
Kolmogorov complexity ; induction, prediction

and compression

Contents

1 Motivation for Kolmogorov complexity 1

2 Formal Definition 2

3 Trying to compute Kolmogorov complexity 3

4 Standard upper bounds 4
4.1 Encoding integers, prefix-free complexity 4
4.2 Classical bounds . 5
4.3 Link with model selection . 10

5 Possible approximations 10

References 12
Remarque : peut-être mentionner concaténation.

1 Motivation for Kolmogorov complexity

When faced with the sequence 2 4 6 8 10 12 xs, anybody would expect x to be
14. However, one could argue that the sequence 2 4 6 8 10 12 14 does not exist
“more” than 2 4 6 8 10 12 13, or 2 4 6 8 10 12 0: there seems to be no reason for
picking 14 instead of anything else. There is an answer to this argument: 2 4 6
8 10 12 14 is “simpler” than other sequences, in the sense that it has a shorter
description.

This can be seen as a variant of Occam’s razor, which states that for a given
phenomenon, the simplest explanation should be preferred. This principle has
been formalized in the 60s by Solomonoff and Kolmogorov: as we will soon see,
the Kolmogorov complexity of an object is essentially the length of its shortest
description, where “description of x” means “algorithm that can generate x”,
measured in bytes. However, in practice, finding the shortest description of an
object is difficult.

Kolmogorov complexity provides a reasonable justification for “inductive
reasoning”, which corresponds to trying to find short descriptions for sequences
of observations. The general idea is that any regularity, or structure, detected
in the data can be used to compress it.

1

This criterion can also be used for prediction: given a sequence x1, ..., xn, (?)
choose the xn+1 such that the sequence x1, ..., xn+1 has the shortest description,
or in other words, such that xn+1 “compresses best” with the previous xi . For
example, given the sequence 0000000?, 0 should be predicted, because 00000000
is simpler than 0000000x for any other x.

As a more sophisticated example, given a sequence x1, y1, x2, y2, x3, y3, x4, ...,
if we find a simple f such that f(xi) = yi, we should predict f(x4) as the next
element of the sequence. With this kind of relationship, it is only necessary
to know the xi, and f to be able to write the full sequence. If we also have
xi+1 = g(xi), then only x0,f and g have to be known: somebody who has
understood how the sequence (1, 1; 2, 4; 3, 9; 4, 16; ...) is made will be able to
describe it very efficiently.

Any better understanding of the data can therefore be used to find struc-
ture in the data, and consequently to compress it better: comprehension and
compression are essentially the same thing.

In the sequence (1, 1; 2, 4; 3, 9; 4, 16; ...), f was very simple, but the more
data we have, the more complicated f can reasonably be: if you have to learn
by heart two sentences x1, y1, where x1 is in English, and y1 is x1 in German,
and you do not know German, you should just learn y1. If you have to learn by
heart a very long sequence of sentences such that xi is a sentence in English and
yi is its translation in German, then you should learn German. In other words,
the more data we have, the more interesting it is to find regularity in them.

The identity between comprehension and compression is probably even clearer
when we consider text encoding: with a näıve encoding, a simple text in En-
glish is around 5 bits for each character (26 letters, space, dot), whereas the
best compression algorithms manage around 3 bits per character. However, by
removing random letters from a text and having people try to read it, the actual
information has been estimated at around 1.1 bits per character.

2 Formal Definition

Let us now define the Kolmogorov complexity formally:

Definition 1. The Kolmogorov complexity of x a sequence of 0s and 1s is by
definition the length of the shortest program on a Universal Turing machine1

that prints x. It is measured in bits.2

The two propositions below must be seen as a sanity check for our definition
of Kolmogorov complexity.

Proposition 2 (Kolmogorov complexity is well-defined). The Kolmogorov com-
plexity of x does not depend on the Turing machine, up to a constant which does
not depend on x (but does depend on the two Turing machines).

Sketch of the proof. if P1 prints x for the Turing machine T1, then if I12 is an
interpreter for language 1 in language 2, I12 :: P1 prints x for the Turing machine
T2, and therefore K2(x) 6 K1(x) + length(I12)

1Your favorite programming language, for example.
2Or any multiple of bits.

2

In other words, if P is the shortest zipped program that prints x in your
favourite programming language, you can think about the Kolmogorov com-
plexity of x as the size (as a file on your computer) of P (we compress the
program to reduce differences from alphabet and syntax between programming
languages).

If the objects we are interested in are not sequences of 0 and 1 (pictures, for
example), they have to be encoded.

Proposition 3. the Kolmogorov complexity of x does not depend on the encod-
ing of x, up to a constant which does not depend on x (but does depend on the
two encodings).

Sketch of the proof. Let f ,g be two encodings of x. We haveK(g(x)) < K(f(x))+
K(g ◦ f−1) (instead of encoding g(x), encode f(x), and the map g ◦ f−1.
max

(
K(g ◦ f−1),K(f ◦ g−1)

)
is the constant).

In other words, the Kolmogorov complexity of a picture will not change if
you decide to put the most significant bytes for your pixels on the right instead
of the left.

Notice that the constants for these two theorems are reasonably small (the
order of magnitude should not exceed the megabyte, while it is possible to work
with gigabytes of data).

3 Trying to compute Kolmogorov complexity

Kolmogorov complexity is not computable. Even worse, it is never possible to
prove that the Kolmogorov complexity of an object is large.

An intuitive reason for the former fact is that to find the Kolmogorov com-
plexity of x, we should run all possible programs in parallel, and choose the
shortest program that outputs x, but we do not know when we have to stop:
There may be a short program still running that will eventually output x. In
other words, it is possible to have a program of length K(x) that outputs x, but
it is not possible to be sure that it is the shortest one.

Theorem 4 (Chaitin’s theorem). There exists a constant L3 such that it is not
possible to prove the statement K(x) > L for any x.

Sketch of the proof. For some L, write a program that tries to prove a statement
of the form K(x) > L (by enumerating all possible proofs). When a proof of
K(x) > L for some x is found, print x and stop.

If there exists x such that a proof of K(x) > L exists, then the program will
stop and print some x0, but if L has been chosen largen enough, the length of the
program is less than L, and describes x0. Therefore, K(x0) 6 L. contradiction.

The link with Berry’s paradox is clear:
“The smallest number that cannot be described in less than 13 words”
“The [first x found] that cannot be described in less than [L] bits”.

3reasonably small, around 1Mb

3

Corollary 5. Kolmogorov complexity is not computable.

Proof. Between 1 and 2L+1, there must be at least one integer n0 with Kol-
mogorov complexity greater that L (since there are only 2L+1 − 1 programs of
length L or less). If there was a program that could output the Kolmogorov
complexity of its input, we could prove that K(n0) > L, which contradicts
Chaitin’s theorem.

As a possible solution to this problem, we could define Kt(x), the length
of the smallest program that outputs x in less than t instructions, but we lose
some theoretical properties of Kolmogorov complexity (Proposition 2 and 3 have
to be adapted to limited time but they are weaker, see [4], Section 7. For ex-
ample, Proposition 2 becomes Kct log2 t,1(x) 6 Kt,2(x)+c), for no practical gain.

4 Standard upper bounds

Because of Chaitin’s theorem, the best we can do is finding upper bounds on
Kolmogorov complexity. First, we introduce prefix-free Kolmogorov complexity
and prove Kraft’s inequality, and we then give classical upper bounds, firstly for
integers, then for other strings.

Remember that because of Proposition 2, all inequalities concerning Kol-
mogorov complexity are true up to an additive constant. We consequently write
K(x)+6 f(x) for K(x) 6 f(x) + a, where a does not depend on x.

4.1 Encoding integers, prefix-free complexity

If we simply decide to encode an integer by its binary decomposition, then, we
do not know for example if the string ”10” is the code for 2, or the code for 1
followed by the code for 0.

Similarly, given a Turing machine, and two programs P1 and P2, there is
nothing that prevents the concatenation P1P2 from defining another program
that might have nothing to do with P1 or P2.

This leads us to the following (not formal) definition:

Definition 6. A set of strings S is said to be prefix-free is no element of S is
a prefix of another.

A code is said to be prefix-free if no codeword is a prefix of another (or
equivalently, if the set of codewords is prefix-free).

We then adapt our definition of Kolmogorov complexity by forcing the set of
programs to be prefix-free (hence the name prefix-free Kolmogorov complexity4).

It is clear now that if we receive a message encoded with a prefix-free code,
we can decode it unambiguously letter by letter, while we are reading it, and
if a Turing machine is given two programs P1 and P2, their concatenation will
not be ambiguous.

It is important to notice that in practice, when thinking with programming
languages, working with prefix-free complexity does not change anything, since

4“self-delimited” is sometimes used instead of prefix-free.

4

the set of compiling programs is prefix free (the compiler is able to stop when
the program is finished).

Now, let us go back to integers:

Proposition 7. Let n be an integer. We have

K(n)+6 log2 n+ 2 log2 log2 n. (1)

Proof, and a bit further. Let n be an integer, and let us denote by b its binary
expansion, and by l the length of its binary expansion (i.e. l = blog2(n+ 1)c ∼
log2 n).

Consider the following prefix codes (if c is a code, we will denote by c(n) the
codeword used for n):

• c1: Encode n as a sequence of n ones, followed by zero. Complexity n.

• c2: Encode n as c1(l) :: b, with l and b as above. To decode, simply count
the number k of ones before the first zero. The k bits following it are the
binary expansion of n. Complexity 2 log2 n.

• c3: Encode n as c2(l) :: b. To decode, count the number k1 of ones
before the first zero, the k2 bits following it are the binary expansion of
l, and the l bits after these are the binary expansion of n. Complexity
log2 n+ 2 log2 log2 n, which is what we wanted.

• We can define a prefix-free code ci by setting ci(n) = ci−1(l) :: b. The
complexity improves, but we get a constant term for small integers, and
anyway, all the corresponding bounds are still equivalent to log2 n as n→
∞.

• It is easy to see that the codes above satisfy cn(1) = n + 1: for small
integers, it would be better to stop the encoding once a number of length
one (i.e. one or zero) is written. Formally, this can be done the following
way: consider c∞,1 defined recursively as follows :

c∞,1(n) = c∞,1(l − 1) :: b :: 0, (2)

c∞,1(1) = 0. (3)

It is easy to see that c∞,1(n) begins with 0 for all n, i.e, c∞,1 = 0 :: c∞,2.

We can now set c∞(0) = 0 and c∞(n) = c∞,2(n+ 1).

The codes c2 and c3 are similar to Elias gamma and delta (respectively)
coding. c∞ is called Elias omega coding.

4.2 Classical bounds

We also have the following bounds:

1. A simple program that prints x is simply print(x). The length of this
program is the length of the function print, plus the length of x, but
it is also necessary to provide the length of x to know when the print

5

function stops reading its input (because we are working with prefix-free
Kolmogorov complexity). Consequently

K(x)+6 |x|+K(|x|). (4)

By counting arguments, some strings x have a Kolmogorov complexity
larger than |x|. These strings are called random strings by Kolmogorov.
The justification for this terminology is that a string that cannot be com-
pressed is a string with no regularities.

2. The Kolmogorov complexity of x is the length of x compressed with the
best compressor for x. Consequently, we can try to approximate it with
any standard compressor, like zip, and we have:

K(x)+6 |zip(x)|+ |unzip program|. (5)

This property has been used to define the following distance between two objects:

d(x, y) =
max (K(x)|y),K(y|x))

max (K(x),K(y))
. By using distance-based clustering algorithms,

the authors of [1] have been able to cluster data (MIDI files, texts...) almost as

anyone would expected (the MIDI files were clustered together, with subclusters

essentially corresponding to the composer, for example). In the same article, the

Universal Declaration of Human Rights in different languages has been used to

build a satisfying language tree.

3. If we have some finite set E such that x ∈ E, then we can simply enumerate
all the elements of E. In that case, an x can be described as “the nth

element of E. For this, we need K(E) bits to describe E, and dlog2 |E|e
bits to identify x in E:

K(x)+6 K(E) + dlog2 |E|e. (6)

4. More generally, if µ is a probability distribution on a set X, and x ∈ X,
we have

K(x)+6 K(µ)− log2(µ(x)). (7)

For example, if µ is uniform, we find equation (6). Another simple case
is the i.i.d. case, which will be discussed later. This inequality is the
most important one for machine learning (it is in fact the reason for the
log2(µ(x)) often found in machine learning), and will be proved below.
Notice that (7) is true for any probability distribution on X, but the
bound is tighter if both µ is “simple”, and µ(x) is high. Our goal is
therefore to find such distributions.

The idea behind (7) is that for a given set E, if I think some elements are
more likely to appear than others, they should be encoded with fewer bits. For
example, if in the set {A,B,C,D}, we have P (A) = 0.5, P (B) = 0.25, and
P (C) = P (D) = 0.125, instead of using a uniform code (two bits for each
character), it is better to encode for example5 A with 1, B with 01, C with 001
and D with 000.

5We do not care about the code, we care about the length of the code words for the different
elements of X.

6

In the first example, the expected length with the uniform code is 2 bits per
character, while it is 1.75 bits per character for the other.

In general, it can be checked that the expected length is minimal if the length
of the code word for x is − log2(µ(x)). If we have a code satisfying this property,
then (7) follows immediately (encode µ, and then use the code corresponding
to µ to encode x).

However, if we stick to encoding one symbol after another approximations
have to be made, because we can only have integer codelengths. For example,
consider we have: P (A) = 0.4, P (B) = P (C) = P (D) = P (E) = 0.15. The
− log2 P (∗) are not integers: we have to assign close integer codelengths. We
describe two possible ways of doing this:

• Sort all symbols by descending frequency, cut when the cumulative fre-
quency is closest to 0.5. The codes for the symbols on the left (resp. right)
start with 0 (resp. 1). Repeat until all symbols have been separated. This
is Shannon–Fano coding.

• Build a binary tree the following way: Start with leave nodes correspond-
ing to the symbols, with a weight equal to their probability. Then, take
the two nodes without parents with lowest weight, and create a parent
node for them, and assign it the sum of its children’s wieght. Repeat un-
til only one node remains. Then, code each symbol with the sequence of
moves from the root to the leaf (0 corresponds to taking the left child, for
example). This is Huffman coding, which is better than Shannon–Fano
coding.

On the example above, we can find the following codes (notice that some
conventions are needed to obtain well-defined algorithms from what is described
above: for Shannon-Fano, what to do when there are two possible cuts, and for
Huffman, which node is the left child and which node is the right child):

Theoretical Shannon–Fano Huffman
optimal length code code

A ≈ 1.322 00 0
B ≈ 2.737 01 100
C ≈ 2.737 10 101
D ≈ 2.737 110 110
E ≈ 2.737 111 111

Length expectation ≈ 2.17 2.3 2.2

As we can see, neither Shannon–Fano coding nor Huffman coding reach the
optimal bound.

However, if instead of encoding each symbol separately, we encode the whole
message (7) can actually be achieved up to a constant number of bits for the
whole message6 by describing a simplification of arithmetic coding:

The idea behind arithmetic coding is to encode the whole message as a
number in the interval [0, 1], determined as follow: consider we have the message
(x1, ..., xN) ∈ XN (here, to make things easier, we fix N). We start with the
full interval, and we partition it in #X subintervals, each one corresponding to

6Since all the inequalities were already up to an additive constant, this does not matter at
all.

7

some x ∈ X and of length our expected probability to see x, given the characters
we have already seen, and we repeat until the whole message is read. We are
left with an subinterval IN of [0, 1], and we can send the binary expansion of
any number in IN (so we choose the shortest one).

10 .6 .8A B C

.60 .36 .48AA AB AC

.48.36 .432 .456ABA ABB ABC

Figure 1: Arithmetic coding of a word starting with ABB, with P (A) = 0.6,
P (B) = 0.2, P (C) = 0.2

Algorithm 8 (End of the proof of (7): A simplification of arithmetic cod-
ing). We are given an ordered set X, and for x1,...,xn,y ∈ X, we denote by
µ(y|x1, ..., xn) our expected probability to see y after having observed x1, ..., xn.7

Goal: Encode the whole message in one number 0 6 x 6 1.

Encoding algorithm
Part 1: Encode the message as an interval.

i = 1
I = [0, 1]
while xi+1 6= END do

Partition I into subintervals (Ix)x∈X such that:
x < y =⇒ Ix < Iy,8 length(Ix) = length(I)µ(x|x1, ..., xi−1)
Observe xi
I = Ixi

i = i+ 1
end while
return I

Part 2: pick a number in the interval I.
We can find a binary representation for any real number x ∈ [0, 1], by writing

x =

+∞∑
1

ai
2i

, with ai ∈ {0, 1}. Now, for a given interval I, pick the number xI ∈ I

7A simple particular case is the case where µ does not depend on past observations (i.e.
µ(y|x1, ..., xn) =: µ(y)) and can therefore be identified with a probability distribution on X

8If I, J are intervals, we write I < J for ∀x ∈ I, ∀y ∈ J , x < y.

8

which has the shortest binary representation.9 The message will be encoded as
xI .

Decoding algorithm. xI received.

i = 1
I = [0, 1]
while not termination criterion10 do

Partition I into subintervals (Ix)x∈X as in the encoding algorithm.
xi ← the only y such that xI ∈ Iy
I = Ixi

i = i+ 1
end while

Arithmetic coding allows to find a code such that the length of the code word
for x = (x1, ..., xn) is

∑n
i=1− log2(µ(xi|x1, ..., xi−1)) =

∑n
i=1− log2(µ(xi|x1, ..., xi−1),

which is what we wanted.
However, arithmetic cannot be implemented like this, because of problems

of finite precision: if the message is too long, the intervals of the partition might
become undistinguishable. It is possible to give an online version of this algo-
rithm which solves this problem: the encoder sends a bit once he knows it (he
can send the n-th bit if I contains no multiple of 2−n). In that case, he does
not have to worry about the n first digits of the bounds of the intervals of the
partition anymore, which solves the problem of finite precision. In the case 0.5
remains in the interval, the encoder can remember that if the first bit is 0, then
the second is 1, and conversely, to work in [.25, .75] instead of [0, 1] (and the
process can be repeated).

As an interesting particular case of equation (7), let us consider the i.i.d.
case on Xn for equation (7): for x1, ..., xn ∈ X, µ(x1, ..., xn) = α(x1)...α(xn).
In that case, the right side of equation (7) becomes:

K(n) +K(α)−
n∑

i=1

log2 α(xi). (8)

9We call length of the representation (a1, ..., an, ...) the number min{n ∈ N,∀k > n, ak =
0}. If length(I) 6= 0, I necessarily contains number with a finite representation.

10There are several possibilities for the termination criterion:

• We can have an END symbol, to mark the end of the message (in that case, stop when
END has been decoded).

• We can give the length N of the message first (in that case, stop when N characters
have been decoded)

• The message sent by the encoder can be slightly modified as follows. We decide that
a sequence of bits (a1, ..., an) represents the interval Ia of all numbers of which the
binary expansion starts with (a1, ..., an). Now, the message a sent by the encoder is
the shortest non ambiguous message, in the sense that Ia is contained in I, but is
not contained in any of the subintervals Ix corresponding to I (where I is the interval
obtained at the end of the first part of the encoding algorithm).

9

of which the expectation is equal to (if the xi are really sampled from α):

K(n) +K(α)− n
∑
x∈X

α(x) log2 α(x). (9)

In particular, once α is described, we need −
∑

x∈X α(x) log2 α(x) bits (in
expectation) to encode xi.

If the xi are actually sampled from a probability distribution β, but we use
a code adapted for the distribution α, we will need more bits to encode our
message. The expecation of the number of additional bits needed to encode
(x1, ..., xn) is:

n
∑
x∈X

β(x)(log2 β(x)− log2 α(x)) = n
∑
x∈X

β(x) log2

β(x)

α(x)
. (10)

Definition 9. The quantity H(µ) = −
∑
x∈X

µ(x) log2 µ(x) is called entropy of

µ.

The quantity KL(µ‖ν) :=
∑
x∈X

ν(x) log2

ν(x)

µ(x)
is called Kullback-Leibler di-

vergence from ν to µ.

4.3 Link with model selection

The term − log2(µ(x)) is essentially the cost of encoding the data with the
help of the model, whereas K(µ) can be seen as a penalty for complicated
models (which, in machine learning, prevents overfitting: if the data is “more
compressed”, including the cost of the model and the decoder, the description
is better).

As a basic example, if µ is the Dirac distribution at x, K(µ) = K(x): in
that case, all the complexiy is in the model, and the encoding of the data is
completely free.

More interestingly, if we are trying to fit the data x1, ..., xn to an i.i.d.
Gaussian model (which corresponds to the description: “this is Gaussian noise”),
with mean m and fixed variance σ2, the term − log2(µ(x)) is equal to

∑
i(xi −

m)2 up to additive constants, and the m we should select is the solution to
this least square problem, which happens to be the sample mean (if we neglect
K(m), which corresponds to finding the maximum likelihood estimate).

In general, K(µ) is difficult to evaluate. There exists two classical approxi-
mation, yielding different results:

• K(µ) can be approximated by the number of parameters in µ. This gives
the Akaike Information Criterion (AIC).

• K(µ) can also be approximated by half the number of parameters in µ
multiplied by the logarithm of the number of observations. This gives the
Bayesian Information Criterion (BIC). The reason for this approximation
will be given in Talk 2.

10

5 Possible approximations

Now, even with these upper bounds, in practice, it is difficult to find good
programs for the data.

As an introduction to the next talk, we give some heuristics:

• Usual compression techniques (like zip) can yield good results.

• Minimum description length techniques: starting from naive generative
models to obtain more complex ones: for example, if we have to predict
sequences of 0 and 1, and we initially have two experts, one always predict-
ing 0 and the other predicting always 1, we can use a mixture of experts:
use the first experts with probability p, and the second with probability
1−p, and we can obtain all Bernoulli distributions. More interestingly, we
can also automatically obtain strategies of the form “after having observed
xi, use expert k to predict xi+1”, thus obtaining Markov models.

• Auto-encoders can also be used: they are hourglass shaped neural net-
works (fewer nodes in the intermediate layer), trained to output exactly
the input. In that case, the intermediate layer is a compressed form of the
data, and the encoder and decoder are given by the network.

• The model class of Turing machine is very large. For example, if we restrict
ourselves to finite automata, we can compute the restricted Kolmogorov
complexity, and if we restrict ourselves to visible Markov models we can
even use Kolmogorov complexity for prediction.

11

References

[1] Rudi Cilibrasi and Paul Vitanyi. Clustering by compression.

[2] Peter D. Grünwald. The Minimum Description Length Principle (Adaptive
Computation and Machine Learning). The MIT Press, 2007.

[3] Marcus Hutter. On universal prediction and Bayesian confirmation. Theo-
retical Computer Science, 384(1):33–48, 2007.

[4] Ming Li and Paul M.B. Vitanyi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer Publishing Company, Incorporated, 3 edition,
2008.

[5] Ray J. Solomonoff. A formal theory of inductive inference. Information and
Control, 7, 1964.

12

