃𝑚𝜃𝑡(𝑠, 𝑠′) + 𝛾𝑚𝜃𝑡(𝑠1, 𝑠) 𝜕𝑚𝜃𝑡(𝑠1, 𝑠

′)
+ 𝛾𝑚𝜃𝑡(𝑠′, 𝑠2) 𝜕𝑚𝜃𝑡(𝑠, 𝑠2)−𝑚𝜃𝑡(𝑠, 𝑠2) 𝜕𝑚𝜃𝑡(𝑠, 𝑠2)

−𝑚𝜃𝑡(𝑠1, 𝑠)𝑚𝜃𝑡(𝑠, 𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2) + 𝛾𝑚𝜃𝑡(𝑠1, 𝑠)𝑚𝜃𝑡(𝑠′, 𝑠2) 𝜕𝜃𝑚𝜃𝑡(𝑠1, 𝑠2)
]︀
.

(346)

This is the expectation over 𝑠 ∼ 𝜌, 𝑠′ ∼ 𝑃 (𝑠, d𝑠′), of the update (66). This
formally proves Theorem 21 for general state spaces, in expectation over
(𝑠, 𝑠′).

I Background on Singular Value Decompositions
In the text, we often work with the space of functions over 𝑆 equipped
with the 𝐿2(𝜌) norm. Since 𝜌 ̸= Id, we include here a reminder on how
the usual notions of Euclidean vector spaces play out in non-orthonormal
bases. We also include details on what constitutes a “truncated singular
value decomposition”.

A Euclidean vector space 𝐸 is a finite-dimensional vector space equipped
with a dot product; the dot product is given by some symmetric, positive
definite matrix 𝑞 in some basis, namely, ⟨𝑥, 𝑦⟩𝐸 = 𝑥⊤𝑞𝑦 for any vectors 𝑥 and
𝑦.

If 𝐴 : 𝐸1 → 𝐸2 is a linear map between two Euclidean spaces, its adjoint
𝐴* is the map from 𝐸2 to 𝐸1 such that ⟨𝑦,𝐴𝑥⟩𝐸2 = ⟨𝐴*𝑦, 𝑥⟩𝐸1 for any
vectors 𝑥 ∈ 𝐸1 and 𝑦 ∈ 𝐸2. Expressed in bases of 𝐸1 and 𝐸2, its matrix is
𝐴* = 𝑞−1

1 𝐴⊤𝑞2, or just 𝐴⊤ if the bases are orthonormal.
Such a map 𝐴 is orthogonal if 𝐴𝐴* = Id𝐸2 and 𝐴*𝐴 = Id𝐸1 .
The Hilbert–Schmidt norm for an operator 𝑀 on a Euclidean vector

space is Tr(𝑀*𝑀) where 𝑀* is the adjoint of 𝑀 . In an orthonormal basis
this is Tr(𝑀⊤𝑀) viewing 𝑀 as a matrix, but in a non-orthonormal basis
this is Tr(𝑞−1𝑀⊤𝑞𝑀) where 𝑞 is the matrix defining the norm in the basis.

103

A singular value decomposition of such a map 𝐴 is a triplet of linear
maps 𝑈 : Rdim(𝐸2) → 𝐸2, 𝐷 : Rdim(𝐸1) → Rdim(𝐸2) and 𝑉 : Rdim(𝐸1) → 𝐸1
such that 𝐴 = 𝑈𝐷𝑉 *, 𝑈 and 𝑉 are orthogonal, and 𝐷 is rectangular
diagonal. Equivalently, a singular value decomposition can be written as
𝐴𝑥 =

∑︀
𝑖 𝑢𝑖𝑑𝑖⟨𝑣𝑖, 𝑥⟩𝐸1 where each 𝑑𝑖 > 0, the 𝑢𝑖’s make an orthonormal

family in 𝐸2, and the 𝑣𝑖’s make an orthonormal family in 𝐸1 (or equivalently,
an orthonormal family of linear forms on 𝐸1 by identifying 𝑣𝑖 with the map
𝑥 ↦→ ⟨𝑣𝑖, 𝑥⟩𝐸1).

Definition 45 (Truncated SVD). A linear map 𝐵 is a truncated
singular value decomposition of a linear map 𝐴 : 𝐸1 → 𝐸2 if there is a
singular value decomposition 𝐴 = 𝑈𝐷𝑉 * of 𝐴 and a rectangular diagonal
matrix 𝐷′ such that 𝐷′ is obtained from 𝐷 by replacing some elements with
0, and 𝐵 = 𝑈𝐷′𝑉 *.

Lemma 46. A linear map 𝐵 : 𝐸1 → 𝐸2 is a truncated singular value
decomposition of 𝐴 : 𝐸1 → 𝐸2 if and only if 𝐴 and 𝐵 are equal on (Ker𝐵)⊥

and the image of Ker𝐵 by 𝐴 is orthogonal to the image of 𝐵.

Proof. (⇐) Define 𝐸′
1 = Ker𝐵 and 𝐸′′

1 = (Ker𝐵)⊥ so that 𝐸1 = 𝐸′
1 ⊕ 𝐸′′

1 .
Let 𝐴′ and 𝐴′′ be the restrictions of 𝐴 to 𝐸′

1 and 𝐸′′
1 respectively, so that

𝐴 = 𝐴′ +𝐴′′. Define 𝐵′ and 𝐵′′ likewise.
Since 𝐸′

1 is Ker𝐵, we have 𝐵′ = 0 so 𝐵 = 𝐵′′.
By assumption, 𝐴 and 𝐵 are equal on 𝐸′′

1 . Therefore, 𝐴′′ = 𝐵′′, so
𝐵 = 𝐴′′.

By assumption, the image of 𝐸′
1 by 𝐴 is orthogonal to the image of 𝐵.

The former is Im𝐴′ while the latter is Im𝐴′′. Therefore, Im𝐴′⊥ Im𝐴′′.
Consider singular value decompositions of 𝐴′ and 𝐴′′ as 𝐴′ =

∑︀
𝑖 𝑢

′
𝑖𝑑

′
𝑖𝑣

′
𝑖

and 𝐴′′ =
∑︀

𝑗 𝑢
′′
𝑗𝑑

′′
𝑗 𝑣

′′
𝑗 , where the 𝑑′

𝑖 are positive real numbers, the 𝑢′
𝑖 are an

orthonormal basis of Im𝐴′, the 𝑣′
𝑖 are an orthonormal set of linear forms on

𝐸′
1, and likewise for 𝐴′′. (Any zero singular values have been dropped in this

decomposition.)
Since Im𝐴′⊥ Im𝐴′′, the 𝑢′

𝑖 ’s are orthogonal to the 𝑢′′
𝑗 ’s. Likewise, since

the decomposition 𝐸1 = 𝐸′
1 ⊕ 𝐸′′

1 is orthogonal, the 𝑣′
𝑖 ’s are orthogonal to

the 𝑣′′
𝑗 ’s as linear forms on 𝐸1.

It follows that
∑︀

𝑖 𝑢
′
𝑖𝑑

′
𝑖𝑣

′
𝑖 +

∑︀
𝑗 𝑢

′′
𝑗𝑑

′′
𝑗 𝑣

′′
𝑗 is a singular value decomposition

of 𝐴 (with the zero singular values omitted). Since 𝐵 = 𝐴′′,
∑︀

𝑗 𝑢
′′
𝑗𝑑

′′
𝑗 𝑣

′′
𝑗 is a

singular value decomposition of 𝐵, so that 𝐵 is a truncated SVD of 𝐴.
(⇒) Let 𝐴 = 𝑈𝐷𝑉 * and 𝐵 = 𝑈𝐷′𝑉 * as in Definition 45. Up to swapping

rows and columns, we can assume that the nonzero entries of 𝐷 and 𝐷′

are located in the first rows. Let 𝑘 be the number of nonzero entries in 𝐷′.
Then Ker𝐷′ is spanned by the last dim(𝐸1) − 𝑘 basis vectors in Rdim(𝐸1),
and (Ker𝐷′)⊥ is spanned by the first 𝑘 basis vectors. Thus, by construction,
𝐷 and 𝐷′ coincide on (Ker𝐷′)⊥. Moreover, Im𝐷′ is spanned by the first

104

𝑘 basis vectors, and 𝐷(Ker𝐷′) is spanned by the last dim(𝐸1) − 𝑘 basis
vectors, so Im𝐷′ and 𝐷(Ker𝐷′) are orthogonal.

Since 𝐴 = 𝑈𝐷𝑉 * and 𝐵 = 𝑈𝐷′𝑉 *, and since 𝑈 is invertible, 𝐴 and 𝐵
are equal on (Ker𝐵)⊥ if and only if 𝐷𝑉 * and 𝐷′𝑉 * are equal on (Ker𝐵)⊥.
Since 𝑉 * is invertible, this happens if and only if 𝐷 and 𝐷′ are equal on
𝑉 *((Ker𝐵)⊥). Since 𝑉 * is orthogonal, the latter is (𝑉 *(Ker𝐵))⊥.

Since 𝑈 and 𝑉 are orthogonal, hence invertible, one has Ker𝐵 =
Ker(𝑈𝐷′𝑉 *) = Ker(𝐷′𝑉 *) = 𝑉 (Ker𝐷′). Hence 𝑉 *(Ker𝐵) = Ker𝐷′. Thus,
we need 𝐷 and 𝐷′ to be orthogonal on Ker𝐷′, which we have established
above.

Next, let us prove that𝐴(Ker𝐵)⊥ Im𝐵, namely, that 𝑈𝐷𝑉 *(Ker𝐵)⊥ Im(𝑈𝐷′𝑉 *).
Since 𝑈 is orthogonal, this is equivalent to 𝐷𝑉 *(Ker𝐵)⊥ Im(𝐷′𝑉 *). We
have seen that 𝑉 *(Ker𝐵) = Ker𝐷′; moreover Im(𝐷′𝑉 *) ⊂ Im(𝐷′), so it is
enough to prove that 𝐷(Ker𝐷′)⊥ Im𝐷′, which we have established above.
This proves the first part of the equivalence.

105

	Introduction, Overview of Results
	Notation for Markov Reward Processes
	The Successor State Operator of a Markov Process
	The Successor State Matrix in a Finite State Space
	The Successor State Operator in a General State Space

	TD Algorithms for Deep Successor State Learning
	The (Forward) TD Algorithm for Successor States
	The Forward Bellman Equation
	Forward TD for Successor States: Tabular Case
	Forward TD for Successor States: Function Approximation
	Infinitely Sparse Rewards and Forward TD vs TD on State-Goal Pairs
	Convergence properties for TD on successor states
	Variants of Forward TD: Target Networks, Multi-Step Returns, =1, Using Features as Targets...

	Backward TD for Successor States
	Path Combinatorics Interpretation: Incorporating Newly Observed Transitions

	Multiple Policies: Goal-Dependent Q and V functions
	The Optimal Q-function for Every Goal State
	Value and Q Functions with State Features as Goals
	Existence and Uniqueness of Optimal Successor States

	Matrix Factorization and the Forward-Backward (FB) Representation
	Advantages of Matrix Factorization for M
	The TD Updates for the FB Representation of M

	Second-Order Methods for Successor States: Implicit Process Estimation and Bellman–Newton
	Estimating a Markov Process Online
	The Bellman–Newton Operator
	Parametric Bellman–Newton Update
	Discussion: strengths and weaknesses of second-order approaches

	Learning Value Functions and Policies via Successor States
	Small Learning Rates and the Continuous-Time Analysis
	Continuous-Time Analysis of the Forward and Backward Bellman Operators
	Mixing Forward and Backward TD Improves Convergence
	Continuous-Time Analysis of the Bellman–Newton Operator

	Further Variants and Properties of TD for Successor States
	Using a Target Network
	TD on M with Multi-Step Returns
	Tabular TD on MR Is Tabular TD on V
	The Parametric Update for Backward TD
	Having Targets on Features of the State
	Taking Close to 1: Relative TD

	Proofs for Sections 3, 4, 5, 7, 8, and Appendix A
	Proofs for Sections 3 and 4: TD for M
	Proofs for Appendix A: Further properties of TD for M
	Proofs for Section 5: Goal-Dependent Methods
	Examples of MDPs with Infinite Mass for Q
	Proofs for Sections 7 and 8: Second-Order Methods

	The Bellman–Newton Operator and Path Composition
	Successor States, Eligibility Traces, and the Backward Process
	Fixed Points for the FB Representation of M
	The FB Representation and Bellman–Newton
	The FB Representation Coincides With Bellman–Newton for Symmetric P
	The BN-FB update

	Sampling Simplified States for s1 and s2
	Formal Approach to Theorem 21 for Continuous Environments
	Background on Singular Value Decompositions

