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We introduce the variational Bayesian approach, of which the goal consists in
approximating an untractable Bayesian posterior with other probability distri-
butions. This approach also takes into account the cost of encoding parameters,
and thus protects against overfitting.

1 Variational Bayesian approach

We are given a dataset D = (x1, ..., xn), and we want to model D using (pθ)θ∈Θ.
An usual technique is the maximum likelihood: use θ∗ := argmaxθpθ(D).

The problem with this approach is overfitting: while this approach gives a high
probability to the training set, it often performs poorly when predicting new
data points.

The MDL approach consists in taking into account the cost of describing the
model, and a first remark is that if θ∗ is a real number, the cost of encoding θ∗

is infinite. Consequently, it is necessary to encode a whole region of Θ.

More precisely, the cost of describing the data with model θ is

Lθ(D) = − ln pθ(D). (1)

Now, let us choose α a Bayesian prior on θ (i.e. − lnα(θ) is the cost of
describing θ using the prior α). A way of describing data (or a generative
model) is thus the following: pick θ ∼ α, and then pick D ∼ pθ.

With this model, we get:

p(D) =

∫
θ

pθ(D)α(θ)dθ (2)

The compressed length of the data is therefore − ln p(D).
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This model can also be used for prediction: consider D a training set, and
D′ a test set. We have:

p(D′|D) =

∫
θ

pθ(D′)p(θ|D) (3)

=

∫
pθ(D′)

α(θ)pθ(D)∫
θ′
α(θ′)pθ′(D)dθ′

(4)

We can see in (4) that the θ used to compute the prediction are concentrated
around the region where α(θ)pθ(D) is large (and in the case where α is uniform,
most of the mass will be around the maximum likelihood estimate θ∗).

Now, we need a practical way to evaluate the compressed length of the data
− ln p(D) and the smoothed1 prediction p(D′|D).

1.1 The variational bound

Notation 1. We denote by π(θ) the posterior Bayesian distribution, namely:

π(θ) := p(θ|D) =
α(θ)pθ(D)∫

θ′
α(θ′)pθ′(D)dθ′

(5)

However, most of the time, π is impossible to compute, and even sampling
from π can be impossible. So it can be reasonable to use another probability
distribution β instead, which would be “close enough” to π, but computable
(as we will show later, some Gaussian β is reasonable). The following result
(variational bound) gives a bound on the loss in compression provoked by this
change.

Proposition 2 (Variational bound). For all β probability distribution on Θ, we
have:

− ln p(D) = −Eθ∼β ln pθ(D) + KL(β‖α)−KL(β‖π). (6)

In particular, since KL > 0, we have

− ln p(D) 6 −Eθ∼β ln pθ(D) + KL(β‖α) (7)

Proof. By expanding the KL divergences, we find that the right-hand term in
(6) is equal to:

−Eθ∼β ln pθ(D) +

∫
θ

β(θ) lnβ(θ)dθ −
∫
θ

β(θ) lnα(θ)dθ −
∫
θ

β(θ) lnβ(θ)dθ +

∫
θ

β(θ) lnπ(θ)dθ,

(8)

and by definition, we have:

lnπ(θ) = lnα(θ) + ln pθ(D)− ln

∫
θ′
α(θ′)pθ′(D)dθ′. (9)

By substituting (9) into (8), we find that the right-hand side is equal to:

−
∫
θ

β(θ) ln

∫
θ′
α(θ′)pθ′(D)dθ′dθ = − ln

∫
θ′
α(θ′)pθ′(D)dθ′ = − ln pθ(D), (10)

since the integral over θ is equal to 1.

1“smoothed” because of the average on θ in (4).
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This bound has a practical intepretation, because it is always possible to
encode the distribution β with KL(β‖α) nats2 if we know α, by using the so
called bits-back technique, as explained in [4]. An important use of this bound
is that minimizing it is equivalent to minimizing KL(β‖π), which means that β
can be used instead of π if sampling from the posterior distribution is needed.
Consequently, minimizing this bound is interesting for two reasons: it gives a
better final codelength, and it gives a better approximation of the posterior π.

Let us now optimize the bound (7) over β. We have:

Lβ(D) :=− Eθ∼β ln pθ(D) + KL(β‖α) (11)

=− Eθ∼β ln pθ(D)− Eθ∼β lnα(θ)− Ent(β), (12)

where Ent(β) := −
∫
θ
β(θ) lnβ(θ)dθ is the entropy of β. Notice that the contri-

bution of α has the same form as additional points inD. The main regularization
comes from Ent(β).

Let us consider for example that we encode explicitly an exact value of θ, i.e.
β := δθ∗ is the Dirac mass at θ∗. The cost of describing θ∗ as a real number is
infinite, but even if we use the machine precision instead of a real Dirac (which
is more realistic), the bound remains finite, but is very large. As we are going
to see, a more reasonable choice would be a Gaussian β.

We want to optimize:

Lβ(D) = −Eθ∼β ln pθ(D)− Eθ∼β lnα(θ)− Ent(β) (13)

Here, the second and third terms are respectively a penalty for “large” θ,
and a penalty for too precise θ.

By definition, π(θ) ∝ α(θ)pθ(D), so we have: lnπ(θ) = lnα(θ) + ln pθ(D) +
cst.

Now, if α is uniform3, we have, around θ ≈ θ∗:

lnπ(θ∗+δθ) = lnπ(θ∗)+δθ
∂ ln pθ(D)

∂θ
|θ=θ∗+

1

2
δθT [Hess(ln pθ(D))]δθ+o(‖δθ‖2)

(14)
The first-order term is equal to zero (it is the derivative at the optimum), so we
get:

π(θ) ≈ π(θ∗) exp

[
1

2
δθT [Hess(ln pθ(D))]δθ

]
. (15)

In other words, the posterior is almost Gaussian near the maximum likeli-
hood estimate, which justifies optimizing the variational bound only on Gaussian
β, namely.

β = N (θ̄,Σ). (16)

It is therefore reasonable to compute the gradient descent of Lβ(D) for Gaussian
β.

2We are using the natural logarithm.
3It is not always possible.
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1.2 Gradient descent for Gaussians

We now give the gradient of Eθ∼N (θ̄,Σ)f(θ) with respect to θ̄ and Σ.
∂
∂θ̄
Eθ∼N (θ̄,Σ)f(θ) can be computed in two different ways:

(we will not write the contribution of lnα, because it is similar to the con-
tribution of pθ(D)).

Lemma 3 (Gradient with respect to the mean). We have:

∂

∂θ̄
Ent(β) = 0, (17)

and

∂

∂θ̄
Eθ∼N (θ̄,Σ)f(θ) =Eθ∼N (θ̄,Σ)

(
∂f(θ)

∂θ
|θ=θ̄

)
(18)

=Σ−1E
[
(θ − θ̄)f(θ)

]
(19)

≈1

k

∑
θi∼N (θ̄,Σ)

∂f

∂θi
, (20)

Proof. For the first form of ∂
∂θ̄
Eθ∼N (θ̄,Σ)f(θ):

∂

∂θ̄
Eθ∼N (θ̄,Σ)f(θ) =

∂

∂θ̄

∫
β(θ)f(θ) (21)

=

∫
β(θ)

∂ lnβ(θ)

∂θ̄
f(θ) (22)

=Σ−1E(θ − θ̄)f(θ). (23)

For its second form:

∂

∂θ̄
Eθ∼N (θ̄,Σ)f(θ) =

∂

∂θ̄
Eξ∼N (0,Σ)f(θ̄ + ξ) (24)

=Eξ∼N (0,Σ)
∂

∂θ̄
f(θ̄ + ξ) (25)

=Eθ∼N (θ̄,Σ)

∂f

∂θ
(26)

(Monte-Carlo) ≈1

k

∑
θi∼N (θ̄,Σ)

∂f

∂θi
, (27)

The second method involves the computation of derivatives that might be
difficult, whereas the first one will need more samples to work.

This gradient descent already has reasonable performance when used with
fixed Σ, but the update of the covariance matrix is also computable:

Lemma 4 (Gradient with respect to the covariance matrix). We have:

∂

∂Σ
Ent(β) =

1

2
Σ−1, (28)
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and

∂

∂Σ
(−Eθ∼β ln pθ(D)) =

1

2
Eθ∼β

∂2(− ln pθ(D))

∂θ2
(29)

=− 1

2
E
[
∂ ln pθ(D)

∂θ
(θ − θ̄)TΣ−1

]
(30)

=− 1

2
Eθ∼β

[
ln pθ(D)Σ−1(θ − θ̄)(θ − θ̄)Σ−1 − Σ−1

]
(31)

Proof. Admitted.

Similarly to the previous case, ∂
∂Σ (−Eθ∼β ln pθ(D)) can be computed in three

different ways: (29) requires computing second order derivatives (although the
Gauss–Newton approximation, which consits in replacing the second derivative
by the tensor square of the gradient, can be used), (30) requires more samples
than (29) to be efficient, but only first-order derivatives need to be computed,
and finally, the CMA-like update (31) avoids computing derivatives altogether,
but even more samples are needed.

This method has been tested in [1] for neural networks, and yielded good
results. However, it would be better to use the natural gradient, which is given
by:

θ̄ ← θ̄ − ηΣ
∂Lβ(D)

∂θ̄
, (32)

and

Σ← Σ− 2ηΣ
∂Lβ(D)

∂Σ
Σ. (33)

It is interesting to notice that θ̄ will not necessarily converge to the maximum
likelihood estimate. Indeed, Lemma 4 shows that there is an equilibrium for Σ,
which is given by:

1

2
Σ−1 =

1

2
Eθ
∂2 ln pθ(D)

∂θ2
. (34)

Consequently, if the Hessian at the ML estimate is too large, then Σ will be
very small, thus yielding a large loss because of the entropy term in Lβ(D) (we
recall equation (13): Lβ(D) = −Eθ∼β ln pθ(D)− Eθ∼β lnα(θ)− Ent(β)).

A visual interpretation for this is the following: suppose that there is only a
very small area near the ML estimate θ∗ which fit well the data (large Hessian),
while there is another θ′ which is almost as good as the ML estimate, and such
that neighbouring values are also good. In that case, it is better to encode a
Gaussian around θ′, because less precision is needed, thus yielding a shorter
codelength.

1.3 A possible application with dropout

For a neural network, the Dropout, introduced in [3], is roughly the following
procedure: during the training, at each step, each weight has a probability 1

2
to be omitted. Then, for testing, all weights are activated, and halved. This
can be seen as a “modified” variational bound, with the improper prior α(θ) =
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1
2δ0 + 1

2α0(θ), where α0(θ) would be “uniform over R”, with a posterior of the
form:

β(θ) =
1

2
δ0(θ) +

1

2
δ2θ̄(θ). (35)

The variational bound is then simply optimizing the likelihood of the data
(this is the only term remaining in (12)), and then averaging, instead of resam-
pling. One could argue that there is not much left of the variational bound,
but the important common characteristic is that optimizing with noise creates
robustness.
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