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Abstract We investigate how the space-time of a vacuum Schwarzsbkhiltk hole would appear if observed with a finite
precision in the measurements of the spatial Kerr-Schitddioates. For this we use the general procedure for evadpatean
gravitational fields recently presented in (Debbasch 2D04ls found that the black hole would then appear as sudedn

by an apparent matter characterized by a negative energjtylamd two dfferent pressures, a negative and a positive one.
The total combined féect of the apparent matter leads to a space-time of negaidlarscurvature, like de Sitter space-time.
However, the ‘magnitude’ of the trace-free Ricci tensorgdoet vanish for this space-time, where as it does for derSipizce-
time. Possible cosmological implications, concerningabauation of the mean density of the Universe and the casgieal
constant, are also discussed.
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Notations

In this article, space-time indices running from 0 to 3 wélindicated by Greek letters. The metric signature will-be-( —, -).
We also have chosen, as a rutefto use the so-called intrinsic notation irfférential geometry, but to use the notation standard
in physics, which denotes each tensor by its components.

1. Introduction

Every observation is necessarily finite. it deals with a finite number of quantities, observed or mesbwith a finite precision.
This explains why mean field theories play such an importaatin physics. It will therefore come as no surprise thaedigping

a mean field approach to relativistic gravitation has beerstibject of active research for more than a decade (Futat88de
1993; Kasai 1992; Futamase 1996; Zalaletdinov 1997; Bu@®€10, 2001). This conceptually and practically crucialtgem

has been recently solved in a rather general way (DebbadtAb2d). It has been shown that, given a statistical ensemble
of space-times sharing a common topology, it makes bothenadtical and physical sense to define the mean (or apparent, o
coarse-grained) space-time associated with this enseasldespace-time of the same topology, but where the gravitdtiield

is represented by a metric which is simply the average of teics corresponding to the various space-times membérs of

This apparently very innocuous result has however seveadiceconsequences. One of them is that the separation betwe
the gravitational field and the matter degrees of freedonedigtdepends on the precision of the observations (Deltii23@4b).
Let us consider the following particular situation. Suppasregion? of space-time is observed with a certain finite precision
and that the observations indicate that no matter is présedf but only a non-vanishing gravitational field. Then, gecaliy,
other observations carried out with &fdrent (greater or lesser) precision will indicate tiatontains both matter and a non-
vanishing gravitational field. The aim of this article is tvéstigate this ‘purely relativistic’féect on a perhaps academic but
de factosimple and hopefully illuminating example, where most aldtions can be made completely explicit. More precisely,
we consider the Schwarzschild black hole, which is one ofsthwlest vacuum solutions to Einstein’s equation and weystu
how a finite precision in coordinate measurements can madkektlike a non-vacuum solution to the general relativisitgtd
equations.

The material is organized as follows. Section 2 reviews sbasc results about ensembles of space-times and about the
properties of the mean or coarse-grained gravitational figth which they are associated. Section 3 introduces thgcpéar
statistical ensemble which will be considered in this &etitt is notably explained why averaging over this statstiensemble
can be interpreted as observing a Schwarzschild black hittreaxfinite precision. In Section 4, we calculate the mearrimet
associated with this statistical ensemble and, in SectitheSstress-energy tensor of the apparent matter whichsseesarround
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the black hole is explicitly evaluated as a function of tharse-graining; the calculation is a perturbative one analisl for
points whose radial (Schwarzschild) coordinates are margel than the coarse-graining itself. At lowest ordes found that

the apparent matter can be characterized by an energy ylensittwo diferent pressures; the energy density and one of the
pressures is negative, while the other pressure is posiiv¢hree quantities decrease towards zero as the rad@dawates
tends to infinity. We also show that the totdfext of this apparent matter is to induce a negative scalarature in space-
time. Thus, by coarse-graining, the vacuum surroundingSttievarzschild black hole acquires a stress-energy tenisimhw
generates a space-time of negative curvature. This olyibtings to mind de Sitter space-time, the negative cuneadfiwhich

is generated by a non-vanishing positive cosmologicaltemisSection 6 provides an in-depth discussion of the tepubsented

in this article, including possible cosmological implicats. In particular, the similarities andftérences between the apparent
vacuum stress-energy due to the coarse graining and tles-@nergy corresponding to a cosmological constant aitgzaua

As a conclusion, we provide a summary of the new material amdlgo mention and discuss briefly some of the many possible
extensions of this work, including several more realistigagions of direct astrophysical afod cosmological relevance.

2. Mean gravitational fields
2.1. Ensembles of space-times

Let us consider a statistical ensemblef space-timeM(w), w € Q. Q is an arbitrary probability space (Grimmett & Stirzaker
1994); each member of the ensemblis a diferentiable manifold endowed with a metgv), the Levi-Civita connectiofi(w)
associated witlg(w) (Nakahara 1990) and a stress-energy tefmga).

We will restrict the discussion by supposing that all sptieees in our statistical ensemble share the same topolody an
are distinguished only by their respective gravitationeld. More precisely, we suppose that there is a single widnif
underlying all of our space-time®l(w) (such anM represents the set of points of space-time), soMab) is M equipped with
an w-dependent metric field(w). One can thus choose an atlas common to all space-timdsasfot any chart (i.e. any local
coordinate systenxf), M(w) is represented by an-dependent metric field,, (X, w).

Each space-tima1(w) verifies the Einstein equation (Wald 1984). One thus has:

En(9(w)) = Ru(w) - % R(@)ur(©) = XGua(@)Gip(w) T¥(w), (1)

where theR,,’s are the coordinate-basis components of the Ricci tefsisrthe trace of this tensor andis the gravitational
constant. The combination on the left-hand side of (1) ialigwealled the Einstein tensor, hence the notation. Uridssrwise
specified, the units used in the rest of this article are ssehthay = 87 (Wald 1984).

2.2. Definition of a mean space-time

It has been shown in (Debbasch 2004b) that the statisticainebleX of space-times can be used to define a single, mean Einstein
space-timeM and that, by construction, the atlas common to all membeEsaz#n be used as an atlas fdf. M is endowed
with a metricg which is the average of the metrigév) overw; one thus has, for ak:

g(x) = (9(x, w)), 2)

where the brackets on the right-hand side indicate an ageragy the statistical ensemie

The connection of the mean space-titheis simply the Levi-Civita connection associated with thetmeeg and will be
conveniently called the mean connection. Since the relalioking the components,, of an arbitrary metrig to the Christdtel
symbolsl'y;, of its Levi-Civita connection are non-linear, the Chriéb symbols of the mean connection aretidentical to the
averages of the Chridfiel symbols associated with the various space-tims). Note however that the so-called ‘covariant’
connection cofiicientsl’, os(w) = gﬂv(w)l";ﬁ(w) depend linearly on the metric componegjis(w), so thatl', .5 = (Fﬂ,aﬁ(w».
This point is thoroughly elaborated upon in (Debbasch 2D04here a complete discussion of the mathematical and gdiysi
motivations for definition (2) can also be found. _

Because the Einstein tensor depends non-linearly on thécntae Einstein tensa® = £(g) associated with the mean metric
does notenerally coincide with the average of the Einstein ten&¢géw)). The tensok is nevertheless the Einstein tensor of
the mean space-time. It therefore defines, via the Einstgiat®n, a stress-energy tendofor the mean space-time:

Eu(@) = XGuaTrp T, (3)

Since&,,,(0) # (8,,y(g(a)))>, the mean stress-energy ten3éf is generally diferent from the averag(é’ B (a))> of the stress-
energy tensors of the space-times in the statistical bigtdn. It is therefore convenient to introduce the gertgrain-vanishing
tensor fieldAT, defined onM by :

AT = T% — (T%(w)). (4)
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This differenceAT can be interpreted as the stress-energy tensor of an “agpaeadgter” which contributes, along with the
averageT (w)) of the stress-energy associated with the ‘real’ mattergmmaa the various original space-tima$(w), to creating
the mean gravitationnal fielgl:

Ew(@) = XGuaGip (TP (w)) + AT™). (5)

_In particular, the vanishing of (w) for all w does not necessarily imply the vanishing'E)fThe mean stress-energy tensor
T can therefore be non-vanishing in regions where the ungedrstress-energy tensor actually vanishes. A generadsiauof
this and other perhaps unexpected consequences of defif#i}ioan be found in (Debbasch 2004b,a). The particulasoaken
the matter is made of an electromagnetic field/andf a possibly charged perfect fluid is also addressed ithdgp(Debbasch
2004b).

The goal of this article is to present a simple case whgo) vanishes for allo andAT is nevertheless non-zero.

3. An ensemble of space-times representing a Schwarzschild black hole observed with a finite precision
The so-called Kerr-Schild form (Chandrasekhar 1992; Kraghal. 1980) of the (vacuum) Schwarzschild metric is:

ds? = di2 — dr2 — 2—'V'(o|t+ i-dr)
r r

2
. (6)
The parametel represents the mass of the black hole esthnds for the set of three ‘spatial’ coordinateg, z. We have also

retained the standard and natural notations:
dr? = dx® + dy? + dZ (7)

and
r-dr = xdx + ydy + zdz. (8)

The Kerr-Schild coordinates (as opposed to the perhaps stamdard Schwarzschild coordinates (Wald 1984)) areqodetily
natural and convenient because they form a single-chas aflthe whole Schwarzschild space-time (Chandraseki®a) 1he
only singularities of this space-time being the points an‘time’ x = y = z = 0, where the components of the metric tensor (6)
are themselves singular.

Let us now introduce an at this stage arbitrarin R® and consider the-dependent metric

2
dsf,zdtz—drz—@(du r_w-dr), )
P P
where
P=r-w?=r’+v’-2r w. (10)

Note that the ‘original’ Schwarzschild space-time assedavith (6) is actuallyM(0); also observe that, for any; () andw :
g(tv r» (1)) = g(t7 r - w’ 0)’ (11)

so thatg(t, r, w) represents an ordinary black hole centered around point

LetQ = {w € R3; w? < @%} wherea is a fixed, positive real constar®;is the usual 3-ball of radiusin Euclidean spacg?.
We will use as volume measure @nthe usual (Lebesgue) measuare and, with this measure, the total volumefs simply
V, = 4na°/3. The measurd®w thus defines a probability measure@rby :

p(w)diw = id?’w. (12)
Va

We now define a statistical ensemBlef space-times b¥ = {M(w); w € Q} and use orx the probability measure (12).

The remainder of this article is devoted to investigatinge@roperties of the average space-tiMevhich can be constructed
out of this ensemble by the procedure outlined in the presgmation. Before embarking on any calculation, let us gpeyssical
motivation for considering the ensemhle _

At any point ¢, r) in space-time, the valugt, r) taken by the metrig of the average space-tim is simply the average of
o(t, r, w) overw. One thus has, by equation (11):

g(t.r) = (g(t.r - w,0)). (13)

This shows that, at any given pointK) in space-time, the metrigis simply the average of the original metric (6) over the 8-ba
of radiusa centered att(r).

The metricg can therefore be interpreted as the original meg(l@) observed, in the chosen coordinates, with the finite
‘spatial’ resolutiora. It thus represents a Schwarzschild black hole observédadinhite precision. Indeed, suppose that, by some
observational procedure, we can have experimental aazéiss metric tensor field but suppose also that the determination of
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each ‘spatial’ Kerr-Schild coordinate is subject to an eofordera. Then, instead of measuring, sg, r), we actually measure
o(t,r — w) for some randomly chosen of norm at mosh (in the sense of equation 7). The ‘observed’ or ‘measuredtimeill
then precisely bg(t,r) = (g(t,r — w, 0)).

As explained in the previous section, the average megtdefines by Einstein’s equation anpriorinon-vanishing stress-
energy tensor . In other words, although each metgg, r, w) in the ensembl& is a solution of Einstein’s equation in vacuum,
the average metrig is not If measurements are made with a finite ‘spatial’ resolutipthe observed metrig can only be
consistently understood as a solution of Einstein’s equdfione takes into account an ‘apparent’ matter caracdrizy the
stress-energy tensdr. We now want to investigate the properties of this mattereater detail.

4. Determination of the mean metric
4.1. Kerr-Schild coordinates

We first begin by determining the average metyidully defined byg(t,r) = (g(t,r — w, 0)). For obvious physical reasons, one
is only interested in evaluating the mean megrat points ¢, r) for whichr > a. This we will now do, pushing all expansions at
order two ina/r.

Equation (9) can be rewritten as:

ds® = dt® — dr? - 27'\" (dt2 %dtdr (r - o) + = (dr (r — w))? (14)

where as above? = (r — w)?.
To proceed, one needs to expand the various powergoftiich enter (14) into powers efandw/r.

The powers of 1/p. Here we begin to use the assumption that a. All subsequents expansions are at order 2/n.
Expanding %o = 1/ Vr2 + w? - 2r - w at order 2 inw/r we get

1 1 r- 102 3(r-w)?

;—?(l+r—z‘§r—z+§ a ) (15)
1 1 r- w (r w)?

;:r_z(1+2r—2_r_2+ 4 ) (16)
1 1 rro 3w 150 w)?
Z =143 -2 4 = 17
08 3( 3r2 212 T2 1 (A7)

Intermediate forms of the mean metric. We now plug these expansions into equation (14) and average ih the ballQ of
radiusa. By symmetry, it is clear that the averagawfs 0, as well as the average of all terms containing an odd pofve. We
get

3
(a9) = o - ar? - 202 (1= 515(0?) + a0 -0?)
- 4r—|;/|dtdr ~(r (1 - r%(af} + %((r -w)2>) - %(w(r -w)))
w [{@r - (r = 0)?) + %((r L) (dr - (1 - w))?)

e —i( 2(dr - (r - w))2>+$<(dr~(r—w))2(r~w)2>

(18)

We thus need to compute the averages of several functionarafw. Symmetry arguments make the task easier. Remember
that the average is taken on the Euclidean 3-ball of raali@ncea is supposed to be much smaller thramve only keep order-2
terms ina.

2
() = 2 (o) =T o) = S (19)

(@r-(r - ) >— r2dr?+ = = dr (20)
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2,2
(- ) @r - (r - w))?) = - 220 42 (1)
) N 3%,
<a) (dr - (r - w)) > =5 dr + higher-order terms (22)
2.4
((r ~w)?(dr - (r - w))2> = % dr? + higher-order terms (23)

Plugging this into expression (18) f¢ds’) we get the somewhat simpler form

2Ma?\  2M
— dt2 _ dr2 _ 2
(ds?) = dt® - dr (1+ 5r3) - dt

4M a2\ 2M , 3a?

(24)

which is the expression of the mean metric for a Schwarzasdhédck hole observed, in the retained coordinate systeth, wi
finite ‘spatial’ resolutiora. Of coursea = 0 gives back the usual metric (6). The deformation is of sdamder ina due to the
symmetry of the ensembi

Comparing (24) to (6), we see that the role playedli?in (6) is now played bylr? (1 + 22’:?2). This suggests the introduction
of the new ‘spatial’ coordinateg, defined by :

2
R:r(l+%); (25)

observe thaR is equivalent ta at infinity.
Expressing(ds?) in terms of the coordinateg R) yields:

2M Ma2\ 4M 3M a2\ 2™ Ma2
_ 2 2 2V w2 ey 7" v el B e
(d’) = dt* - dR = dt (1+ = ) = dth(1+( = 1) 5R2) = dR2(1+ : ) (26)
or, equivalently,
2M Ma2 Ma2\\’  4Ma?
_ 2 2 =" e e -
(ds?) = dt* - dR = (dt(1+1 E)+dR(1+ 5 )) + —rg GtaR (27)

Both above expressions are correct at order @R They represent the finite-resolution version of (6). Byigtglextension
of the common terminology, we will say that the coordinateR) are Kerr-Schild coordinates for the average space-ihe
Formally speaking, the only singularities of the metric)(26e the points on the linR = 0. Thus, the Kerr-Schild coordinates
form a single-chart atlas of the space-time equipped witlrimé6). Note however that (26) was derived from (6) under t
assumption that > a, which impliesR > a via (25). The singularity of (26) & = 0 is therefore not ‘physicali.e. it does
not entail that the mean space-tiovis singular aR = 0. Moreover, the very notion of a mean space-time probabkesiao
physical sense for values Bfcomparable or inferior to the coarse graining parameter

4.2. Schwarzschild coordinates

By suitably choosing a new time-varialié, r), the metric (6) can be put into the well-known form (Wald 498handrasekhar
1992):

2M

dszz(l—T)de 1

C1-2M/r

wheredrI" stands for the elementary solid angle associated with tlee tepatial’ coordinates The coordinatesr(r) are called
the Schwarzschild coordinates. As already mentionedett@srdinates do not constitute a single-chart atlas of¢the/&rzschild
space-time. They are however relevant for observers autis&black hole and, if only because no terndiidt appears in (28),
they also present undeniable computational advantageshkrefore natural to seek a new coordinate system whichdysay
for the mean metric (26) the role the usual Schwarzschilddinate system plays for vacuum black holes. By extenshasd
new coordinates will be called the Schwarzschild coor@isaf the mean metric.

They can be obtained by keepifgas ‘spatial’ coordinates and by merely introducing a nevetitnordinatél’, defined in
terms oft andR by a relation of the form:

dr? — r2dr?, (28)

dt = dT + «(R)dR (29)

1 Just as it makes no physical sense, for example, to speak eféhtric field created by an electrostatic dipole at distarcomparable or
inferior to the caracteristic spatial extension of the geatistribution modelled by the dipole.
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In fact it is not even necessary to compw{®) explicitly to obtain the expression of the mean metric ifm8arzschild coordi-
nates: indeed, the transformation (29) does not changectieendinant of the metric (since this transformation is dedminant
1), and it does not change the term in frontid? either. A simple computation shows that the determinarieft R)-part of the
metric (26) is—1 at order 2 ira/R. So the final metric will be of determinantl and, therefore, the terms in frontdf? anddR?
will be the inverse of each other. Since tipe- component is known from (26), so is tigr component. Naturally, this simple
reasoning can be double-checked through a straightforiarchther long direct computation ofR). Indeed, the choice:

2M 1 ( a 1 (4M2 5M 1))

R =T omr\ " RIZ2MR\ R R

5RR1-2M/R\ R~ R (30)

ensures the vanishing of the mixed metric compogeraind thegrr component of the metric in Schwarzschild coordinates can
then be obtained by direct computation.

The final form of the mean metric in Schwarzschild coordiadaherefore (withdl" the usual Euclidean solid angle element):

(ds’) = F(R)AT? - G(R)JR? - Redr™ (31)
where oM 2e2M?
a’
FR=1- 5% - %= (32)
and 1
or, whenR — 2M > a?M?/RS,
1 2a2M? 1\
SR =T2mr " 7 (1—2M/R) (34)

There are a few simple but important remarks to be made absutgsult.

1. Expression (30) shows that the Schwarzschild coordineganot be used in the whole space-tivebut are only valid in
the domain® > 2M andR < 2M. On the other hand, the Kerr-Schild coordinates do form glsiohart atlas oM.

2. Of course, whera = 0, the preceding expression reduces to the metric (28) ofcauva, non-rotating black hole in
Schwarzschild coordinates. The average space-time isstdsic (Wald 1984), as can be seen from the absencd dR
term in (31). This was predictable since the mean spacertsidts from averaging static space-times.

3. The deformation of (31) with respect to (28) is of secordboina/R, due to symmetry of our statistical ensemble.

4. As noted above, the determinant of tlieR)-part of the metric is-1:

F(R) = 1/G(R) (35)

at order 2 ima/R. This property of the mean metric is shared by the metrick@imnaveraged space-times in Schwarzschild
coordinates.

5. The only assumption that was made is that the coarsehggairis much smaller thaR. In particular, we havaotassumed
thatR is large compared to the Schwarzschild radililef the black hole: if the uncertaintyis small compared td/, then
our estimate is valid even f&® ~ 2M i.e., very close to the horizon of the unaveraged Schwarzschalekihole.

6. The metric components in the coordinate basis assoaidtied , R, 8 andg exhibit singularities for two dferent values oR.
The singularity aR = 0 also appears in the form (27) of the average metric (seesigm above). As in the Schwarzschild
case, this is a real singularity of the geometry defined byntk&ic (31); but let us stress again that the very notion of a
mean space-time probably makes no physical sense for vafug €omparable or inferior to the coarse graining param-
etera. The other singularity of (31) occurs fér(R) = 0, namely ®* — 10MR® — 2a°M? = 0. Solving this equation at
order 2 ina/M (which is the order at which the mean metric has been computeé finds that this singularity occurs at
R=2M (1 + a2/40M2). This is a mere coordinate singularity, the occurence ottviparallels the presence of an apparent
singularity atR = 2M for the components of Schwarzschild metric (28) in the bass®ciated with the usual Schwarzschild
coordinates. The fact that the singularityRat= 2M (1 + a2/40M2) is only due to the choice of coordinates in (31) can
be checked in two dlierent ways. First, this singularity is absent from the neatimponents (27) in the coordinate basis
associatedwitht(R, 8, ¢). Second, the curvature tensor associated with (31) is lvatlbved everywhere, exceptRit= 0.
In particular, the scalar curvatus® of the mean space-time will be calculated in the next Sedimhis given by (39). It
scales aR® and is everywhere finite, exceptRt= 0. The apparent singularity is thus due to the singular biebawof the
coordinate change defined by (29) and (3Rat 2M (1 + a2/40M?).
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5. Energy and pressure of apparent matter

Let us insist that the mean metric (31)rista solution of Einstein’s equation in vacuum. We now wish taleate the stress-
energy tensoll corresponding to this metric. This stress-energy tensitrei®ne that would be inferred by an observer having
access to the coarse-grained metric (31); it thereforetitotes apparent mattehat would be ‘detected’ by any observer map-
ping the gravitational field with the finite spatial precisia (in Kerr-Schild coordinates). We will restrict our disciess by
investigating the properties of this apparent matter inrtiggonR > 2M only (the stress-energy tensbrin the regionR < 2M

can be deduced similarly). _

The use of Schwarzschild coordinates in the redton 2M allows for a very easy computation ®f Indeed, for metrics of
the forme’dT? — e'dR? — R%dI'? the stress-energy tensor can be readily expressed in térivenaly (see for example (Landau &
Lifshitz 1975), equations (100,2), (100,4), (100,6), o=a{tV1984)). In the case at hand, the calculation further iiep since,
first, A = —v (sinceF = 1/G) and, second, all functions are independent of the timedinateT. One thus immediately gets:

6a’M? 6a’M? 1222M? 12a2M?
5R6 ' 5R6 ' 5R6 5R6
all other components oF vanish, so that the stress-energy tengis diagonal in Schwarzschild coordinates.
As is well-known (Landau & Lifshitz 1975; Wald 1984), the cp(mentTg can be interpreted as an energy densjtin the
present case;, represents the energy-density of the apparent matter arpiéissure of this matter in directiois similarly given
by -T!.
We thlus have :

8rTY = - 8rTi=— 81 T2 = 8r TS = (36)

1 6a2M? 1 6a2M? _ 1 120°M? 1 1282M2

e 0 Mg e PTTg e 0 BT g TEm
In particular, the apparent energy densityiggative and the pressure tensor is anisotropic; the radial dmedpointing
towards the center of the black hole) is associated with @&ip®pressure whereas the single pressure associatecbatith
perpendicular directions is negative.
It is also interesting to evaluate the (scalar) curvaRicéf the mean space-time; Einstein’s equation (1) leads tjrax

(37)

1
R:f—é’RgZ=—(R=X(8—p1—p2—p3) (38)
with y = 8r in the chosen units, so that:
12a°M?
R=— = (39)

The averaging procedure thus confers on the space-time fareaq, strictly negative scalar curvature. In other wpedter
coarse-graining, the vacuum of the original Schwarzsdblgatk hole appears endowed with a negative scalar curvakhis
striking conclusion cannot but bring to mind the recent obetion (et al. 2003) of a positive, non-vanishing cosmalab
constantA, which also endows vacuum regions of space-time with a hegstalar curvature (Hawking & Ellis 1973; Kolb &
Turner 1990; Peebles 199R), = —4A x 8r. This point will be further discussed below.

6. Discussion

Physical interpretation, for black holes, of the retained averaging. We wish first to discuss again the physical significance of the
statistical ensemble of space-tin®mtroduced in Section 4. As argued in that section, averatfia metric over this statistical
ensemble leads to a new, mean megrighich represents the gravitationnal field ‘detected’ by sone who observes a vacuum
Schwarzschild black hole with a finite precisiarnin the measurements of the ‘spatial’ Kerr-Schild coordisafThe point we
would like to stress here is that the mean megriaboes not represent the gravitational field detected by snmeto observes

a Schwarzschild black hole with finite precisiarin the measurements of other coordinateg, the ‘spatial’ Schwarzschild
coordinates. To obtain the mean mefgicin that latter case, one would have to start with a new ensewofbépace-time&’,
constructed from (28) exactly &sis constructed from (6), and evaluajeas an average over this new enseniiife There is
obviously no reason why the metigc should be identical to (28). Indeed, expression (28) regmissthe metrig (notg), but in

a coordinate systemftiérent from the one used in (26).

As for @', it can also be expressed in various coordinate systemsidrobthem, which one would be entitled to call the
Schwarzschild coordinate system @t this metric would take a form similar to (28), but its exmies would involve two
functionsa prioridifferent from the functions andG introduced in (31). And, extending these coordinates beyoa 2M, one
could probably construct a system of Kerr-Schild-like ainates forg’ too, where the metric resembles (26); but the expression
of g in these coordinates would not coincide with (26).

2 Arbitrary finite precisions in the measurements of any coatgs or parameters on which the metric depends can rigtheataken into
account in a similar fashion.
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One might then wonder why we chose to evaluate the mean neetiesponding to a finite precision in the measurements
of the spatial Kerr-Schild coordinates, and not the Schedahnitd ones. The reason is twofold. First, from a geomdtgpoat of
view, the use of Kerr-Schild coordinates is more naturablose, as repeatedly stated, these coordinates constitimgle-chart
atlas of the space-time manifold describing a Schwarzasdildck hole, wheras the Schwarzschild coordinates are \@iigt
outside (or inside) the horizon. As a consequence, prdigtiaay discussion of physics around a black hole is madeseési
the use of Kerr-Schild coordinates. This relative simpjieiill be used in subsequent publications, where the ptaseof the
metricg ((26)) will be further investigated. The other mean megfi¢s interesting too, but its study and comparison vgthas
been knowingly left for a later time.

Order of magnitude and signs of the apparent energy-density, pressures and scalar curvature. Comparison with the de Sitter
vacuum. Let us now discuss the main result of this article, namelyesgions (37) for the energy-density and pressure associ-
ated with the apparent matter and expression (39) for tiregponding scalar curvature of space-time.

All these quantities clearly tend to zero Rgends to infinity. A rough quantitative estimate of the cuated! €fect of the
coarse-graining is the ratjp of the mass-energy of the apparent matter contained in thieneR > 2M to the masdM of the
black hole. In order of magnitudes, one finds:

1 [ a?M?
~ = R2d 40
e sz & R (40)
so that
a2
o @

Thus,a ~ M/10 leads tgp ~ 1/100 whereas ~ M givesp ~ 1; naturally, this last typical value @f for a ~ M should not
be taken too seriously because all the calculations predentthis manuscript were made under the assumgRion a . If
a ~ M, our evaluation of the mean metgdreaks down foR too close to 21 and so does our evaluation@f The calculation
nevertheless indicates that a coarse-grainirgM will probably produce an apparent matter of mass-energest icomparable
to the masdM of the black hole. Thefeect will probably be even more importantif> M ora > M.

Another point deserves further comment. Indeed, the erdeggity and one of the two pressures of the apparent maéter ar
negative. Imagine now an observer who has access, beyommhge-grained metric (26), to a direct evaluation of thame
value(T(w)) of T(w), which vanishes identically. This observer may then jpter (37) by associating to the ‘vacuum’ a non-
vanishing energy density and two pressures, a negativeraha positive one. As already pointed out, this brings to ntived
recent observational evidence (et al. 2003) for a non-hémgscosmological constamt. Let us now elaborate on this.

The observed cosmological constant is positive. It thusesdhe large-scale cosmological vacuum with positive gyer
densitys, = A and a (single) negative presstim,, which is exactly the opposite of the vacuum energy-deriBitg cumulated
effect of bothe, andp, is best displayed by evaluating twdiirent scalar quantities; the first of these invariants isfiseciated
scalar curvatur®, of the cosmological vacuum, defined as the scalar curvafuteedempty’ de Sitter universe with vacuum
stress-energy tens@r*” = Ag"’; the second scala, reflects the ‘magnitude’ of the so-called trace-free Rieoisbr (Penrose
& Rindler 1984) of the same space-time:

1/2
Ra = 87r[(‘7“w - %‘Tg,w) (‘rﬂv - %‘Tg‘”)] . (42)

A direct calculation gives (Hawking & Ellis 1973, = —4A x 8z andR, = 0. In particular, a positive cosmological constant
thus induces aegativecurvature on space-time, which traces the hyperbolic ciaraf the de Sitter expansion.

Unlike &5, the vacuum energy-density of the coarse-grained Schuldtdspace-time is negative. The pressure tensor of
this coarse-grained space-time is anisotropic with twemrigressures. One of these eigenpressures is positivéhebother
one is negative, ap,. The cumulatedféect of these vacuum energy-density and pressures is begacetto the fects of a
cosmological term by evaluating the same invariants asethest computed for the de Sitter space-time. ContrariRto the
‘magnitude’f% of the trace-free Ricci tensor associated with the aver&gedirzschild space-time is found to be non-vanishing.
Indeed, a direct calculation shows that:

7 18V2 &M
5 R6
But the scalar-curvatur® is, asR,, negative(see (39)). We think this striking result might indicatetthtileast part of the
cosmological vacuum stress-energy may be due to the la@aje-averaging of small-scale structures in the Univerbes dlaim
or hypothesis can surely not be proven with the materialgmesl in this article, but our results indicate that thimpdeserves
a more extended investigation.
In the meantime, it is very tempting to try and extrapolatieast the order of magnitudes indicated by our results tor@mo
general astrophysical or cosmological context. This itimpose of our next paragraph.

(43)

3 The pressure tensor is then isotropic.
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Further comments about the possible astrophysical or cosmological implications of our results Let us now extrapolate what
has hiterto been presented up to cosmological scales. @swmang below is only heuristic and we give the result “ashishing
to provide at least a loose order of magnitude for the grawital efects of fluctuations in the large-scale Universe.

The results above suggest that thetence between observing a ‘point-like’ object of m&ssand an object of massl
spread over a characteristic spatial scale (distamcaj lead to a dierence in the observed energy-density which scales as:

1 am?
~—G—, 44
“~ er dé (44)
d being the ‘distance’ from the object; here we have abandtireedanonical units and have introduced the gravitatiooadtant
G in view of subsequent numerical estimates.

This suggests that theftBrence between observing a homogeneous object of mass$ygeasid spatial sizé and a non-
homogeneous medium of average dengjtand sizel. as well, but having fluctuations of ordés at characteristic spatial scale
a, leads to a dference in energy-density which might behave like:

1 _ a%(splL3)?
5o~ L g L)
8r dé
at distancel from the object. So, following this line of reasoning, th&atiwe variation in energy-density, defined as the ratio of
S by the average mass-eneygy of the object, would behave like

5 2
s 16 ZEY) )
pC%2  8r c? P dé
Let us now boldly apply (46) to the universe itself; this ntigfive some indications on how important the averaging of
inhomogeneities might be on the cosmological scale.lebe the Hubble-length and suppose that the characteristi@asp
scale of the variations s = aLy. Suppose also that the observation is made at a disthacd.y. We get

¢ 1 Gpuld a? (6p)2

(45)

(47)

wherepy stands for the mean density of the Universe.

Both a andép/p characterize the fluctuations anaharacterizes the distance of observation. On the othet, ij /c?
does not depend on the fluctuations themselves or on thendésteom which they are observed. In the standard cosmabgic
context, this ratio therefore plays the role of a ‘fundaraémipnstant which fixes the order of magnitude of the vacutmess-
energy obtained by averaging a given fluctuation. If one shga, = pum, the density of the luminous matter in the universe,
one finds, with (Kolb & Turner 1990} = 6.7-108.cm®. g1 -s2;p=102°.g-cm3; Ly = 10?®cmandc = 3-10°-cm-s*:

Gpu L%

5 =007 (48)

One can also seiy equal to the critical densityi;. The critical density is given ((Kolb & Turner 1990)) by

3
Perit = 8 ﬂ (49)
and one then obtains: )
Gpcrit LU 3
—— =—=~012
= e 0 (50)

in good agreement with (48), as far as the order of magnitudericerned. This result practically means that non-listsistical
effects in General Relativity tend to show up precisely at dissaround the critical one, which seems quite naturals Thi
indicates that averaging both gravitational fields andgyeensities on a cosmological scale may lead to highlytnieral and
possibly systematicfiects whose complete study is however beyond the scope ofdlkent article.

7. Summary and conclusion

This article has been devoted to a first application of theamiag formalism for general relativistic gravitationalfis presented
in (Debbasch 2004b,a). We have considered a particulast&tat ensemble of space-times which can be physicalgrpreted
as representing a Schwarzschild black hole observed withita firecision in ‘spatial’ coordinate measurements. Theam
gravitational field associated with this ensembleie# a vacuum solution to Einstein’s equation. On the contrédrg, hean
space-time appears as filled with matter; the non-vaniskiress-energy tensor of this apparent matter has beenateltu
explicitely for points whose ‘distance’ to the black holenisich larger than the retained coarse-graining. The apparatter
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can be characterized by an energy density and two distiesspres. The energy density and one of the pressures at&eegga
while the other pressure is positive. The overéiltet can be traced by the associated apparent scalar curadttire vacuum
regions, which is negative. Thidfect brings to mind the negative scalar curvature associattda positive cosmological
constant and this point has been discussed thoroughly;riicpiar, the above similarity not withstanding, there &turally a
difference between the obtained mean space-time and de Satm-8me; this dference is reflected by the trace-free Ricci
tensor, which vanishes for de Sitter space-time and doegamigh for the mean space-time which describes a Schwaldsch
black-hole observed with finite precision.

Moreover, extrapolating the conclusions of this articla tiroader astrophysical or cosmological context, we haygearthat
averaging gravitational fields and energy-densities onsanotogical scale might induce some highly non-trivial andgibly
systematic fects, endowing for example the cosmological vacuum withrewvamishing apparent stress-energy density.

Let us finally mention some of the many possible extensionhkitowork. One should first of all study systematically the
coarse-grained metric obtained in this article. What aeegghodesics in this gravitational field? Is there an even& Gauchy-
horizon? And, if the coarse-grained ‘object’ qualifies asaek hole, how is the entropy of this coarse-grained bladk helated
to the entropy of the unaveraged Schwarzschild black hole?

As already mentioned, the same work should also be undertakether statistical ensembles of Schwarzschild blacédol
associated with a physicallyftierent coarse-graining (for example, a coarse graining im@czschild coordinates and not in
Kerr-Schild coordinates); and, naturally, one should @&galuate the féects of finite precision measurements on Kerr black
holes.

The very general question one would like to answer is: hove doearbitrary, spatially and temporally fluctuating gratiinal
field appear after coarse-graining? In particular, is tleasacurvature of the mean space-time always lower thanthature
of the unaveraged space-time? And, more precisely, whaitdabe energy-density and pressures of the apparent mattesz
questions will probably be best answered numerically. A §itsp in this direction may be the study of a collection ofd@mly
placed black holes, which would thus serve as a very crudeehodluctuating’ space-time. We hope to address thesetmness
in subsequent publications. Their importance to astrophysosmology, quantum field theory in curved space-tintkoprantum
gravity can surely not be overestimated.
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