
Jeffreys’ prior. An application: Context tree

weighting

Contents

0 Context 1
0.1 Bayesian approximation for universal probability distributions . . 1
0.2 Reminder from Talk 2: Optimal precision in the i.i.d. case 2

1 Jeffreys’ prior 2
1.1 Motivation . 2
1.2 Construction . 3
1.3 Example: the Krichevsky–Trofimov estimator 4

2 Context tree weighting 6
2.1 Markov models and full binary trees 6
2.2 Prediction for the family of visible Markov models 7
2.3 Computing the prediction . 7

2.3.1 Bounded depth . 7
2.3.2 Generalization . 9

2.4 Algorithm . 9

Appendix 11

References 12

0 Context

0.1 Bayesian approximation for universal probability dis-
tributions

We recall that we are interested in the following probability distribution:

P4(x) =
∑

probability distributionsµ

2−|µ|µ(x), (1)

where |µ| is the length of the shortest program computing µ (with the convention
that |µ| =∞ if µ is not computable).

Since P4 itself is not computable, it has to be approximated, for example
by replacing the set of all computable probability distributions by a parametric
family

F = {µθ, θ ∈ Θ}, (2)

1

and |µ| is replaced by K(θ). The distribution we are interested in is therefore:

PF =
∑
θ∈Θ

2−K(θ)µθ. (3)

We mentioned four possibilities to approximate PF . Among them:

• Two-part codes: encode some θ first, then use Pθ to encode the data.

• Replace 2−K(θ) in PF by a prior q on Θ, which yields

PBayes
F (x) =

∫
Θ

q(θ)µθ(x)dθ. (4)

We are going to show that there exists a canonical prior on Θ (Jeffreys’ prior),
but firstly, we recall the optimal precision for the encoding of θ in the case of
two-part codes.

0.2 Reminder from Talk 2: Optimal precision in the i.i.d.
case

Consider we are trying to encode a message (x1, ..., xn) with (xi)i∈[1,n] i.i.d.
using a two-part code. We need to encode some θ∗ ∈ Θ.

Suppose for example that Θ = [0, 1]. In general, it is not possible to encode
the full binary expansion of θ∗, since we would need an infinite number of bits.
Consequently, we will encode some θ close to θ∗, by simply writing the first k
bits. In that case, we can guarantee that

|θ − θ∗| 6 2−k =: ε. (5)

We have seen in Talk 2 that the optimal1 epsilon ε∗ was given by:

ε∗ ≈ 1√
n

1√
I(θ∗)

, (6)

where I(θ∗) is the Fisher information matrix at θ∗.2

Now, let us construct Jeffreys’ prior.

1 Jeffreys’ prior

1.1 Motivation

We recall that we needed a reasonable default prior q for the probability distri-
bution (4):

PBayes
F (x) =

∫
Θ

q(θ)µθ(x)dθ. (7)

A naive choice for a default prior is “the uniform prior” (i.e. q(θ) = cst).

1In terms of expected codelength.
2 In dimension larger than 1, I(θ∗) is replaced by det I(θ∗).

2

Sadly, the uniform prior on a family of probability distributions can be ill-
defined.

Consider for example B the family of Bernoulli distributions.
If Pθ is the Bernoulli distribtion of parameter θ, and Qθ is the Bernoulli

distribtion of parameter θ100, then {Pθ, θ ∈ [0, 1]} = {Qθ, θ ∈ [0, 1]} = B, but
most of the time, the uniform prior on the family (Qθ) will select a Bernoulli
distribution with a parameter close to 0 (θ is picked uniformly in [0, 1], so

θ100 < 0.1 with probability 0.1
1

100 & .97).
This shows that a uniform prior depends not only on our family of probability

distributions, but also on its parametrization, which is an arbitrary choice of the
user.

Any reasonable default prior should be invariant by reparametrization of
the family {Pθ, θ ∈ Θ} (else, there would be as many possible priors as there
are parametrizations), and Jeffreys’ prior, constructed below, does have this
property.

1.2 Construction

Consider we are sending a message of length n.
Equations (5) and (6) (about the optimal coding precision) indicate that

when coding a given message with a two-part code, only a finite number of
elements of Θ will actually be used in the first part of the coding, each θk being
used for all θ ∈ Ik ; and equation (6) shows that the length of Ik is 1√

n
1√
I(θk)

.

The fact that all elements of Ik are encoded the same way means that we
will not distinguish different θ in the same Ik, and in practice, we will only use
the m different θk corresponding to each interval.

Consequently, a reasonable procedure to pick a θ would be to start by picking
some k ∈ [1,m], and then, pick θ ∈ Ik uniformly.

It is easy to see that the probability distribution qn corresponding to this
procedure is given by the density:

qn(θ) = Kn

√
I(θk(θ)), (8)

where Kn is a normalization constant, and k(θ) is defined by the relation θ ∈
Ik(θ).

Now, if n → ∞, it can be proved3 that (qn) converges to the probability
distribution q given by the density:

q(θ) = K
√
I(θ), (9)

where K is a normalization constant.4 Also notice that sometimes (for example
with the family of Gaussian distributions on R), Jeffreys’ prior cannot be nor-
malized, and consequently, cannot be used.

We now have a reasonable default prior, and we are going to use it to predict
the next element of a sequence of zeros and ones.

3The important idea is that θk(θ) → θ when n → ∞, since the length of all the intervals
Ik tends to 0.

4As in footnote 2, in dimension larger than 1, (9) becomes q(θ) = K
√

det I(θ).

3

1.3 Example: the Krichevsky–Trofimov estimator

We introduce the following notation:

Notation 1. We denote by Pθ the Bernoulli distribution of parameter θ, and
we define B := {Pθ, θ ∈ [0, 1]}.

Suppose we are trying to learn a frenquency on the alphabet X = {c, d}.
For example, given the message ccc, we want P (x4 = c).

A first approach is using the maximum likelihood (ML) estimator:

PML(xn+1 = c|x1, ..., xn) =

∑n
i=1 1xi=c

n
=

number of c in the past

number of observations
. (10)

This has two drawbacks: ML assigns the probability 0 to any letter that has
not been seen yet (which is a major problem when designing codes, since prob-
ability 0 corresponds to infinite codelength), and is undefined for the first letter.

Let us now consider the Bayesian approach with Jeffreys’ prior.

Lemma 2. The Fisher metric on B is given by

I(θ) =
1

θ(1− θ)
, (11)

and Jeffreys’ prior is given by

q(θ) =
1

π

1√
θ(1− θ)

(12)

Proof. It is a straightforward calculation. We have Pθ(0) = 1− θ, Pθ(1) = θ, so
∂2 lnPθ(0)

∂θ2 = −1
(1−θ)2 and ∂2 lnPθ(1)

∂θ2 = −1
θ2 . Finally:

I(θ) = −∂
2 lnPθ(0)

∂θ2
Pθ(0)− ∂2 lnPθ(1)

∂θ2
Pθ(1) (13)

=
1

(1− θ)2
(1− θ) +

1

θ2
θ (14)

=
1

1− θ
+

1

θ
(15)

=
1

θ(1− θ)
, (16)

and we have the Fisher information. The only difficulty to compute Jeffreys’
prior is the normalization constant, which is

K :=

∫ 1

0

dθ√
θ(1− θ)

, (17)

and the substition θ = sin2 u yields

K =

∫ π/2

0

2 sinu cosudu√
sin2 u cos2 u

= π. (18)

4

We have therefore, by using Jeffreys’ prior in (4):

P Jeffreys(xn+1|x1, ..., xn) =
1

π

∫ 1

0

1√
θ(1− θ)

Pθ(x1, ..., xn)Pθ(xn+1|x1, ..., xn)dθ.

(19)
This is actually easy to compute, thanks to the following proposition, which

will not be proved here:

Proposition 3. Let α, β > 0. If q(θ) ∝ θα−1(1− θ)β−1, then

PBayes(xn+1 = c|x1, ..., xn) =
α+

∑n
i=1 1xi=c

α+ β + n
, (20)

where

PBayes(x) =

∫
Θ

q(θ)Bθ(x)dθ (21)

is the Bayesian prediction with Bernoulli distributions and the prior q on the
parameter θ of the distributions.

In other words, using such a prior is equivalent to using ML, with fictional
observations (c occuring α times and d occuring β times).5

In particular, for Jeffreys’ prior, we have α = β = 1
2 , so

P Jeffreys(xn+1 = c|x1, ..., xn) =
1
2 +

∑n
i=1 1xi=c

n+ 1
=

1
2 + number of c in the past

1 + number of observations
.

(22)

Consequently, we introduce the following notation: KT(x, y) :=
1
2 + x

1 + x+ y
.

This estimator is called “Krichevsky–Trofimov estimator” (KT), and it can
be proved ([7],[5]) that, when using it instead of knowing the “real” θ, no more
than 1 + 1

2 log(n) bits are wasted.
We can also define the generative model corresponding to Jeffreys’ prior. It is

easy to prove (by induction on the total number of symbols) that the probability
assigned to any given sequence (x1, ..., xa+b) with a zeros and b ones is equal to

PJ(a, b) :=

(∏
06i<a(i+ 1

2)
)(∏

06i<b(i+ 1
2)
)

∏
06i<a+b(i+ 1)

=
∏

06i<a

KT(i, 0)
∏

06j<b

KT(a, j),

(23)
with the convention that the empty product is equal to 1 (i.e. PJ(0, 0) = 1).

In particular, we can see that the probability of a sequence (x1, ..., xn) de-
pends only on the number of c and d in (x1, ..., xn), and not on the order, and
PJ satisfies the relations, PJ(a + 1, b) = PJ(a, b)KT(a, b) and PJ(a, b + 1) =
PJ(a, b)(1−KT(a, b)).

It is also useful to remark that PJ(0, 0) = 1 and PJ(1, 0) = PJ(0, 1) = 1
2 .

In practice, Jeffreys’ prior is not efficient when the optimal θ is on the bound-
ary: for instance, when encoding text, most punctuation symbols are always

5Distributions satisfying q(θ) ∝ θα−1(1 − θ)β−1 are called beta distributions. The sim-
plification in this proposition is due to the fact that if we have a beta prior for a Bernoulli
distribution, then the posterior will also be a beta distribution. The beta distributions are
called conjugate priors to Bernoulli distributions .

5

followed by a space. The corresponding new prior for Bernoulli distributions is
given by

1

2
q +

1

4
δ0 +

1

4
δ1, (24)

where q is Jeffreys’ prior on B, and δi is the Dirac distribution at i. This new
prior is called a “zero-redundancy estimator”.

We are now going to apply all we have done until now with a text prediction
algorithm.

2 Context tree weighting

In this section, we quickly present context tree weighting, a Bayesian text pre-
diction model combining all visible Markov models of any finite order, see [7]
and [6] for more information.

We start by showing a simple way to describe one visible Markov model.

2.1 Markov models and full binary trees

Learning a frequency on the alphabet X = {c, d} corresponds to restricting
ourselves to the family of Bernoulli distributions, which can be thought of as
the family of Markov models of order 0.

Still working on the alphabet {c, d}, we are going to present the context tree
weighting algorithm, which uses the family of all visible Markov models.

Notice in particular that we can use Markov models of variable order, for
example: “if the last symbol was c, predict c with probability 0.7, if the last
symbol was d, then look at the next-to-last symbol: if it was a c then predict c
with probability 0.5, else predict c with probability 0.3.”

A Markov model can be described by a full6 binary tree the following way:

@
@
@

�
�
�

@
@
@

�
�
�

0.7

0.5 0.3

c

c

d

d

Figure 1: Tree corresponding to the example above

For a given tree, the contexts we are interested in are the leaves of the tree:
with the example above, the leaf labeled 0.7 corresponds to the context “c?”,
the leaf 0.5 corresponds to the context “cd?” and the leaf 0.3 corresponds to
“dd?” (notice in particular that contexts are read backwards in the tree).

Suppose for now that we have such a tree. It is easy to see that there is
exactly one context appearing in the tree and corresponding to a suffix of the
past observations: we output c with probability equal to the value of the leaf
corresponding to this context.

6All nodes have either 0 or 2 children.

6

Our model can therefore be decomposed as a finite full binary tree T (the
structure of the tree), and the ordered set θT := (θs) of the labels on the leaves,
and we will try to estimate it online.

Now that we are able to describe efficiently a Markov model, we can go back
to our main problem: prediction using universal probability distributions on all
visible Markov models.

2.2 Prediction for the family of visible Markov models

The distribution we would like to use for prediction is (3), with Θ = {(T, θT), T finite binary tree, θT ∈
[0, 1]number of leaves of T } :

PF =
∑
θ∈Θ

2−K(θ)µθ,

where µθ is given by the previous subsection. K(θ) remains problematic, but
we can decompose

∑
θ 2−K(θ) into

∑
T 2−K(T)

∑
θT

2−K(θT), and then:

• A full binary tree T can be described by as many bits as it has nodes, by
labelling internal nodes by 1 and leaves by 0, and read breadth-first (our
example would give the code 10100).

• We can use Jeffreys’ prior for θT .

With these new approximations, we have:

PF =
∑

T full binary trees

2−#nodes(T)

∫
[0,1]#leaves(T)

dθs1

π
√
θs1(1− θs1)

...
dθsl

π
√
θsl(1− θsl)

P(T,(θi)),

(25)
where θi denotes the parameter of the i-th leaf. (25) can be interpreted as a
double mixture over the full binary trees and over the parameter values.

Now, we have to compute (25). This sum has an infinite number of terms
(and even if we restrict ourselves to a finite depth D, the number is still expo-
nential in D). However, it is possible to compute it efficiently and exactly.

2.3 Computing the prediction

The general idea is to maintain the tree of all observed contexts, and each
node s will weight the choices “using s as a context”, and “splitting s into the
subonctexts cs and ds” by using information from deeper nodes (more precisely,
the number of times a c or a d has been written in a given context).

2.3.1 Bounded depth

Here, we restrict ourselves to Markov models of depths at most D. For simplic-
ity, we will not try to predict the D first symbols.

Notice that in that case, the cost to describe a tree can be modified: since
a node at depth D is automatically a leaf, it is no longer necessary to use bits
to describe them. If we denote by TD the complete binary tree of depth D,

7

and by nD(T) the number of nodes at depths less than D of a tree T , then the
probability distribution corresponding to this model is

PF =
∑

T subtree of TD

2−nD(T)

∫
[0,1]#leaves(T)

dθs1

π
√
θs1(1− θs1)

...
dθsl

π
√
θsl(1− θsl)

P(T,(θi)),

(26)

Notation 4. We will denote each node by the suffix corresponding to it (for
example, the root is ε, the node labeled 0.7 in Figure 1 is c, etc. . .), and at
each node s, we will maintain two numbers cs and ds, respectively the number
of times a c and a d have been observed after the context s (starting the count
at x1). Notice that we have the relation cs = c1s + c0s.

7

Now, let us look at equation (26) more closely. The goal of the following
lemma and its corollary is to write equation (26) in a way that will allow to
compute it efficiently.

Firstly, we can see that

Lemma 5. If cs(k) and ds(k) are respectively the number of times a c and a d
have been observed after the context s from x1 to xk, we have:

P(T,(θsi))
(x1, ..., xn) =

∏
s leaves of T

θcs(n)
s (1− θs)ds(n), (27)

See the appendix for the proof.
Consequently, the integral in (26) can be computed with Proposition 3:

Corollary 6. We have:∫
[0,1]#leaves(T)

dθs1

π
√
θs1(1− θs1)

...
dθsl

π
√
θsl(1− θsl)

P(T,(θi))(x1, ..., xn) =
∏

u leaves of T

PJ(cu, du)

(28)

Proof. It is a consequence of Lemma 5 and of the fact that PJ(a, b) is the
probability of seeing a sequence containing respectively a and b times the letters
c and d with Jeffreys’ prior.

Equation 26 can therefore be rewritten:

PF (x1, ..., xn) =
∑

T subtree of TD

2−nD(T)
∏

u leaves of T

PJ(cu, du). (29)

Under this form, PF can be computed recursively, starting by its leaves, by
the following lemma:

Lemma 7. If we assign to each node s the following probability:

P s :=

{
PJ(cs, ds) if |s| = D

1
2PJ(cs, ds) + 1

2P
csP ds if |s| < D

(30)

7Unless s is a prefix of the word we are reading. In practice, as we will see in the next
section, this problem can be solved by adding a new character § indicating the beginning of
the message: cs = c0s + c1s + c§s is always true.

8

then, for any node s, P s satsifies:

P s =
∑

T subtree of TD with root s

2−nD(T)
∏

u leaves of T

PJ(cu, du). (31)

Notice that by definition, s is automatically a suffix of all the u in the equation
above.

See the appendix for the proof.
As an immediate corollary, we have:

P ε =
∑

T subtree of TD with root ε

2−nD(T)
∏

u leaves of T

PJ(cu, du), (32)

which is exactly equation (29).
Let us now consider the general case.

2.3.2 Generalization

The method presented above has two shortcomings: the fact that we cannot
predict the first D symbols, and the bounded depth.

The first one can be solved by adding a “beginning of the message” character
§. The corresponding trees are then ternary, and since undefined symbols can
only occur at the beginning of a word, any suffix starting with § is a leaf.

Now, to work with unbounded depth, we simply maintain the tree Tn of all
suffixes seen up to time n (i.e: all factors of the word §, x1, ..., xn−1, xn. Tn is
therefore exactly of depth n+ 1), and, at each node s of Tn, the counts cs, ds,
and §s.

To compute the corresponding distribution, we replace the P s in (30) by:

P s :=

{
1
2 if s is a leaf of Tn

1
2PJ(cs, ds) + 1

2P
csP dsP §s else,

(33)

with the convention that Pλs = 1 if λs has never appeared yet (for λ = c, d, §),
and we use P ε again as our probability distribution.

It can be proved that this algorithm achieves entropy (i.e. optimal coding
length) for arbitrary-depth tree sources (Theorem 3 in [6]).

We can now describe the actual algorithm.

2.4 Algorithm

Suppose that we have PF,n(xn|x1, ..., xn−1), with the corresponding tree Tn−1

(the tree containing all suffixes in x1, ..., xn−1).
When we read xn, we update Tn−1 by adding to it the suffix corresponding

to the branch (x1, ..., xn). We add at most n nodes. Now, we compute the new
P s. Since the only modified P s are those corresponding to a suffix of (x1, ..., xn),
the complexity is O(n).

We can therefore read P (x1, ..., xn) at the root. Now, add the node x1, ..., xn, c
to compute P (x1, ..., xn, c) at the root (the computation is again O(n)), and the

prediction is PF,n+1(xn+1|x1, ..., xn) =
PF,n+1(x1,...,xn+1)
PF,n(x1,...,xn) .

9

The complexity of this algorithm is O(n2), whereas the bounded version
has complexity O(nD), where, n is the length of the data we are compressing
and D is the depth bound. However, if the data is “sufficiently random”, the
complexity of the unbounded version is only O(n log2 n) when coded properly8,
which makes it usable in general.

8The algorithm described here is always O(n2), but it can be improved by using the fact
that some points are “equivalent” (for example, we can stop going deeper in the tree once we
find a suffix that has appeared only once).

10

Appendix

Proof of Lemma 5. By induction. P(T,(θsi))
(x1) = θ

1x1=c

sT (Lx1)(1 − θsT (Lx1))
1x1=d ,

where sT (x) is the only leaf of T corresponding to a suffix of x, which is what
we want.

Now,

P(T,(θsi))
(x1, ..., xk+1) =P(T,(θsi))

(xk+1|x1, ..., xk)P(T,(θsi))
(x1, ..., xk)

=θ
1xk+1=c

sT (Lx1...xk)(1− θsT (Lx1...xk))
1xk+1=d

∏
s leaves of T

θcs(k)
s (1− θs)ds(k),

and since for all s for λ ∈ {c, d}, λs(k+ 1) = λs(k) +1xk+1=λ1s=sT (Lx1...xk),
we find

P(T,(θsi))
(x1, ..., xk+1) =

∏
s leaves of T

θcs(k+1)
s (1− θs)ds(k+1), (34)

which is what we wanted.

Proof of Lemma 7. By induction. If |s| = D, it is clearly true. Suppose now
that (31) holds for all nodes deeper than s. We have, by definition:

P s =
1

2
PJ(cs, ds) +

1

2
P csP ds

=
1

2
PJ(cs, ds) +

1

2

(∑
T subtree of TD with root cs

2−nD(T)
∏

u leaves of T

PJ(cu, du)

)

∗

(∑
T subtree of TD with root ds

2−nD(T)
∏

u leaves of T

PJ(cu, du)

)

The first term corresponds to the subtree composed only of the root, and the
second term corresponds to all other subtrees, described by the part on the left
of the root and the part of the right of the root. In other words:

P s = 2−1PJ(cs, ds)+
∑

T subtree of TD with root cs

T ′ subtree of TD with root ds

2−1−nD(T)−nD(T ′)
∏

u leaves of T orT ′

PJ(cu, du),

(35)
which is what we want.

11

References

[1] Peter D. Grünwald. The Minimum Description Length Principle (Adaptive
Computation and Machine Learning). The MIT Press, 2007.

[2] Marcus Hutter. On universal prediction and Bayesian confirmation. Theo-
retical Computer Science, 384(1):33–48, 2007.

[3] Ming Li and Paul M.B. Vitanyi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer Publishing Company, Incorporated, 3 edition,
2008.

[4] Ray J. Solomonoff. A formal theory of inductive inference. Information and
Control, 7, 1964.

[5] Joel Veness, Kee Siong Ng, Marcus Hutter, and Michael H. Bowling. Context
tree switching. CoRR, abs/1111.3182, 2011.

[6] Frans M. J. Willems. The context-tree weighting method: Extensions. IEEE
Transactions on Information Theory, 44:792–798, 1994.

[7] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The
context tree weighting method: Basic properties. IEEE Transactions on
Information Theory, 41:653–664, 1995.

12

