
Universal probability distributions, two-part

codes, and their optimal precision

Contents

0 An important reminder 1

1 Universal probability distributions in theory 2

2 Universal probability distributions in practice 3
2.1 Two-part codes . 4

2.1.1 Optimal precision . 5
2.1.2 The i.i.d.case: confidence intervals and Fisher information 6
2.1.3 Link with model selection 6

References 8

0 An important reminder

Firstly, notice that a probability distribution P on Xn induces a probability
distribution Pk on Xk with k 6 n:

Pk(x1, ..., xk) =
∑

y1,...,yn−k

P (x1, ..., xk, y1, ..., yn−k). (1)

We will systematically drop the k in the notation.

Now, if we work in the set X, we recall that a generative model at horizon n
(i.e. a probability distributions on sequences of length n, P (x1, ..., xn)), a pre-
dictor (A probability distribution on X given observations, Q(xk|x1, ..., xk−1))
and an encoding scheme (assiging to each x its codelength) are all the same
thing:

The predictor Q corresponding to the generative model P is given by

Q(xk|x1, ..., xk−1) =
P (x1, ..., xk)

P (x1, ..., xk−1)
, (2)

and conversely, the generative model P corresponding to the predictor Q is
given by

P (x1, ..., xk) = Q(x1)Q(x2|x1)...Q(xk|x1, ..., xk−1). (3)

Moreover, since any probability distribution P corresponds to an encod-
ing scheme (encoding x with − log2 P (x) bits), and conversely (assign to x the

1

probability 2−l(x)), we have the equivalence between encoding schemes and gen-
erative models.

As an example, if we have several generative models Pi, then
∑
wiPi will also

be a generative model. However, it should be noted that the associated predictor
is a mixture with Bayesian weights, which depend on the data (in particular,
they are not the wi: the wi are only the prior weights). See equation (11) for
an illustration.

1 Universal probability distributions in theory

This equivalence between encoding and probability distribution, combined with
Occam’s razor is probably the main reason for defining Kolmogorov complexity:
Kolmogorov complexity gives the length of the “best” encoding (by Occam’s
razor), so the probability distribution it defines must be the “best” predictor or
generative model.

More precisely, we can define the following probability distributions on X∗

(All finite sequences of elements of X. These distributions are defined up to a
normalization constant for programs that do not end), that should be usable
for any problem (see [4]).

P1(x) = 2−K(x), (4)

P2(x) =
∑

all deterministic programs

2−|p|1p outputs x, (5)

P3(x) =
∑

all random programs

2−|p|P (p outputsx), (6)

P4(x) =
∑

probability distributions

2−|µ|µ(x), (7)

where a program is any string of bits to be read by a universal Turing machine,
and a random program is a program that has access to a stream of random bits
(in particular, a deterministic program is a random program), and |µ| is the
Kolmogorov complexity of µ, i.e., the length of the shortest program computing
µ (if µ is not computable, then its Kolmogorov complexity is infinite, and µ does
not contribute to P4: the sum is in practice restricted to computable probability
distributions). For example, P2 is the output of a program written at random
(the bits composing the program are random, but the program is deterministic),
and P3 is the output of a random program written at random.

Notice that P1(x) can be rewritten as
∑

Diracs 2−|δ|δ(x): P4 is to P1 what
P3 is to P2 (the Diracs are the “deterministic probability distributions”).

Since Kolmogorov complexity is defined only up to an additive constant, the
probability distributions above are only defined up to a multiplicative constant.
This leads us to the following definition:

Definition 1. Let P and P ′ be two probability distributions on a set X. P and
P ′ are said to be equivalent if there exists two constants m and M such that:

mP 6 P ′ 6MP (8)

2

Proposition 2. P1, P2, P3 and P4 are equivalent.

Consequently, we can pick any of these probability distributions (which are
called Solomonoff universal prior) as a predictor. We choose P4:

P4(xk+1|xk, ...x1) : =

∑
µ 2−|µ|µ(x1, ..., xk+1)∑

µ,x′ 2
−|µ|µ(x1, ..., xk, x′)

(9)

=

∑
µ 2−|µ|µ(x1, ..., xk)µ(xk+1|x1, ..., xk)∑

µ 2−|µ|µ(x1, ..., xk)
(10)

=

∑
µ wµµ(xk+1|x1, ..., xk)∑

µ wµ
, (11)

where wµ = 2−|µ|µ(x1, ..., xk) can be seen as a Bayseian posterior on the
probability distributions (we had the prior 2−|µ|). In particular, the posterior
weights depend on the data.

However, as we have seen, the Kolmogorov complexity and therefore P4 are
not computable.

2 Universal probability distributions in practice

We have to replace Kolmogorov complexity by something simpler: we choose a
family of probability distibutions F , and restrict ourselves to this family. The

distribution we obtain is therefore PF :=
∑
µ∈F

2−|µ|µ.

We now give some possible families:

• F = {µ}. This is often the case with real data: people are already happy
to have one simple model that explains past data.

• F = {µ1, ..., µn}: as seen in equation (11), we obtain a Bayesian combi-
nation.

• F = {µθ, θ ∈ Θ}: this case will be studied below. As a simple example,
we can take Θ = [0, 1], and µθ is Bernoulli, with parameter θ.

In that case, we have

PF =
∑
θ∈Θ

2−K(θ)µθ. (12)

Notice that the right side of equation (12) is only a countable sum: if θ is not
computable, then K(θ) = +∞, and the corresponding term does not contribute
to the sum.

There exist different techniques for approximating PF in the parametric case
(see for example [1]):

1. Encoding the best θ0 to encode the data. In that case,
∑
θ∈Θ 2−K(θ)µθ

is approximated by the largest term of the sum. Since we encode first
a θ ∈ Θ, and then the data, with the probability distribution Pθ, these
codes are called two-part codes.

3

2. We can replace the penalization for a complex θ by a continuous Bayesian

prior q on Θ. In that case,
∑
θ∈Θ 2−K(θ)µθ is approximated by

∫
Θ

q(θ)µθ.

As we will see later, there exists a prior (called Jeffreys’ prior) with good
properties with respect to this construction.

3. Normalized maximum likelihood techniques (will be discussed later)

4. We can make online prediction in the following way: use a default prior
for x1, and to predict (or encode) xk, we use past data to choose the best
µθ.

1 With this method, the parameter θ is defined implicitly in the data:
there is no need to use bits to describe it.

We also introduce the following definition (although it will not be used in
the remainder of this talk):

Definition 3. A generative model P is said to be prequential (contraction of

predictive-sequential, see [1]) if
∑
x

P (x1, ..., xk, x) = P (x1, ..., xk) (i.e. different

time horizons are compatible).
A predictive model Q is said to be prequential if the equivalent generative

model is prequential, or equivalently, if Q(xk+1, xk|x1, ..., xk−1) = Q(xk+1|x1, ..., xk)Q(xk|x1, ..., xk−1)
(i.e. predicting two symbols simultaneously and predicting them one after the
other are the same thing, hence the name “predictive-sequential”)

It can be checked that the Bayesian model and the online model are pre-
quential, whereas the two others are not.

Notice that being prequential is equivalent to being compatible with the
point of view in Section 0, in the sense that prequential models really corre-
spond to one probability distributions on Xn. The reason why two-part codes
and NML codes are not prequential is that for any fixed k, they correspond to
a probability distriution Pk on the set of sequences of symbols of length k, but
for k′ 6= k, Pk and Pk′ are not necessarily related: they do not satisfy equation
(1) (and consequently, NML codes and two-part codes themselves do not satisfy
equations (2) and (3)).

We now study the first of these techniques: two-part codes.

2.1 Two-part codes

Our strategy is to use the best code θ0 in our family (Pθ). Since the decoder
cannot know which Pθ we are using to encode our data, we need to send θ0,
first.

Since θ0 is a real parameter, we would almost surely need an infinite number
of bits to encode it exactly: we will encode some θ “close” to θ0 instead.

Suppose for example that θ0 ∈ [0, 1]. If we use only its k first binary digits
for θ, then we have |θ − θ0| 6 2−k.

1Here, “the best” does not mean the maximum likelihood estimator: if a symbol does not
appear, then it will be predicted with probability 0, and we do not want this. A possible
solution is to add fictional points of data before the message, which will also yield the prior
on x0. For example, when encoding the results of a game of heads or tails, it is possible to
add before the first point a head, and a tail, each with weight 1/2.

4

Consequently, let us define the precision of the encoding of some θ ∈ [0, 1]
with ε := 2−number of bits to encode θ (so we immediately have the bound |θ− θ0| 6
ε).

We recall the bound given in the first talk for any probability distribution
µ:

K(x) 6 K(µ)− log2(µ(x)), (13)

which corresponds to coding µ, and then, using an optimal code with respect
to µ to encode the data.

Here, increasing the precision (or equivalently, reducing ε) increases the likeli-
hood of the data (and consequently − log2(µ(x)) decreases), but K(µ) increases:
we can suppose that there exists some optimal precision ε∗. Let us compute it.

2.1.1 Optimal precision

In the ideal case (infinite precision), we encode the data x1, ..., xn by sending
θ∗ := argmaxθµθ(x1, ..., xk), and then, the data encoded with the probability
distribution µθ∗ .

The codelength corresponding to a given ε is:

l(ε) := − log2 ε− log2(µθ(x)), (14)

where |θ − θ∗| 6 ε (i.e. we encode θ, which takes − log2 ε bits, and then, we
encode x using µθ, which takes − log2(µθ(x)) bits).

With a second order Taylor expansion around θ∗, we find:

l(ε) = − log2 ε−log2 µθ∗(x)+
∂(− log2 µθ(x))

∂θ
(θ−θ∗)+ ∂2

∂θ2
(− log2 µθ(x))

(θ − θ∗)2

2
+o((θ−θ∗)2),

(15)
where the derivatives are taken at θ = θ∗.
The first order term is equal to zero, since by definition, µθ∗ is the probability

distribution minimizing − log2 µθ(x). If we approximate θ − θ∗ by ε and write

J(θ∗) := ∂2

∂θ2 (− lnµθ(x)) (which is positive), we find:

l(ε) ≈ − log2(µθ∗(x))− log2 ε+
J(θ∗)

ln 2

ε2

2
. (16)

Differentiating with respect to ε, we find dl
dε = 1

ln 2

(
− 1
ε + εJ(θ∗)

)
. If we

denote by ε∗ the optimal precision, we must have dl
dε |ε=ε∗ = 0, i.e.

ε∗ ≈

√
1

J(θ∗)
, (17)

which, by plugging (17) into (16), yields the following codelength:

l(ε∗) ≈ − log2 µθ∗(x) +
1

2
log2 J(θ∗) + cst. (18)

Essentially, the idea is that if θ−θ∗ < ε∗, and if we denote by x the data, the
difference between Pθ(x) and Pθ∗(x) is not significant enough to justify using
more bits to improve the precision of θ. Another possible way to look at this is
that we cannot distinguins θ from θ∗, in the sense that it is hard to tell if the
data have been sampled from one distribution or the other.

5

2.1.2 The i.i.d. case: confidence intervals and Fisher information

Let us now consider the i.i.d. case: all the xi are sampled from the same prob-
ability distribution, and we have − log2 µθ(x) =

∑
i− log2 αθ(xi). In that case,

J(θ) =

n∑
i=1

∂2

∂θ2
lnαθ(xi), so it is roughly proportional to n, and ε∗ is therefore

proportional to 1√
n

: we find the classical confidence interval.

Moreover, if the xi really follow αθ, then

Ex∼α(J(θ)) = nEx∼α
(
∂2

∂θ2
(− lnαθ(x))

)
=: nI(θ), (19)

where I(θ) is the so-called Fisher information. We will often use the following
approximation

J(θ) ≈ nI(θ). (20)

With this, we can rewrite equation (17) for the i.i.d. case, and we find that the
optimal ε is approximately equal to:

ε∗ ≈ 1√
n

1√
I(θ∗)

. (21)

By simply studying the optimal precision to use for a parameter from a
coding perspective, we managed to recover confidence intervals and the Fisher
information.

2.1.3 Link with model selection

Now that we have the optimal precision and the corresponding codelength, we
can also solve certain model selections problems.

Consider for example you are playing heads or tails n times, but at the
middle of the game, the coin (i.e. the parameter of Bernoulli’s law) is changed.
You are given the choice to encode a single θ, or θ1 which will be used for the
first half of the data, and θ2 which will be used for the second half.

Let us compute the codelengths corresponding to these two models. If we
denote by x all the data, by x1 the first half of the data, and by x2 the second
half of the data, we find, by combining equations (18) and (20):

l1 = − log2 µθ(x) +
1

2
log2 I(θ) +

1

2
log2(n) + cst, (22)

l2 = − log2 µθ1(x1)− log2 µθ2(x2) +
1

2
log2 I(θ1) +

1

2
log2 I(θ2) +

1

2
log2(n/2) +

1

2
log2(n/2) + cst

(23)

= − log2 µθ1,θ2(x) +
2

2
log2(n) +O(1). (24)

It is easy to see that for a model with k parameters, we would have:

lk = − log2 µθ1,...,θk(x) +
k

2
log2(n) +O(1). (25)

6

Asymptotically, we obtain the Bayesian information criterion, which is often
used. It could be interesting to use the non-asymptotic equation (23) instead,
but the Fisher information is usually hard to compute.

It is also interesting to notice that using two-part codes automatically makes
the corresponding coding suboptimal, since it reserves several codewords for the
same symbol: coding θ1 followed by x coded with Pθ1 yields a different code than
θ2 followed by x coded with Pθ2 , but these two codes are codes for x. A solution
to this problem is to set Pθ(x) = 0 if there exists θ′ such that Pθ′(x) > Pθ(x)
, and renormalize. Then, for a given x, only the best estimator can be used to
encode x. This yields the normalized maximum likelihood distribution (if we de-

note by θ̂(x) the maximum likelihood estimator for x, NML(x) =
Pθ̂(x)(x)∑
x Pθ̂(x)(x)

).

Another way to look at this problem is the following: consider as an example
the simple case Θ = {1, 2}. The encoding of θ corresponds to a prior q on Θ (for
example, using one bit to distinguish P1 from P2 corresponds to the uniform
prior q(1) = q(2) = 0.5).

The two-part code corresponds to using max(q(1)P1, q(2)P2) as our “prob-
ability distribution” to encode the data, but its integral is not equal to 1: we
lose

∫
X

min(q(1)P1(x), q(2)P2(x))dx, which makes the codelengths longer. Con-
sequently, it is more interesting to directly use the mixture q(1)P1 + q(2)P2 to
encode the data when it is possible, because all codewords will then be shorter.

7

References

[1] Peter D. Grünwald. The Minimum Description Length Principle (Adaptive
Computation and Machine Learning). The MIT Press, 2007.

[2] Marcus Hutter. On universal prediction and Bayesian confirmation. Theo-
retical Computer Science, 384(1):33–48, 2007.

[3] Ming Li and Paul M.B. Vitanyi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer Publishing Company, Incorporated, 3 edition,
2008.

[4] Ray J. Solomonoff. A formal theory of inductive inference. Information and
Control, 7, 1964.

8

