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Introduction

Suppose that we are trying to fit a probabilistic model pθ(x) to data x1, ..., xn
by a gradient ascent (our global problem is finding argmaxθ∈Θ(pθ(x)).

As we showed in the two previous talks, the gradient ascent is of the form

θ ← θ + ηM−1 ∂L

∂θ
, (1)

where L is the loss function we are trying to minimize (a relevant choice for
L(θ) could be the length of the data compressed using pθ, for example), and M
is a metric on Θ. We were hoping to find a “reasonable” metric M in the sense
that it should not depend on the parametrization.

We also recall that the gradient ascent can be rewritten (up to O(η2)) as the
following penalized maximization problem:

θn+1 = argmaxθ{f(θ)− 1

2η
‖θ − θn‖2M}, (2)

where ‖a‖2M = aTMa. M can therefore be seen as a penalty for moving away
from the current point. In the case of the probabilistic model, we want this
penalty to depend only on pθ and pθn . One way to do this is to use the Kullback–
Leibler divergence.
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1 Kullback–Leibler divergence, Fisher metric

For the remainder of the text, we will suppose that the sample space X is
discrete. If X is continuous, the sums simply have to be replaced by integrals.

1.1 Kullback–Leibler divergence

Consider an emitter sending data following the probability distribution p, and
suppose the receiver knows p, and tries to encode the data.

To minimize the length of the encoded message, the receiver should encode x
with − log2 p(x) bits, yielding the codelength H(p) = −

∑
p(x) log2 p(x), which

is by definition the Shannon entropy of p.
Now, if the receiver does not know p, and uses a probability distribution q

instead to encode the data, the codelength will be −
∑
p(x) log2 q(x).

By definition, the Kullback–Leibler divergence (already introduced in the
first talk) is the difference between these two codelengths:

KL(p‖q) :=
∑

p(x) log2

p(x)

q(x)
, (3)

which is always positive. In other words, it is best to use the probability distri-
bution p to compress data generated with p.

The Kullback–Leibler divergence is not symmetric, and is hard to manipulate
in practice. The reasonable thing to do is to use the second order approximation
of the Kullback–Leibler divergence: the Fisher metric.

1.2 Fisher metric

By definition, the Fisher metric is the second order term in δθ of KL(pθ+δθ‖pθ):
it is possible to show that

KL(pθ+δθ‖pθ) =
1

2
δθT I(θ)δθ + o(δθ2), (4)

where

I(θ) := Ex∼pθ

[
−∂

2 ln pθ(x)

∂θ2

]
= Ex∼pθ

[
∂ ln pθ(x)

∂θ

T
∂ ln pθ(x)

∂θ

]
(5)

is the so-called Fisher metric.
We can now write the corresponding gradient ascent, called natural gradient

ascent, whose advantages will be discussed in the remainder of the section:

θ ← θ + ηI(θ)−1 ∂L

∂θ
, (6)

which is invariant with respect to the parametrization, since it has been defined
using only the pθ and not the θ.1

The Fisher information also has an interpretation linking it to the “precision”
of estimators.

1It is known that the Fisher metric is the only invariant metric for probability distributions
which has certain “reasonable” properties.
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1.2.1 Cramer–Rao bound

Intuitively, if {pθ, θ ∈ Θ} is a family of probability distributions, an estimator
on Θ takes observations x1, ..., xn as an argument, and returns a value of the
parameter θ which is believed to be the value used to sample the xi. Saying an
estimator is unbiased means that its expected value is the parameter θ used to
sample the data.2 This yields the following definition.

Definition 1. Let X be a set, {pθ, θ ∈ Θ} a family of probability distributions
on X.

An estimator on Θ is a function from X∗ to Θ.
An estimator is said to be unbiased if ∀θ ∈ Θ, Ex∼pθψ(x1, ..., xn) = θ

We can now write the Cramer–Rao bound, which is a lower bound on the
variance of unbiased etimators.

Theorem 2 (Cramer–Rao bound). If xi ∼ pθ, and if ψ is an unbiased estimator
on Θ, then

Var(ψ(x1, ..., xn)) >
1

n
I−1(θ). (7)

The proof can be found in [2].
In other words, the Fisher matrix at θ defines a “box”3 around θ such that

it is not possible to know if the data has been sampled from θ or from some θ′ in
the box. For example, if the Fisher information at θ is large, a small variation
of θ will yield a large variation of pθ, and consequently, the box will be smaller.

An important result concerning natural gradient is that an estimator trained
with natural gradient asymptotically reaches the Cramer-Rao bound (Theorem
2 in [1]).

1.2.2 Relationship with diversity

Another interesting point with the natural gradient ascent is that the Kullback–
Leibler divergence penalizes the loss of diversity. For example, if we start with
a uniform distribution, we find:

KL(pθ‖Unif) = cst−H(pθ), (8)

and entropy is a reasonable way of measuring diversity. This remark is important
in machine learning, because keeping a high diversity should prevent overfitting.

We are now going to present the expectation maximization algorithm, an
algorithm used for prediction with missing data that can be described as a
natural gradient ascent.

2 Expectation maximization

Suppose we have data x, with x = (x′, x′′), but x′′ is missing, and consider a
family {pθ, θ ∈ Θ} of probability distributions, from which we would like to pick
the “best” θ to explain the data.

2Notice the important assumption that the data are sampled from some pθ.
3The box is the ellipsoid defined by the equation (x− θ)T 1

n
I(θ)(x− θ) 6 1
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The expectation maximization algorithm maintains an estimate θn updated
as follows: firstly, try to synthesize the missing data x′′ according to pθn(x′′|x′),
thus obtaining an estimated dataset x̂, and then, estimate θn+1 based on x̂.

There are several possibilities for the estimation of the dataset.

1. Pick one value of x′′ at random from pθn(x′′|x′).

2. Pick the most probable value of x′′ from pθn(x′′|x′).

3. Pick a few values of x′′ weighted by pθn(x′′|x′).

4. Pick all possible values x′′ weighted by pθn(x′′|x′).

We obtain the following algorithms:

Definition 3 (Expectation maximization algorithm). We define the four fol-
lowing update rules for θn.

1. Synthesize x′′ using θn (i.e. x′′ ∼ pθn(.|x′)).

Maximize θn+1 := argmaxθ ln pθ(x̂)

2. Pick the most probable x′′ knowing x′, using θn (i.e. x′′ = argmaxzpθn(x′, z)).

Maximize θn+1 := argmaxθ ln pθ(x̂)

3. [Monte-Carlo expectation maximization]

Take k samples x′′1 , ..., x
′′
k, with x′′j ∼ pθn for j ∈ [1, k], and give each of

these samples a weight 1
k .

θn+1 = argmaxθ
1

k

k∑
j=1

ln pθ(x
′, x′′j ). (9)

4. [Classical expectation maximization]

θn+1 = argmaxθ
∑
x′′

pθn(x′′|x′) ln pθ(x
′, x′′). (10)

This is the limit of (9) for k →∞.

Notice that only variants 2 and 4 are deterministic.

Expectation maximization can be used for example for clustering, where the
x′i are points, and x′′i is the cluster to which x′i belongs (variant 2 is the k-means
algorithm). It is also used for hidden Markov models, for which (10) can be
computed exactly.

2.1 Link with gradient ascent

The expectation maximization algorithm can be linked with gradient descent as
follows: let us define the function L(θ) := ln pθ(x

′) = ln
∑
x′′ pθ(x

′, x′′), which
is what we are trying to maximize (it is the probability of seeing the data we
actually observed).
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Proposition 4. The EM algorithm (10) is equivalent to setting:

θn+1 = argmaxθ{L(θ)−KL (pθn(x′′|x′)‖pθ(x′′|x′))} (11)

Proof. We start from (11). We have:

θn+1 = argmaxθ {L(θ)−KL(pθn(x′′|x′)‖pθ(x′′|x′))}

= argmaxθ

{
ln pθ(x

′)−
∑
x′′

pθn(x′′|x′) ln
pθn(x′′|x′)
pθ(x′′|x′)

}

= argmaxθ

{
ln pθ(x

′) +
∑
x′′

pθn(x′′|x′) ln pθ(x
′′|x′)

}

(since the removed term pθn(x′′|x′) ln pθn(x′′|x′) does not depend on θ)

= argmaxθ

{∑
x′′

pθn(x′′|x′) ln pθ(x
′) +

∑
x′′

pθn(x′′|x′) ln pθ(x
′′|x′)

}

= argmaxθ

{∑
x′′

pθn(x′′|x′) (ln pθ(x
′′|x′) + ln pθ(x

′))

}

= argmaxθ

{∑
x′′

pθn(x′′|x′) ln pθ(x
′, x′′)

}
,

which is exactly (10).

As an immediate corollary, the EM algorithm improves L at each step (at
worst, take θn+1 = θn).

The link with natural gradient is now clear: (11) is essentially (2), with step
size η = 1

2 , and with the KL divergence on x′′ instead of the Fisher metric.
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