
Regularization and application to model selection
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0 Reminder

We recall two results from the previous talks.

• (talk 1) Any probability distribution P on X corresponds to an encoding
scheme: x ∈ X is encoded in − log2(P (x)) bits.

• (talk 2) The Solomonoff universal probability distribution is defined1 by

P3(x) =
∑

all random programs

2−|p|P (p outputsx), (1)

where |p| is the length of the program p. It is reasonable to try to approach
this distribution as closely as possible.

1 Motivation for regularization

We are going to study regularization and model selection. Regularization is the
following problem:

1It is actually one of several possible definitions.
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We are given a training dataset D, a family of models {Pθ, θ ∈ Θ}, and we
try find a good θ to predict future data.

A natural choice would be θ∗ = argmaxθ(pθ(D)), but in practice, if we try
to apply pθ∗ to a validation set D′, it will not work in general. We give two
examples to illustrate this:

• The “zero-frequency problem”: if some element z never occurs in the
training data D, P ∗θ will give zero probability to z, which corresponds to
an infinite codelength, which is not acceptable (problems will arise if the
validation D′ contains z).

• A case of extreme overfitting: Pθ can learn D perfectly, i.e. Pθ = δD.
Then, Pθ will probably be a very bad predictor for new data D′. This can
happen when dim(Θ) is too large.

We are going to see how these issues can be dealt with.

2 Possible solutions

There exists several approaches to solve the two problems above:

1. Replace the model {Pθ, θ ∈ Θ} with a lower dimensional model. This can
be helpful for the overfitting problem, as shown in the following example:

Suppose we are trying to predict text with a Markov model of order 100.
Each string of 100 characters will occur only once and therefore, we will get
a large set of deterministic rules (which will probably never be used). This
would not happen when using a Markov model of order 2, for example.

Another example is regression: if we try to fit a polynomial of degree n
to n noisy points (xi, f(yi) +N (0, ε)), we can find a polynomial that fits
the points exactly, but which will be a very bad estimation of f . Limiting
ourselves to “low degree polynomials” would be helpful for this.

Of course, “low degree polynomials” is not well defined (it should be the
set of polynomials of degree inferior to some constant k, but how should
we choose k ?): the question “how should we lower the model dimension
?” is an important one.

It is also important to notice that this method does not solve the zero-
frequency problem (although it can help with the number of occurences of
zero-frequency problems).

2. Use Bayesian models for prediction: instead of using a single value θ∗, use
several values of θ (as seen in talk 2). More precisely, instead of pθ∗ , use
the mixture

∫
θ
pθw(θ), where w(θ) ∝ α(θ)pθ(D), where α is a prior on Θ,

and D is the data.

We have a canonical prior (Jeffreys’ prior, see talk 3), but it is not always
well-defined, and moreover, in general (including with other priors), the
final prediction cannot be computed algebraically. In that case, there
are two possible approximations: either select a few samples θ ∼ w(θ)
(Monte-Carlo), or use an approximation of w(θ) for which the integral
can be computed.
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3. Add virtual data to D:2 if D = {x1, ..., xn}, train θ on the augmented
dataset D̃ := (y1, ..., yp, x1, ..., xn), where the yi are virtual data.

This approach solves the zero-frequency problem: suppose we have A =
{A,B, ..., Z}. We can add for example one observation of each letter to
the data: if D = AAAAA, then D̃ = ABC....XY ZAAAAA, and now,
if x 6= A, Pθ∗(x) = 1

26+5 . It is also possible to weight the virtual data

(instead of adding each letter once, add each letter 1
26 times, which yields

a total of one “virtual observation”).

Another approach to add noise to the data (for example, if we are consid-
ering a regression problem with data (xi, yi), replace yi by yi +N (0, ε)).
An advantage of this method is that by construction, we can expect a
good behavior with noisy data.

These two approches are very similar: replacing a letter by a uniformly
chosen letter with probability p is equivalent to having this same propor-
tion p of “uniform letters” at the beginning of the word. In our example
above, having D̃ = ABCD...ZAAAAA is equivalent to having a 26

31 prob-
ability to replace the next letter by a random letter. Notice however that
this probability decreases when data is added.

4. Cross-validation: split the data D = (D1,D2), train θ on D1, and test it
on D2. This method has several shortcomings:

• It is reasonable only in the i.i.d. case. Using cross-validation for
weather prediction over forty years by splitting in forty periods of
one year would miss long-term trends, for example.

• Cross-validation does not help with the zero-frequency problem either
(if some value z never appears in any of the Di there is no reason to
select a θ giving z a non-zero probability).

• “train θ on D1” is vague: a certain number of methods will be used
θ, and then, cross-validation will help to select the “best” θ among
these values.

It is however something reasonable to do, and it is widely used.

5. Finally, it is possible to introduce “regularization terms” into the opti-
mization problem. For example, instead of θ∗ = argmaxθPθ(D), pick

θ∗ = argmaxθ lnPθ(D)−R(θ), (2)

where R(θ) is a penalization for some values of θ, for example R(θ) =
λ‖θ‖2.

One of the shortcomings of this method is that it is not invariant with
respect to reparametrization of θ: we can change the answer to our problem
by simply formulating it differently!

The choice of the penalty is also an important question: even if we suppose
that the general form of the penalty R(θ) = λ‖θ‖2 is fixed, the choice of
λ will have a huge influence .

2In some cases, the Bayesian prediction can be written that way. See talk 3, footnote 5.
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Finally, this method uses only one value of θ, which is usually not a good
idea.3

It is interesting to notice that there exists a relationship between the reg-
ularization term and the Bayesian predictor. For example, the penalty
R(θ) = λ‖θ‖2 corresponds to a Gaussian prior on θ. The posterior of a

given θ is then proportional to Pθ(D)e−λ‖θ‖
2

, and we can see that the
regularization method (2) simply maximizes the (logarithm of the) poste-
rior (however, it still uses only one value of θ, contrary to the Bayesian
prediction).

We are now going to discuss the zero-frequency problem more precisely.

3 Around the zero-frequency problem

We start by giving the Kolmogrov complexity point of view about the zero-
frequency problem, and we show that while it always gives a strictly positive
probability to each character (thus eliminating the zero-frequency problem),
the number of bits wasted if there really is a deterministic rule is bounded by a
constant.

3.1 Solomonoff universal predictor

We recall the universal predictor:

Pu =
∑

all random programs

2−|p|P (p outputsx) (3)

where |p| is the length of p. This is the model we are trying to approach.
Suppose now that we have a model pθ built from the data. We define pθ,t,x

as the program which has the same output as pθ, except at position t where it
prints x. We have

|pθ,t,x| 6 |pθ|+K(t) +K(x) (4)

Consequently, we have the relationship:

Pu(x1, ..., xt−1, x
′
t, xt+1, ...) > Pu(x1, ..., xt−1, xt, xt+1, ...)2

−K(t)2−K(x′t). (5)

For example, if x ∈ A, where A is a finite alphabet:

K(x) 6 log2 |A|, andK(t) 6 log2 t+ 2 log2 log2 t. (6)

Therefore , we have

Pu(x1, ..., xt−1, x
′
t, xt+1, ...) > Pu(x1, ..., xt−1, xt, xt+1, ...)

1

|A|
1

t(log2 t)
2
. (7)

In other words, the probability of a series of observations should not be “too
far” from the probability of a series that is identical everywhere, except at time
t.

The analysis above can be extended to more general cases: for example, the
uniform distribution on A can be replaced by any probability distribution p on
A, and the 1

|A| in (7) simply becomes p(x).

3In the case of the virtual data, the problem is less important, since it is possible to ensure
that each symbol is given a strictly positive probability.
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3.2 Link with the zero-frequency problem

We consider data D sampled from a finite alphabet A, and we suppose that
we have a true deterministic rule in the dataset. In this section, we take D =
(A,A,A...) (i.e. xi = A for all i) for simplicity, but the same treatment can be
applied to any deterministic rule.

If we know that the real probability distribution is a Dirac in A, we find that
the D can be encoded in 0 bits.

We are interested in the number of additional bits needed to encode the
data D (this number is called the regret) when using methods that avoid the
zero-frequency problem.

We will use the notation Dt := (x1, ..., xt) (in the case we will be studying
here, Dt = (A, ..., A)).

3.2.1 Solomonoff predictor

By using equation (7), we find that for each x ∈ A,

Pu(xt = x|Dt−1) > Pu(xt = A|A, ..., A)
1

|A|
1

t(log2 t)
2
. (8)

However, it can be argued that in this case, asymptotically, we almost have the
equality Pu(xt = x|Dt−1) ≈ Pu(xt = A|Dt−1) 1

|A|
1

t(log2 t)
2 for x 6= A, since the

shortest description of the sequence would really be “only A, except at time t,
where it is x”. Using this approximation, we find

Pu(xt = A|Dt−1) ≈ 1− (|A| − 1)
1

|A|
1

t(log2 t)
2
, (9)

and we can compute the regret:

−
∑
t

log2 Pu(xt = A|Dt−1) ≈
∑
t

(|A| − 1)
1

|A|
1

t(log2 t)
2
, (10)

which is bounded.
In other words, with this method, we waste only a finite number of bits to

avoid the zero-frequency problem when predicting a Dirac. Let us show this is
not the case when adding virtual data.

3.2.2 virtual data

The smoothing due to virtual data isO( |A|t ), and consequently, we have: P virtual(xt+1 =
x) > 1

t+|A| for each x ∈ A. Let us show that this probability is too high. We

have:

P virtual(xt+1 = A|Dt) = 1− |A| − 1

t+ |A|
, (11)

whereas P opt(xt+1 = A|D) = 1. Consequently, the number of additional bits
needed to encode D is:

−
∑
t

log2 P
virtual(xt+1 = A|Dt) ≈

∑
t

|A|
t
, (12)

which tends to infinity when t→∞.
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There exists a classical workaround for this, which has already been men-
tioned in talk 3 as a “zero-redudancy estimator”, let us recall it when predicting
series of 0 and 1: instead of using only the θ computed with the virtual points,
use a Bayesian mixture of Pθ, δ0 and δ1: this estimator will have exactly the
same behavior as Pθ except when faced with a sequence of identical characters,
and in that case, it will give a higher probability to the unique character of the
sequence.

3.2.3 Bayesian case

Let us now show that the Bayesian prediction suffers from the same shortcoming:
when the data follow a deterministic rule, its regret is not bounded.

The “plug-in” predictor is defined as follows:

1. Start with a prior distribution α on Θ

2. Compute the posterior probability of θ: w(θ) = α(θ)Pθ(Dt)

3. Predict the missing data according to

Pα(xt+1|Dt) =

∫
θ
w(θ)Pθ(xt+1)∫

θ
w(θ)

(13)

Although this is usually hard to compute, we have the following result in the
case of a finite alphabet:

Proposition 1. Over a finite alphabet A, θ = (fA, fB , ..., ) with
∑
x∈A fx = 1:

• The uniform prior on θ is equivalent to adding virtual letters (each letter
once),

• The Jeffreys’ prior on θ is equivalent to adding virtual letters (each letter
.5 times).

Consequently, the Bayesian method also regularizes too much: for Jeffreys’

prior, with equation (12), we obtain a regret approximately equal to dim(Θ)
2 log2 t.

3.3 Model selection: the Bayesian Information Criterion

The two-parts code approach4 is another way of obtaining this same regret,

namely dim(Θ)
2 log2 t, when encoding the optimal parameter value:

We have K(D) 6 log2 pθ(D)+K(pθ), and K(pθ) 6 K(p)+cost of encoding θ.
The problem is that θ is a real number, so it cannot be encoded exactly. The
optimal choice (see talk 2) is to encode θ up to ∼ 1√

t
. Now the associated cost

is − log2
1√
t

for each component, so the total cost of encoding θ is dim(Θ)
2 log2 t.

This yields the so-called “Bayesian information criterion” (already men-
tioned in talk 1 and 2): when comparing models of different dimensions, θ∗1 , ..., θ

∗
n,

use the one maximizing log2 pθ∗k(D)− dim(Θk)
2 log2 t. However, it can be argued

that this model penalizes useless parameters too harshly.
Other penalties, which are not necessarily linked to information theory, exist.

Let us for instance discuss the slope heuristics, introduced in [1].

4As defined in talk 2: encode the optimal θ for the data, and then, use Pθ to compress the
data.
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4 Slope heuristics

Suppose that we have a function f (e.g. f is a 2nd degree polynomial), and
that we observe n points yi = f(xi) +N (0, σ2) (in practice σ is not known, but
it does not matter).

Let fk be the best approximation of the xi 7→ yi by a polynomial of degree
k.

The true error on the data is ek := 1
n

∑
‖f(xi)− fk(xi)‖2, and the observed

error is êk := 1
n

∑
‖yi − fk(xi)‖2 (we use the square error because the noise is

Gaussian, and the log of a Gaussian is quadratic).
We use the following claim:

Claim 2. If k > deg(f):

• êk+1 ≈ êk − σ2/n. (the observed error decreases)

• ek+1 ≈ ek + σ2/n. (the true error increases, which is normal, since we
are fitting the noise)

Now, the heuristics is the following:

1. Find λ such that êk = C − λk for large k (by the claim above λ = σ2/n).

By the claim above ê+ 2λk has the same asymptotic behavior as ek.

2. Select the value of k that minimizes ê+ 2λk.
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