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Abstract We investigate how the space-time of a vacuum Schwarzschildblack hole would appear if observed with a finite
precision in the measurements of the spatial Kerr-Schild coordinates. For this we use the general procedure for evaluating mean
gravitational fields recently presented in (Debbasch 2004b). It is found that the black hole would then appear as surrounded
by an apparent matter characterized by a negative energy density and two different pressures, a negative and a positive one.
The total combined effect of the apparent matter leads to a space-time of negative scalar curvature, like de Sitter space-time.
However, the ‘magnitude’ of the trace-free Ricci tensor does not vanish for this space-time, where as it does for de Sitter space-
time. Possible cosmological implications, concerning theevaluation of the mean density of the Universe and the cosmological
constant, are also discussed.
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Notations

In this article, space-time indices running from 0 to 3 will be indicated by Greek letters. The metric signature will be (+,−,−,−).
We also have chosen, as a rule,not to use the so-called intrinsic notation in differential geometry, but to use the notation standard
in physics, which denotes each tensor by its components.

1. Introduction

Every observation is necessarily finitei.e. it deals with a finite number of quantities, observed or measured with a finite precision.
This explains why mean field theories play such an important role in physics. It will therefore come as no surprise that developing
a mean field approach to relativistic gravitation has been the subject of active research for more than a decade (Futamase1991,
1993; Kasai 1992; Futamase 1996; Zalaletdinov 1997; Buchert 2000, 2001). This conceptually and practically crucial problem
has been recently solved in a rather general way (Debbasch 2004b,a). It has been shown that, given a statistical ensembleΣ

of space-times sharing a common topology, it makes both mathematical and physical sense to define the mean (or apparent, or
coarse-grained) space-time associated with this ensembleas a space-time of the same topology, but where the gravitational field
is represented by a metric which is simply the average of the metrics corresponding to the various space-times members ofΣ.

This apparently very innocuous result has however several exotic consequences. One of them is that the separation between
the gravitational field and the matter degrees of freedom actually depends on the precision of the observations (Debbasch 2004b).
Let us consider the following particular situation. Suppose a regionD of space-time is observed with a certain finite precision
and that the observations indicate that no matter is presentin D, but only a non-vanishing gravitational field. Then, generically,
other observations carried out with a different (greater or lesser) precision will indicate thatD contains both matter and a non-
vanishing gravitational field. The aim of this article is to investigate this ‘purely relativistic’ effect on a perhaps academic but
de factosimple and hopefully illuminating example, where most calculations can be made completely explicit. More precisely,
we consider the Schwarzschild black hole, which is one of thesimplest vacuum solutions to Einstein’s equation and we study
how a finite precision in coordinate measurements can make itlook like a non-vacuum solution to the general relativisticfield
equations.

The material is organized as follows. Section 2 reviews somebasic results about ensembles of space-times and about the
properties of the mean or coarse-grained gravitational field with which they are associated. Section 3 introduces the particular
statistical ensemble which will be considered in this article; it is notably explained why averaging over this statistical ensemble
can be interpreted as observing a Schwarzschild black hole with a finite precision. In Section 4, we calculate the mean metric
associated with this statistical ensemble and, in Section 5, the stress-energy tensor of the apparent matter which seems to surround
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the black hole is explicitly evaluated as a function of the coarse-graining; the calculation is a perturbative one and isvalid for
points whose radial (Schwarzschild) coordinates are much larger than the coarse-graining itself. At lowest order, it is found that
the apparent matter can be characterized by an energy density and two different pressures; the energy density and one of the
pressures is negative, while the other pressure is positive. All three quantities decrease towards zero as the radial coordinates
tends to infinity. We also show that the total effect of this apparent matter is to induce a negative scalar curvature in space-
time. Thus, by coarse-graining, the vacuum surrounding theSchwarzschild black hole acquires a stress-energy tensor which
generates a space-time of negative curvature. This obviously brings to mind de Sitter space-time, the negative curvature of which
is generated by a non-vanishing positive cosmological constant. Section 6 provides an in-depth discussion of the results presented
in this article, including possible cosmological implications. In particular, the similarities and differences between the apparent
vacuum stress-energy due to the coarse graining and the stress-energy corresponding to a cosmological constant are analyzed.
As a conclusion, we provide a summary of the new material and we also mention and discuss briefly some of the many possible
extensions of this work, including several more realistic situations of direct astrophysical and/or cosmological relevance.

2. Mean gravitational fields

2.1. Ensembles of space-times

Let us consider a statistical ensembleΣ of space-timesM(ω), ω ∈ Ω. Ω is an arbitrary probability space (Grimmett & Stirzaker
1994); each member of the ensembleΣ is a differentiable manifold endowed with a metricg(ω), the Levi-Civita connectionΓ(ω)
associated withg(ω) (Nakahara 1990) and a stress-energy tensorT (ω).

We will restrict the discussion by supposing that all space-times in our statistical ensemble share the same topology and
are distinguished only by their respective gravitational fields. More precisely, we suppose that there is a single manifold M
underlying all of our space-timesM(ω) (such anM represents the set of points of space-time), so thatM(ω) is M equipped with
anω-dependent metric fieldg(ω). One can thus choose an atlas common to all space-times, so that for any chart (i.e. any local
coordinate system (x)),M(ω) is represented by anω-dependent metric fieldgµν(x, ω).

Each space-timeM(ω) verifies the Einstein equation (Wald 1984). One thus has :

Eµν(g(ω)) ≡ Rµν(ω) − 1
2

R(ω)gµν(ω) = χgµα(ω)gνβ(ω) Tαβ(ω), (1)

where theRµν’s are the coordinate-basis components of the Ricci tensor,R is the trace of this tensor andχ is the gravitational
constant. The combination on the left-hand side of (1) is usually called the Einstein tensor, hence the notation. Unlessotherwise
specified, the units used in the rest of this article are so chosen thatχ = 8π (Wald 1984).

2.2. Definition of a mean space-time

It has been shown in (Debbasch 2004b) that the statistical ensembleΣ of space-times can be used to define a single, mean Einstein
space-timeM̄ and that, by construction, the atlas common to all members ofΣ can be used as an atlas for̄M. M̄ is endowed
with a metricḡ which is the average of the metricsg(ω) overω; one thus has, for allx :

ḡ(x) = 〈g(x, ω)〉, (2)

where the brackets on the right-hand side indicate an average over the statistical ensembleΣ.
The connection of the mean space-timēM is simply the Levi-Civita connection associated with the metric ḡ and will be

conveniently called the mean connection. Since the relations linking the componentsgµν of an arbitrary metricg to the Christoffel
symbolsΓαµν of its Levi-Civita connection are non-linear, the Christoffel symbols of the mean connection arenot identical to the
averages of the Christoffel symbols associated with the various space-timesM(ω). Note however that the so-called ‘covariant’
connection coefficientsΓµ,αβ(ω) ≡ gµν(ω)Γν

αβ
(ω) depend linearly on the metric componentsgµν(ω), so thatΓ̄µ,αβ =

〈

Γµ,αβ(ω)
〉

.
This point is thoroughly elaborated upon in (Debbasch 2004b), where a complete discussion of the mathematical and physical
motivations for definition (2) can also be found.

Because the Einstein tensor depends non-linearly on the metric, the Einstein tensor̄E = E(ḡ) associated with the mean metric
does notgenerally coincide with the average of the Einstein tensorsE(g(ω)). The tensorĒ is nevertheless the Einstein tensor of
the mean space-time. It therefore defines, via the Einstein equation, a stress-energy tensorT̄ for the mean space-time:

Eµν(ḡ) = χḡµαḡνβT̄
αβ. (3)

SinceEµν(ḡ) ,
〈

Eµν(g(ω))
〉

, the mean stress-energy tensorT̄αβ is generally different from the average
〈

Tαβ(ω)
〉

of the stress-
energy tensors of the space-times in the statistical distribution. It is therefore convenient to introduce the generally non-vanishing
tensor field∆T , defined onM̄ by :

∆Tαβ = T̄αβ −
〈

Tαβ(ω)
〉

. (4)
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This difference∆T can be interpreted as the stress-energy tensor of an “apparent matter” which contributes, along with the
average〈T (ω)〉 of the stress-energy associated with the ‘real’ matter present in the various original space-timesM(ω), to creating
the mean gravitationnal field ¯g :

Eµν(ḡ) = χḡµαḡνβ
(〈

Tαβ(ω)
〉

+ ∆Tαβ
)

. (5)

In particular, the vanishing ofT (ω) for all ω does not necessarily imply the vanishing ofT̄ . The mean stress-energy tensor
T̄ can therefore be non-vanishing in regions where the unaveraged stress-energy tensor actually vanishes. A general dicussion of
this and other perhaps unexpected consequences of definition (2) can be found in (Debbasch 2004b,a). The particular cases when
the matter is made of an electromagnetic field and/or of a possibly charged perfect fluid is also addressed in depth by (Debbasch
2004b).

The goal of this article is to present a simple case whenT (ω) vanishes for allω and∆T is nevertheless non-zero.

3. An ensemble of space-times representing a Schwarzschild black hole observed with a finite precision

The so-called Kerr-Schild form (Chandrasekhar 1992; Kramer et al. 1980) of the (vacuum) Schwarzschild metric is :

ds2 = dt2 − dr2 − 2M
r

(

dt +
r
r
· dr

)2
. (6)

The parameterM represents the mass of the black hole andr stands for the set of three ‘spatial’ coordinatesx, y, z. We have also
retained the standard and natural notations:

dr2 = dx2 + dy2 + dz2 (7)

and
r · dr = xdx + ydy + zdz. (8)

The Kerr-Schild coordinates (as opposed to the perhaps morestandard Schwarzschild coordinates (Wald 1984)) are particularly
natural and convenient because they form a single-chart atlas of the whole Schwarzschild space-time (Chandrasekhar 1992), the
only singularities of this space-time being the points on the ‘line’ x = y = z = 0, where the components of the metric tensor (6)
are themselves singular.

Let us now introduce an at this stage arbitraryω in R3 and consider theω-dependent metric

ds2
ω
= dt2 − dr2 − 2M

ρ

(

dt +
r −ω
ρ
· dr

)2

, (9)

where
ρ2 = (r − ω)2 = r2 + ω2 − 2r · ω. (10)

Note that the ‘original’ Schwarzschild space-time associated with (6) is actuallyM(0); also observe that, for any (t, r) andω :

g(t, r,ω) = g(t, r −ω, 0), (11)

so thatg(t, r,ω) represents an ordinary black hole centered around pointω.
LetΩ = {ω ∈ R3;ω2

6 a2} wherea is a fixed, positive real constant;Ω is the usual 3-ball of radiusa in Euclidean spaceR3.
We will use as volume measure onΩ the usual (Lebesgue) measured3

ω and, with this measure, the total volume ofΩ is simply
Va = 4πa3/3. The measured3

ω thus defines a probability measure onΩ by :

p(ω)d3
ω =

1
Va

d3
ω. (12)

We now define a statistical ensembleΣ of space-times byΣ = {M(ω);ω ∈ Ω} and use onΣ the probability measure (12).
The remainder of this article is devoted to investigating some properties of the average space-timeM̄which can be constructed

out of this ensemble by the procedure outlined in the previous section. Before embarking on any calculation, let us give aphysical
motivation for considering the ensembleΣ.

At any point (t, r) in space-time, the value ¯g(t, r) taken by the metric ¯g of the average space-timēM is simply the average of
g(t, r,ω) overω. One thus has, by equation (11) :

ḡ(t, r) = 〈g(t, r − ω, 0)〉. (13)

This shows that, at any given point (t, r) in space-time, the metric ¯g is simply the average of the original metric (6) over the 3-ball
of radiusa centered at (t, r).

The metric ¯g can therefore be interpreted as the original metricg(0) observed, in the chosen coordinates, with the finite
‘spatial’ resolutiona. It thus represents a Schwarzschild black hole observed with a finite precision. Indeed, suppose that, by some
observational procedure, we can have experimental access to the metric tensor fieldg but suppose also that the determination of
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each ‘spatial’ Kerr-Schild coordinate is subject to an error of ordera. Then, instead of measuring, sayg(t, r), we actually measure
g(t, r−ω) for some randomly chosenω of norm at mosta (in the sense of equation 7). The ‘observed’ or ‘measured’ metric will
then precisely be ¯g(t, r) = 〈g(t, r −ω, 0)〉.

As explained in the previous section, the average metric ¯g defines by Einstein’s equation ana priori non-vanishing stress-
energy tensor̄T . In other words, although each metricg(t, r,ω) in the ensembleΣ is a solution of Einstein’s equation in vacuum,
the average metric ¯g is not. If measurements are made with a finite ‘spatial’ resolutiona, the observed metric ¯g can only be
consistently understood as a solution of Einstein’s equation if one takes into account an ‘apparent’ matter caracterized by the
stress-energy tensor̄T . We now want to investigate the properties of this matter in greater detail.

4. Determination of the mean metric

4.1. Kerr-Schild coordinates

We first begin by determining the average metric ¯g, fully defined byḡ(t, r) = 〈g(t, r −ω, 0)〉. For obvious physical reasons, one
is only interested in evaluating the mean metric ¯g at points (t, r) for which r � a. This we will now do, pushing all expansions at
order two ina/r.

Equation (9) can be rewritten as :

ds2 = dt2 − dr2 − 2M
ρ

(

dt2 +
2dt
ρ

dr · (r −ω) +
1
ρ2

(dr · (r −ω))2

)

(14)

where as above,ρ2 = (r −ω)2.
To proceed, one needs to expand the various powers of 1/ρ which enter (14) into powers ofr andω/r.

The powers of 1/ρ. Here we begin to use the assumption thatr � a. All subsequents expansions are at order 2 inω/r.
Expanding 1/ρ = 1/

√
r2 + ω2 − 2r · ω at order 2 inω/r we get

1
ρ
=

1
r

(

1+
r · ω

r2
− 1

2
ω2

r2
+

3
2

(r · ω)2

r4

)

(15)

1
ρ2
=

1
r2

(

1+ 2
r · ω

r2
− ω

2

r2
+ 4

(r · ω)2

r4

)

(16)

1
ρ3
=

1
r3

(

1+ 3
r · ω

r2
− 3

2
ω2

r2
+

15
2

(r · ω)2

r4

)

(17)

Intermediate forms of the mean metric. We now plug these expansions into equation (14) and average for ω in the ballΩ of
radiusa. By symmetry, it is clear that the average ofω is 0, as well as the average of all terms containing an odd power of ω. We
get

〈

ds2
〉

= dt2 − dr2 − 2M
r

dt2
(

1− 1
2r2

〈

ω2
〉

+
3

2r4

〈

(r · ω)2
〉

)

− 4M
r2

dt dr ·
(

r
(

1− 1
r2

〈

ω2
〉

+
4
r4

〈

(r · ω)2
〉

)

− 2
r2
〈ω(r · ω)〉

)

− 2M
r3



























〈

(dr · (r − ω))2
〉

+
3
r2

〈

(r · ω) (dr · (r − ω))2
〉

− 3
2r2

〈

ω2 (dr · (r − ω))2
〉

+
15
2r4

〈

(dr · (r −ω))2 (r · ω)2
〉



























(18)

We thus need to compute the averages of several functions ofr andω. Symmetry arguments make the task easier. Remember
that the average is taken on the Euclidean 3-ball of radiusa. Sincea is supposed to be much smaller thanr, we only keep order-2
terms ina.

〈

ω2
〉

=
3a2

5
;

〈

(r · ω)2
〉

=
a2r2

5
; 〈ω(r · ω)〉 = a2

5
r (19)

〈

(dr · (r − ω))2
〉

= r2dr2 +
a2

5
dr2 (20)
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〈

(r · ω) (dr · (r −ω))2
〉

= − 2a2r2

5
dr2 (21)

〈

ω2 (dr · (r −ω))2
〉

=
3a2r2

5
dr2 + higher-order terms (22)

〈

(r · ω)2 (dr · (r −ω))2
〉

=
a2r4

5
dr2 + higher-order terms (23)

Plugging this into expression (18) for
〈

ds2
〉

we get the somewhat simpler form

〈

ds2
〉

= dt2 − dr2

(

1+
2Ma2

5r3

)

− 2M
r

dt2

− 4M
r

dt dr

(

1− a2

5r2

)

− 2M
r

dr2

(

1− 3a2

5r2

)

,

(24)

which is the expression of the mean metric for a Schwarzschild black hole observed, in the retained coordinate system, with
finite ‘spatial’ resolutiona. Of coursea = 0 gives back the usual metric (6). The deformation is of second order ina due to the
symmetry of the ensembleΣ.

Comparing (24) to (6), we see that the role played bydr2 in (6) is now played bydr2
(

1+ 2Ma2

5r3

)

. This suggests the introduction
of the new ‘spatial’ coordinatesR, defined by :

R = r
(

1+
Ma2

5r3

)

; (25)

observe thatR is equivalent tor at infinity.
Expressing

〈

ds2
〉

in terms of the coordinates (t,R) yields :

〈

ds2
〉

= dt2 − dR2 − 2M
R

dt2
(

1+
Ma2

5R3

)

− 4M
R

dt dR

(

1+

(

3M
R
− 1

)

a2

5R2

)

− 2M
R

dR2

(

1+
Ma2

R3

)

, (26)

or, equivalently,
〈

ds2
〉

= dt2 − dR2 − 2M
R

(

dt

(

1+
Ma2

10R3

)

+ dR

(

1+
Ma2

2R3

))2

+
4Ma2

5R3
dt dR. (27)

Both above expressions are correct at order 2 ina/R. They represent the finite-resolution version of (6). By a slight extension
of the common terminology, we will say that the coordinates (t,R) are Kerr-Schild coordinates for the average space-timeM̄.
Formally speaking, the only singularities of the metric (26) are the points on the lineR = 0. Thus, the Kerr-Schild coordinates
form a single-chart atlas of the space-time equipped with metric (26). Note however that (26) was derived from (6) under the
assumption thatr � a, which impliesR � a via (25). The singularity of (26) atR = 0 is therefore not ‘physical’,i.e. it does
not entail that the mean space-timēM is singular atR = 0. Moreover, the very notion of a mean space-time probably makes no
physical sense for values ofR comparable or inferior to the coarse graining parametera1.

4.2. Schwarzschild coordinates

By suitably choosing a new time-variableτ(t, r), the metric (6) can be put into the well-known form (Wald 1984; Chandrasekhar
1992) :

ds2 =

(

1− 2M
r

)

dτ2 − 1
1− 2M/r

dr2 − r2dΓ2, (28)

wheredΓ stands for the elementary solid angle associated with the three ‘spatial’ coordinatesr. The coordinates (τ, r) are called
the Schwarzschild coordinates. As already mentioned, these coordinates do not constitute a single-chart atlas of the Schwarzschild
space-time. They are however relevant for observers outside the black hole and, if only because no term indrdt appears in (28),
they also present undeniable computational advantages. Itis therefore natural to seek a new coordinate system which would play
for the mean metric (26) the role the usual Schwarzschild coordinate system plays for vacuum black holes. By extension, these
new coordinates will be called the Schwarzschild coordinates of the mean metric.

They can be obtained by keepingR as ‘spatial’ coordinates and by merely introducing a new time-coordinateT , defined in
terms oft andR by a relation of the form :

dt = dT + α(R)dR (29)

1 Just as it makes no physical sense, for example, to speak of the electric field created by an electrostatic dipole at distances comparable or
inferior to the caracteristic spatial extension of the charge distribution modelled by the dipole.
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In fact it is not even necessary to computeα(R) explicitly to obtain the expression of the mean metric in Schwarzschild coordi-
nates: indeed, the transformation (29) does not change the determinant of the metric (since this transformation is of determinant
1), and it does not change the term in front ofdT 2 either. A simple computation shows that the determinant of the (t,R)-part of the
metric (26) is−1 at order 2 ina/R. So the final metric will be of determinant−1 and, therefore, the terms in front ofdT 2 anddR2

will be the inverse of each other. Since thegTT component is known from (26), so is thegRR component. Naturally, this simple
reasoning can be double-checked through a straightforwardbut rather long direct computation ofα(R). Indeed, the choice :

α(R) =
2M
R

1
1− 2M/R

(

1− a2

5R2

1
1− 2M/R

(

4M2

R2
− 5M

R
+ 1

))

(30)

ensures the vanishing of the mixed metric componentgTR and thegRR component of the metric in Schwarzschild coordinates can
then be obtained by direct computation.

The final form of the mean metric in Schwarzschild coordinates is therefore (withdΓ the usual Euclidean solid angle element):

〈

ds2
〉

= F(R)dT 2 −G(R)dR2 − R2dΓ2 (31)

where

F(R) = 1− 2M
R
− 2a2M2

5R4
(32)

and

G(R) =
1

F(R)
(33)

or, whenR − 2M � a2M2/R3,

G(R) =
1

1− 2M/R
+

2a2M2

5R4

(

1
1− 2M/R

)2

(34)

There are a few simple but important remarks to be made about this result.

1. Expression (30) shows that the Schwarzschild coordinates cannot be used in the whole space-timeM̄ but are only valid in
the domainsR > 2M andR < 2M. On the other hand, the Kerr-Schild coordinates do form a single-chart atlas ofM̄.

2. Of course, whena = 0, the preceding expression reduces to the metric (28) of a vaccum, non-rotating black hole in
Schwarzschild coordinates. The average space-time is alsostatic (Wald 1984), as can be seen from the absence ofdTdR
term in (31). This was predictable since the mean space-timeresults from averaging static space-times.

3. The deformation of (31) with respect to (28) is of second order ina/R, due to symmetry of our statistical ensemble.
4. As noted above, the determinant of the (T,R)-part of the metric is−1 :

F(R) = 1/G(R) (35)

at order 2 ina/R. This property of the mean metric is shared by the metrics of the unaveraged space-times in Schwarzschild
coordinates.

5. The only assumption that was made is that the coarse-graining a is much smaller thanR. In particular, we havenot assumed
thatR is large compared to the Schwarzschild radiusM of the black hole: if the uncertaintya is small compared toM, then
our estimate is valid even forR ≈ 2M i.e., very close to the horizon of the unaveraged Schwarzschild black hole.

6. The metric components in the coordinate basis associatedwith T , R, θ andφ exhibit singularities for two different values ofR.
The singularity atR = 0 also appears in the form (27) of the average metric (see discussion above). As in the Schwarzschild
case, this is a real singularity of the geometry defined by themetric (31); but let us stress again that the very notion of a
mean space-time probably makes no physical sense for valuesof R comparable or inferior to the coarse graining param-
eter a. The other singularity of (31) occurs forF(R) = 0, namely 5R4 − 10MR3 − 2a2M2 = 0. Solving this equation at
order 2 ina/M (which is the order at which the mean metric has been computed), one finds that this singularity occurs at
R = 2M

(

1+ a2/40M2
)

. This is a mere coordinate singularity, the occurence of which parallels the presence of an apparent
singularity atR = 2M for the components of Schwarzschild metric (28) in the basisassociated with the usual Schwarzschild
coordinates. The fact that the singularity atR = 2M

(

1+ a2/40M2
)

is only due to the choice of coordinates in (31) can
be checked in two different ways. First, this singularity is absent from the metric components (27) in the coordinate basis
associatedwith (t,R, θ, φ). Second, the curvature tensor associated with (31) is wellbehaved everywhere, except atR = 0.
In particular, the scalar curvatureR of the mean space-time will be calculated in the next Sectionand is given by (39). It
scales asR−6 and is everywhere finite, except atR = 0. The apparent singularity is thus due to the singular behaviour of the
coordinate change defined by (29) and (30) atR = 2M

(

1+ a2/40M2
)

.
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5. Energy and pressure of apparent matter

Let us insist that the mean metric (31) isnot a solution of Einstein’s equation in vacuum. We now wish to evaluate the stress-
energy tensor̄T corresponding to this metric. This stress-energy tensor isthe one that would be inferred by an observer having
access to the coarse-grained metric (31); it therefore constitutesapparent matterthat would be ‘detected’ by any observer map-
ping the gravitational field with the finite spatial precision a (in Kerr-Schild coordinates). We will restrict our discussion by
investigating the properties of this apparent matter in theregionR > 2M only (the stress-energy tensorT̄ in the regionR < 2M
can be deduced similarly).

The use of Schwarzschild coordinates in the regionR > 2M allows for a very easy computation of̄T . Indeed, for metrics of
the formeνdT 2−eλdR2−R2dΓ2 the stress-energy tensor can be readily expressed in terms of λ andν (see for example (Landau &
Lifshitz 1975), equations (100,2), (100,4), (100,6), or (Wald 1984)). In the case at hand, the calculation further simplifies since,
first, λ = −ν (sinceF = 1/G) and, second, all functions are independent of the time coordinateT . One thus immediately gets:

8π T̄ 0
0 = −

6a2M2

5R6
; 8π T̄ 1

1 = −
6a2M2

5R6
; 8π T̄ 2

2 =
12a2M2

5R6
; 8π T̄ 3

3 =
12a2M2

5R6
; (36)

all other components of̄T vanish, so that the stress-energy tensorT̄ is diagonal in Schwarzschild coordinates.
As is well-known (Landau & Lifshitz 1975; Wald 1984), the componentT̄ 0

0 can be interpreted as an energy densityε; in the
present case,ε represents the energy-density of the apparent matter and the pressure of this matter in directioni is similarly given
by−T i

i .
We thus have :

ε = − 1
8π

6a2M2

5R6
; p1 =

1
8π

6a2M2

5R6
; p2 = −

1
8π

12a2M2

5R6
; p3 = −

1
8π

12a2M2

5R6
(37)

In particular, the apparent energy density isnegative, and the pressure tensor is anisotropic; the radial direction (pointing
towards the center of the black hole) is associated with a positive pressure whereas the single pressure associated withboth
perpendicular directions is negative.

It is also interesting to evaluate the (scalar) curvatureR of the mean space-time; Einstein’s equation (1) leads directly to:

Rµµ −
1
2
Rgµµ = −R = χ (ε − p1 − p2 − p3) (38)

with χ = 8π in the chosen units, so that:

R = − 12a2M2

5R6
. (39)

The averaging procedure thus confers on the space-time an apparent, strictly negative scalar curvature. In other words, after
coarse-graining, the vacuum of the original Schwarzschildblack hole appears endowed with a negative scalar curvature. This
striking conclusion cannot but bring to mind the recent observation (et al. 2003) of a positive, non-vanishing cosmological
constantΛ, which also endows vacuum regions of space-time with a negative scalar curvature (Hawking & Ellis 1973; Kolb &
Turner 1990; Peebles 1993)RΛ = −4Λ × 8π. This point will be further discussed below.

6. Discussion

Physical interpretation, for black holes, of the retained averaging. We wish first to discuss again the physical significance of the
statistical ensemble of space-timesΣ introduced in Section 4. As argued in that section, averaging the metric over this statistical
ensemble leads to a new, mean metric ¯g which represents the gravitationnal field ‘detected’ by someone who observes a vacuum
Schwarzschild black hole with a finite precisiona in the measurements of the ‘spatial’ Kerr-Schild coordinates. The point we
would like to stress here is that the mean metric ¯g does not represent the gravitational field detected by someone who observes
a Schwarzschild black hole with finite precisiona in the measurements of other coordinates,e.g. the ‘spatial’Schwarzschild
coordinates. To obtain the mean metric ¯g′ in that latter case, one would have to start with a new ensemble of space-timesΣ′,
constructed from (28) exactly asΣ is constructed from (6), and evaluate ¯g′ as an average over this new ensembleΣ′2. There is
obviously no reason why the metric ¯g′ should be identical to (28). Indeed, expression (28) represents the metric ¯g (not ḡ), but in
a coordinate system different from the one used in (26).

As for ḡ′, it can also be expressed in various coordinate systems. In one of them, which one would be entitled to call the
Schwarzschild coordinate system for ¯g′, this metric would take a form similar to (28), but its expression would involve two
functionsa prioridifferent from the functionsF andG introduced in (31). And, extending these coordinates beyond R = 2M, one
could probably construct a system of Kerr-Schild-like coordinates for ¯g′ too, where the metric resembles (26); but the expression
of ḡ′ in these coordinates would not coincide with (26).

2 Arbitrary finite precisions in the measurements of any coordinates or parameters on which the metric depends can naturally be taken into
account in a similar fashion.
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One might then wonder why we chose to evaluate the mean metriccorresponding to a finite precision in the measurements
of the spatial Kerr-Schild coordinates, and not the Schwarzschild ones. The reason is twofold. First, from a geometrical point of
view, the use of Kerr-Schild coordinates is more natural because, as repeatedly stated, these coordinates constitute asingle-chart
atlas of the space-time manifold describing a Schwarzschild black hole, wheras the Schwarzschild coordinates are onlyvalid
outside (or inside) the horizon. As a consequence, practically any discussion of physics around a black hole is made easier by
the use of Kerr-Schild coordinates. This relative simplicity will be used in subsequent publications, where the properties of the
metric ḡ ((26)) will be further investigated. The other mean metric ¯g′ is interesting too, but its study and comparison with ¯g has
been knowingly left for a later time.

Order of magnitude and signs of the apparent energy-density, pressures and scalar curvature. Comparison with the de Sitter
vacuum. Let us now discuss the main result of this article, namely expressions (37) for the energy-density and pressure associ-
ated with the apparent matter and expression (39) for the corresponding scalar curvature of space-time.

All these quantities clearly tend to zero asR tends to infinity. A rough quantitative estimate of the cumulated effect of the
coarse-graining is the ratioρ of the mass-energy of the apparent matter contained in the volumeR > 2M to the massM of the
black hole. In order of magnitudes, one finds :

ρ ∼ 1
M

∫ +∞

2M

a2M2

R6
R2dR, (40)

so that

ρ ∼ a2

M2
. (41)

Thus,a ∼ M/10 leads toρ ∼ 1/100 whereasa ∼ M givesρ ∼ 1; naturally, this last typical value ofρ for a ∼ M should not
be taken too seriously because all the calculations presented in this manuscript were made under the assumptionR � a . If
a ∼ M, our evaluation of the mean metric ¯g breaks down forR too close to 2M and so does our evaluation ofρ. The calculation
nevertheless indicates that a coarse-graininga ∼ M will probably produce an apparent matter of mass-energy at least comparable
to the massM of the black hole. The effect will probably be even more important ifa > M or a � M.

Another point deserves further comment. Indeed, the energydensity and one of the two pressures of the apparent matter are
negative. Imagine now an observer who has access, beyond thecoarse-grained metric (26), to a direct evaluation of the mean
value〈T (ω)〉 of T (ω), which vanishes identically. This observer may then interpret (37) by associating to the ‘vacuum’ a non-
vanishing energy density and two pressures, a negative one and a positive one. As already pointed out, this brings to mindthe
recent observational evidence (et al. 2003) for a non-vanishing cosmological constantΛ. Let us now elaborate on this.

The observed cosmological constant is positive. It thus endows the large-scale cosmological vacuum with positive energy-
densityεΛ = Λ and a (single) negative pressure3 pΛ, which is exactly the opposite of the vacuum energy-density. The cumulated
effect of bothεΛ andpΛ is best displayed by evaluating two different scalar quantities; the first of these invariants is theassociated
scalar curvatureRΛ of the cosmological vacuum, defined as the scalar curvature of the ‘empty’ de Sitter universe with vacuum
stress-energy tensorT µν = Λgµν; the second scalar̃RΛ reflects the ‘magnitude’ of the so-called trace-free Ricci tensor (Penrose
& Rindler 1984) of the same space-time:

R̃Λ = 8π

[(

Tµν −
1
4
T gµν

) (

T µν − 1
4
T gµν

)]1/2

. (42)

A direct calculation gives (Hawking & Ellis 1973)RΛ = −4Λ × 8π andR̃Λ = 0. In particular, a positive cosmological constant
thus induces anegativecurvature on space-time, which traces the hyperbolic character of the de Sitter expansion.

Unlike εΛ, the vacuum energy-density of the coarse-grained Schwarzschild space-time is negative. The pressure tensor of
this coarse-grained space-time is anisotropic with two eigen-pressures. One of these eigenpressures is positive, butthe other
one is negative, aspΛ. The cumulated effect of these vacuum energy-density and pressures is best compared to the effects of a
cosmological term by evaluating the same invariants as those just computed for the de Sitter space-time. Contrarily toR̃Λ, the
‘magnitude’R̃ of the trace-free Ricci tensor associated with the averagedScwarzschild space-time is found to be non-vanishing.
Indeed, a direct calculation shows that:

R̃ = 18
√

2
5

a2M2

R6
(43)

But the scalar-curvatureR is, asRΛ, negative(see (39)). We think this striking result might indicate that at least part of the
cosmological vacuum stress-energy may be due to the large-scale averaging of small-scale structures in the Universe. This claim
or hypothesis can surely not be proven with the material presented in this article, but our results indicate that this point deserves
a more extended investigation.

In the meantime, it is very tempting to try and extrapolate atleast the order of magnitudes indicated by our results to a more
general astrophysical or cosmological context. This is thepurpose of our next paragraph.

3 The pressure tensor is then isotropic.
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Further comments about the possible astrophysical or cosmological implications of our results Let us now extrapolate what
has hiterto been presented up to cosmological scales. Our reasoning below is only heuristic and we give the result “as is”, hoping
to provide at least a loose order of magnitude for the gravitational effects of fluctuations in the large-scale Universe.

The results above suggest that the difference between observing a ‘point-like’ object of massM and an object of massM
spread over a characteristic spatial scale (distance)a can lead to a difference in the observed energy-density which scales as:

ε ∼ 1
8π

G
a2M2

d6
, (44)

d being the ‘distance’ from the object; here we have abandonedthe canonical units and have introduced the gravitational constant
G in view of subsequent numerical estimates.

This suggests that the difference between observing a homogeneous object of mass density ρ and spatial sizeL and a non-
homogeneous medium of average densityρ, and sizeL as well, but having fluctuations of orderδρ at characteristic spatial scale
a, leads to a difference in energy-density which might behave like:

δε ∼ 1
8π

G
a2(δρ L3)2

d6
(45)

at distanced from the object. So, following this line of reasoning, the relative variation in energy-density, defined as the ratio of
δε by the average mass-energyρc2 of the object, would behave like

δε

ρc2
∼ 1

8π
G
c2
ρ

a2
(

δρ

ρ
L3

)2

d6
(46)

Let us now boldly apply (46) to the universe itself; this might give some indications on how important the averaging of
inhomogeneities might be on the cosmological scale. LetLU be the Hubble-length and suppose that the characteristic spatial
scale of the variations isa = αLU . Suppose also that the observation is made at a distanced = λLU . We get

δε

ρc2
∼ 1

8π

G ρU L2
U

c2

α2

λ6

(

δρ

ρ

)2

, (47)

whereρU stands for the mean density of the Universe.
Bothα andδρ/ρ characterize the fluctuations andλ characterizes the distance of observation. On the other hand, GρU L2

U/c
2

does not depend on the fluctuations themselves or on the distance from which they are observed. In the standard cosmological
context, this ratio therefore plays the role of a ‘fundamental’ constant which fixes the order of magnitude of the vacuum stress-
energy obtained by averaging a given fluctuation. If one choosesρU = ρlum, the density of the luminous matter in the universe,
one finds, with (Kolb & Turner 1990)G = 6.7·10−8 ·cm3 · g−1 · s−2; ρ = 10−29 ·g · cm−3; LU = 1028 cm andc = 3·1010 ·cm · s−1 :

G ρU L2
U

c2
= 0.07. (48)

One can also setρU equal to the critical densityρcrit. The critical density is given ((Kolb & Turner 1990)) by

ρcrit =
3
8π

c2

G L2
U

(49)

and one then obtains :
G ρcrit L2

U

c2
=

3
8π
≈ 0.12 (50)

in good agreement with (48), as far as the order of magnitude is concerned. This result practically means that non-linearstatistical
effects in General Relativity tend to show up precisely at densities around the critical one, which seems quite natural. This
indicates that averaging both gravitational fields and energy-densities on a cosmological scale may lead to highly non-trivial and
possibly systematic effects whose complete study is however beyond the scope of the present article.

7. Summary and conclusion

This article has been devoted to a first application of the averaging formalism for general relativistic gravitational fields presented
in (Debbasch 2004b,a). We have considered a particular statistical ensemble of space-times which can be physically interpreted
as representing a Schwarzschild black hole observed with a finite precision in ‘spatial’ coordinate measurements. The mean
gravitational field associated with this ensemble isnot a vacuum solution to Einstein’s equation. On the contrary, the mean
space-time appears as filled with matter; the non-vanishingstress-energy tensor of this apparent matter has been calculated
explicitely for points whose ‘distance’ to the black hole ismuch larger than the retained coarse-graining. The apparent matter
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can be characterized by an energy density and two distinct pressures. The energy density and one of the pressures are negative,
while the other pressure is positive. The overall effect can be traced by the associated apparent scalar curvature of the vacuum
regions, which is negative. This effect brings to mind the negative scalar curvature associatedwith a positive cosmological
constant and this point has been discussed thoroughly; in particular, the above similarity not withstanding, there is naturally a
difference between the obtained mean space-time and de Sitter space-time; this difference is reflected by the trace-free Ricci
tensor, which vanishes for de Sitter space-time and does notvanish for the mean space-time which describes a Schwarzschild
black-hole observed with finite precision.

Moreover, extrapolating the conclusions of this article toa broader astrophysical or cosmological context, we have argued that
averaging gravitational fields and energy-densities on a cosmological scale might induce some highly non-trivial and possibly
systematic effects, endowing for example the cosmological vacuum with a non-vanishing apparent stress-energy density.

Let us finally mention some of the many possible extensions tothis work. One should first of all study systematically the
coarse-grained metric obtained in this article. What are the geodesics in this gravitational field? Is there an event- ora Cauchy-
horizon? And, if the coarse-grained ‘object’ qualifies as a black hole, how is the entropy of this coarse-grained black hole related
to the entropy of the unaveraged Schwarzschild black hole?

As already mentioned, the same work should also be undertaken on other statistical ensembles of Schwarzschild black holes,
associated with a physically different coarse-graining (for example, a coarse graining in Schwarzschild coordinates and not in
Kerr-Schild coordinates); and, naturally, one should alsoevaluate the effects of finite precision measurements on Kerr black
holes.

The very general question one would like to answer is: how does an arbitrary, spatially and temporally fluctuating gravitational
field appear after coarse-graining? In particular, is the scalar curvature of the mean space-time always lower than the curvature
of the unaveraged space-time? And, more precisely, what about the energy-density and pressures of the apparent matter?These
questions will probably be best answered numerically. A first step in this direction may be the study of a collection of randomly
placed black holes, which would thus serve as a very crude model of ‘fluctuating’ space-time. We hope to address these questions
in subsequent publications. Their importance to astrophysics, cosmology, quantum field theory in curved space-time and quantum
gravity can surely not be overestimated.
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