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Abstract

We cast Amari’s natural gradient in statistical learning as a specific
case of Kalman filtering. Namely, applying an extended Kalman filter
to estimate a fixed unknown parameter of a probabilistic model from
a series of observations, is rigorously equivalent to estimating this
parameter via an online stochastic natural gradient descent on the
log-likelihood of the observations.

In the i.i.d. case, this relation is a consequence of the “information
filter” phrasing of the extended Kalman filter. In the recurrent (state
space, non-i.i.d.) case, we prove that the joint Kalman filter over states
and parameters is a natural gradient on top of real-time recurrent
learning (RTRL), a classical algorithm to train recurrent models.

This exact algebraic correspondence provides relevant interpreta-
tions for natural gradient hyperparameters such as learning rates or
initialization and regularization of the Fisher information matrix.

In statistical learning, stochastic gradient descent is a widely used tool to
estimate the parameters of a model from empirical data, especially when the
parameter dimension and the amount of data are large [BL03] (such as is
typically the case with neural networks, for instance). The natural gradient
[Ama98] is a tool from information geometry, which aims at correcting several
shortcomings of the widely ordinary stochastic gradient descent, such as its
sensitivity to rescalings or simple changes of variables in parameter space
[Oll15]. The natural gradient modifies the ordinary gradient by using the
information geometry of the statistical model, via the Fisher information
matrix (see formal definition in Section 1.2; see also [Mar14]). The natu-
ral gradient comes with a theoretical guarantee of asymptotic optimality
[Ama98] that the ordinary gradient lacks, and with the theoretical knowledge
and various connections from information geometry, e.g., [AN00, OAAH17].
In large dimension, its computational complexity makes approximations
necessary, e.g., [LMB07, Oll15, MCO16, GS15, MG15]; this has limited its
adoption despite many desirable theoretical properties.

The extended Kalman filter (see e.g., the textbooks [Sim06, Sä13, Jaz70])
is a generic and effective tool to estimate in real time the state of a nonlinear
dynamical system, from noisy measurements of some part or some function of
the system. (The ordinary Kalman filter deals with linear systems.) Its use in
navigation systems (GPS, vehicle control, spacecraft...), time series analysis,
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econometrics, etc. [Sä13], is extensive to the point it can been described as
“one of the great discoveries of mathematical engineering” [GA15].

The goal of this text is to show that the natural gradient, when applied
online, is a particular case of the extended Kalman filter. Indeed, the extended
Kalman filter can be used to estimate the parameters of a statistical model
(probability distribution), by viewing the parameters as the hidden state of a
“static” dynamical system, and viewing i.i.d. samples as noisy observations
depending on the parameters 1. We show that doing so is exactly equivalent
to performing an online stochastic natural gradient descent (Theorem 2).

This results in a rigorous dictionary between the natural gradient objects
from statistical learning, and the objects appearing in Kalman filtering;
for instance, a larger learning rate for the natural gradient descent exactly
corresponds to a fading memory in the Kalman filter (Proposition 3).

Table 1 lists a few correspondences between objects from the Kalman
filter side and from the natural gradient side, as results from the theorems and
propositions below. Note that the correspondence is one-sided: the online
natural gradient is exactly an extended Kalman filter, but only corresponds
to a particular use of the Kalman filter for parameter estimation problems
(i.e., with static dynamics on the parameter part of the system).

Beyond the static case, we also consider the learning of the parameters of
a general dynamical system, where subsequent observations exhibit temporal
patterns instead of being i.i.d.; in statistical learning this is called a recurrent
model, for instance, a recurrent neural network. We refer to [Jae02] for an
introduction to recurrent models in statistical learning (recurrent neural
networks) and the afferent techniques (including Kalman filters), and to
[Hay01] for a clear, in-depth treatment of Kalman filtering for recurrent
models. We prove (Theorem 12) that the extended Kalman filter applied
jointly to the state and parameter, amounts to a natural gradient on top of
real-time recurrent learning (RTRL), a classical (and costly) online algorithm
for recurrent network training [Jae02].

Thus, we provide a bridge between techniques from large-scale statistical
learning (natural gradient, RTRL) and a central object from mathematical
engineering, signal processing, and estimation theory. Casting the natural
gradient as a specific case of the extended Kalman filter is an instance of
the provocative statement from [LS83] that “there is only one recursive
identification method” that is optimal on quadratic functions. Indeed, the
online natural gradient descent fits into the framework of [LS83, §3.4.5].
Arguably, this statement is limited to linear models, and for non-linear

1For this we slightly extend the definition of the Kalman filter to include discrete
observations, by defining (Def. 5) the measurement error as 𝑇 (𝑦) − 𝑦 instead of 𝑦 − 𝑦,
where 𝑇 is the sufficient statistics of an exponential family model for output noise with
mean 𝑦. This reduces to the standard filter for Gaussian output noise, and naturally covers
categorical outputs as often used in statistical learning (with 𝑦 the class probabilities in a
softmax classifier and 𝑇 a “one-hot” encoding of 𝑦).
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iid (static, non-recurrent) model 𝑦𝑡 = ℎ(𝜃, 𝑢𝑡)
Extended Kalman filter on static Online natural gradient on 𝜃 with
parameter 𝜃 learning rate 𝜂𝑡 = 1/(𝑡 + 1)
Covariance matrix 𝑃𝑡 Fisher information matrix 𝐽𝑡 = 𝜂𝑡𝑃

−1
𝑡

Bayesian prior 𝑃0 Fisher matrix initialization 𝐽0 = 𝑃 −1
0

Fading memory Larger or constant learning rate
Fading memory+constant prior Fisher matrix regularization
Recurrent (state space) model 𝑦𝑡 = Φ(𝑦𝑡−1, 𝜃, 𝑢𝑡)
Extended Kalman filter on (𝜃, 𝑦) RTRL+natural gradient+state correction
Covariance of 𝜃 alone, 𝑃 𝜃 Fisher matrix 𝐽𝑡 = 𝜂𝑡 (𝑃 𝜃)−1

Correlation between 𝜃 and 𝑦𝑡 RTRL gradient estimate 𝜕𝑦𝑡/𝜕𝜃

Table 1: Kalman filter objects vs natural gradient objects. The inputs are
𝑢𝑡, the predicted values are 𝑦𝑡, and the model parameters are 𝜃.

models one would expect different algorithms to coincide only at a certain
order, or asymptotically; however, all the correspondences presented below
are exact.

Related work. In the i.i.d. (static) case, the natural gradient/Kalman
filter correspondence follows from the information filter phrasing of Kalman
filtering [Sim06, §6.2] by relatively direct manipulations. Nevertheless, we
could find no reference in the literature explicitly identifying the two. [SW88]
is an early example of the use of Kalman filtering for training feedforward
neural networks in statistical learning, but does not mention the natural
gradient. [RRK+92] argue that for neural networks, backpropagation, i.e.,
ordinary gradient descent, “is a degenerate form of the extended Kalman
filter”. [Ber96] identifies the extended Kalman filter with a Gauss–Newton
gradient descent for the specific case of nonlinear regression. [dFNG00] inter-
prets process noise in the static Kalman filter as an adaptive, per-parameter
learning rate, thus akin to a preconditioning matrix. [ŠKT01] uses the
Fisher information matrix to study the variance of parameter estimation in
Kalman-like filters, without using a natural gradient; [BL03] comment on the
similarity between Kalman filtering and a version of Amari’s natural gradient
for the specific case of least squares regression; [Mar14] and [Oll15] mention
the relationship between natural gradient and the Gauss–Newton Hessian
approximation; [Pat16] exploits the relationship between second-order gradi-
ent descent and Kalman filtering in specific cases including linear regression;
[LCL+17] use a natural gradient descent over Gaussian distributions for
an auxiliary problem arising in Kalman-like Bayesian filtering, a problem
independent from the one treated here.

For the recurrent (non-i.i.d.) case, our result is that joint Kalman filtering
is essentially a natural gradient on top of the classical RTRL algorithm for
recurrent models [Jae02]. [Wil92] already observed that starting with the
Kalman filter and introducing drastic simplifications (doing away with the
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covariance matrix) results in RTRL, while [Hay01, §5] contains statements
that can be interpreted as relating Kalman filtering and preconditioned
RTRL-like gradient descent for recurrent models (Section 3.2).

Perspectives. In this text our goal is to derive the precise correspondence
between natural gradient and Kalman filtering for parameter estimation
(Thm. 2, Prop. 3, Prop. 4, Thm. 12), and to work out an exact dictionary
between the mathematical objects on both sides. This correspondence
suggests several possible venues for research, which nevertheless are not
explored here.

First, the correspondence with the Kalman filter brings new interpreta-
tions and suggestions for several natural gradient hyperparameters, such as
Fisher matrix initialization, equality between Fisher matrix decay rate and
learning rate, or amount of regularization to the Fisher matrix (Section 2.2).
The natural gradient can be quite sensitive to these hyperparameters. A
first step would be to test the matrix decay rate and regularization values
suggested by the Bayesian interpretation (Prop. 4) and see if they help with
the natural gradient, or if these suggestions are overriden by the various
approximations needed to apply the natural gradient in practice. These
empirical tests are beyond the scope of the present study.

Next, since statistical learning deals with either continuous or categorical
data, we had to extend the usual Kalman filter to such a setting. Tra-
ditionally, non-Gaussian output models have been treated by applying a
nonlinearity to a standard Gaussian noise (Section 2.3). Instead, modeling
the measurement noise as an exponential family (Appendix and Def. 5) allows
for a unified treatment of the standard case (Gaussian output noise with
known variance), of discrete categorical observations, or other exponential
noise models (e.g., Gaussian noise with unknown variance). We did not
test the empirical consequences of this choice, but it certainly makes the
mathematical treatment flow smoothly, in particular the view of the Kalman
filter as preconditioned gradient descent (Prop. 6).

Neither the natural gradient nor the extended Kalman filter scale well
to large-dimensional models as currently used in machine learning, so that
approximations are required. The correspondence raises the possibility that
various methods developed for Kalman filtering (e.g., particle or unscented
filters) or for natural gradient approximations (e.g., matrix factorizations
such as the Kronecker product [MG15] or quasi-diagonal reductions [Oll15,
MCO16]) could be transferred from one viewpoint to the other.

In statistical learning, other means have been developed to attain the same
asymptotic efficiency as the natural gradient, notably trajectory averaging
(e.g. [PJ92], or [Mar14] for the relationship to natural gradient) at little
algorithmic cost. One may wonder if these can be generalized to filtering
problems.
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Proof techniques could be transferred as well: for instance, Amari [Ama98]
gave a strong but sometimes informal argument that the natural gradient
is Fisher-efficient, i.e., the resulting parameter estimate is asymptotically
optimal for the Cramér–Rao bound; alternate proofs could be obtained by
transferring related statements for the extended Kalman filter, e.g., combining
techniques from [ŠKT01, BRD97, LS83].

Organization of the text. In Section 1 we set the notation, recall the
definition of the natural gradient (Def. 1), and explain how Kalman filtering
can be used for parameter estimation in statistical learning (Section 1.3);
the definition of the Kalman filter is included in Def. 5. Section 2 gives
the main statements for viewing the natural gradient as an instance of an
extended Kalman filter for i.i.d. observations (static systems), first intuitively
via a heuristic asymptotic argument (Section 2.1), then rigorously (Thm. 2,
Prop. 3, Prop. 4). The proof of these results appears in Section 2.3 and sheds
some light on the geometry of Kalman filtering. Finally, the case of non-i.i.d.
observations (recurrent or state space model) is treated in Section 3.

Acknowledgments. Many thanks to Silvère Bonnabel, Gaétan Marceau-
Caron, and the anonymous reviewers for their careful reading of the manuscript,
corrections, and suggestions for the presentation and organization of the text.
I would also like to thank Shun-ichi Amari, Frédéric Barbaresco, and Nando
de Freitas for additional comments and for pointing out relevant references.

1 Problem setting, natural gradient, Kalman filter

1.1 Problem setting

In statistical learning, we have a series of observation pairs (𝑢1, 𝑦1), . . . , (𝑢𝑡, 𝑦𝑡), . . .
and want to predict 𝑦𝑡 from 𝑢𝑡 using a probabilistic model 𝑝𝜃. Assume for
now that 𝑦𝑡 is real-valued (regression problem) and that the model for 𝑦𝑡 is
a Gaussian centered on a predicted value 𝑦𝑡, with known covariance matrix
𝑅𝑡, namely

𝑦𝑡 = 𝑦𝑡 +𝒩 (0, 𝑅𝑡), 𝑦𝑡 = ℎ(𝜃, 𝑢𝑡) (1.1)
The function ℎ may represent any computation, for instance, a feedforward
neural network with input 𝑢, parameters 𝜃, and output 𝑦. The goal is to
find the parameters 𝜃 such that the prediction 𝑦𝑡 = ℎ(𝜃, 𝑢𝑡) is as close as
possible to 𝑦𝑡: the loss function is

ℓ𝑡 = 1
2(𝑦𝑡 − 𝑦𝑡)⊤𝑅−1

𝑡 (𝑦𝑡 − 𝑦𝑡) = − ln 𝑝(𝑦𝑡|𝑦𝑡) (1.2)

up to an additive constant.
For non-Gaussian outputs, we assume that the noise model on 𝑦𝑡 given

𝑦𝑡 belongs to an exponential family, namely, that 𝑦𝑡 is the mean parameter
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of an exponential family of distributions 2 over 𝑦𝑡; we again define the loss
function as ℓ𝑡 := − ln 𝑝(𝑦𝑡|𝑦𝑡), and the output noise 𝑅𝑡 can be defined as the
covariance matrix of the sufficient statistics of 𝑦𝑡 given this mean (Def. 5).
For a Gaussian output noise this works as expected. For instance, for a
classification problem, the output is categorical, 𝑦𝑡 ∈ {1, . . . , 𝐾}, and 𝑦𝑡 will
be the set of probabilities 𝑦𝑡 = (𝑝1, . . . , 𝑝𝐾−1) to have 𝑦𝑡 = 1, . . . , 𝐾 − 1. In
that case 𝑅𝑡 is the (𝐾 − 1) × (𝐾 − 1) matrix (𝑅𝑡)𝑘𝑘′ = diag(𝑝𝑘) − 𝑝𝑘𝑝𝑘′ .
(The last probability 𝑝𝐾 is determined by the others via

∑︀
𝑝𝑘 = 1 and has to

be excluded to obtain a non-degenerate parameterization and an invertible
covariance matrix 𝑅𝑡.)

This convention allows us to extend the definition of the Kalman filter to
such a setting (Def. 5) in a natural way, just by replacing the measurement
error 𝑦𝑡−𝑦𝑡 with 𝑇 (𝑦𝑡)−𝑦𝑡, with 𝑇 the sufficient statistics for the exponential
family. (For Gaussian noise this is the same, as 𝑇 (𝑦) is 𝑦.)

In neural network terms, this means that the output layer of the network
is fed to a loss function that is the log-loss of an exponential family, but
places no restriction on the rest of the model.

General notation. In statistical learning, the external inputs or regressor
variables are often denoted 𝑥. In Kalman filtering, 𝑥 often denotes the state
of the system, while the external inputs are often 𝑢. Thus we will avoid 𝑥
altogether and denote by 𝑢 the inputs and by 𝑠 the state of the system.

The variable to be predicted at time 𝑡 will be 𝑦𝑡, and 𝑦𝑡 is the corre-
sponding prediction. In general 𝑦𝑡 and 𝑦𝑡 may be different objects in that
𝑦𝑡 encodes a full probabilistic prediction for 𝑦𝑡. For Gaussians with known
variance, 𝑦𝑡 is just the predicted mean of 𝑦𝑡, so in this case 𝑦𝑡 and 𝑦𝑡 are the
same type of object. For Gaussians with unknown variance, 𝑦 encodes both
the mean and second moment of 𝑦. For discrete categorical data, 𝑦 encodes
the probability of each possible outcome 𝑦.

Thus, the formal setting for this text is as follows: we are given a
sequence of finite-dimensional observations (𝑦𝑡) with each 𝑦𝑡 ∈ Rdim(𝑦), a
sequence of inputs (𝑢𝑡) with each 𝑢𝑡 ∈ Rdim(𝑢), a parametric model 𝑦 =
ℎ(𝜃, 𝑢𝑡) with parameter 𝜃 ∈ Rdim(𝜃) and ℎ some fixed smooth function from

2 The Appendix contains a reminder on exponential families. An exponential family of
probability distributions on 𝑦, with sufficient statistics 𝑇1(𝑦), . . . , 𝑇𝐾(𝑦), and with parameter
𝛽 ∈ R𝐾 , is given by

𝑝𝛽(𝑦) := 1
𝑍(𝛽) e

∑︀
𝑘

𝛽𝑘𝑇𝑘(𝑦)
𝜆(d𝑦) (1.3)

where 𝑍(𝛽) is a normalizing constant, and 𝜆(d𝑦) is any reference measure on 𝑦. For
instance, if 𝑦 ∈ R𝐾 , 𝑇𝑘(𝑦) = 𝑦𝑘 and 𝜆(d𝑦) is a Gaussian measure centered on 0, by varying
𝛽 one gets all Gaussian measures with the same covariance matrix and another mean.
𝑦 may be discrete, e.g., Bernoulli distributions correspond to 𝜆 the uniform measure on
𝑦 ∈ {0, 1} and a single sufficient statistic 𝑇 (0) = 0, 𝑇 (1) = 1. Often, the mean parameter
𝑇 := E𝑦∼𝑝𝛽 𝑇 (𝑦) is a more convenient parameterization than 𝛽. Exponential families
maximize entropy (minimize information divergence from 𝜆) for a given mean of 𝑇 .
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Rdim(𝜃) × Rdim(𝑢) to Rdim(𝑦). We are given an exponential family (output
noise model) 𝑝(𝑦|𝑦) on 𝑦 with mean parameter 𝑦 and sufficient statistics 𝑇 (𝑦)
(see the Appendix), and we define the loss function ℓ𝑡 := − ln 𝑝(𝑦𝑡|𝑦𝑡).

The natural gradient descent on parameter 𝜃𝑡 will use the Fisher matrix
𝐽𝑡. The Kalman filter will have posterior covariance matrix 𝑃𝑡.

For multidimensional quantities 𝑥 and 𝑦 = 𝑓(𝑥), we denote by 𝜕𝑦
𝜕𝑥 the

Jacobian matrix of 𝑦 w.r.t. 𝑥, whose (𝑖, 𝑗) entry is 𝜕𝑓𝑖(𝑥)
𝜕𝑥𝑗

. This satisfies the
chain rule 𝜕𝑧

𝜕𝑦
𝜕𝑦
𝜕𝑥 = 𝜕𝑧

𝜕𝑥 . With this convention, gradients of real-valued functions
are row vectors, so that a gradient descent takes the form 𝑥← 𝑥−𝜂 (𝜕𝑓/𝜕𝑥)⊤.

For a column vector 𝑢, 𝑢⊗2 is synonymous with 𝑢𝑢⊤, and with 𝑢⊤𝑢 for a
row vector.

1.2 Natural gradient descent

A standard approach to optimize the parameter 𝜃 of a probabilistic model,
given a sequence of observations (𝑦𝑡), is an online gradient descent

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡
𝜕ℓ𝑡(𝑦𝑡)

𝜕𝜃

⊤
(1.4)

with learning rate 𝜂𝑡. This simple gradient descent is particularly suitable for
large datasets and large-dimensional models [BL03], but has several practical
and theoretical shortcomings. For instance, it uses the same non-adaptive
learning rate for all parameter components. Moreover, simple changes in
parameter encoding or in data presentation (e.g., encoding black and white
in images by 0/1 or 1/0) can result in different learning performance.

This motivated the introduction of the natural gradient [Ama98]. It
is built to achieve invariance with respect to parameter re-encoding; in
particular, learning become insensitive to the characteristic scale of each
parameter direction, so that different directions naturally get suitable learning
rates. The natural gradient is the only general way to achieve such invariance
[AN00, §2.4].

The natural gradient preconditions the gradient descent with 𝐽(𝜃)−1

where 𝐽 is the Fisher information matrix [Kul97] with respect to the param-
eter 𝜃. For a smooth probabilistic model 𝑝(𝑦|𝜃) over a random variable 𝑦
with parameter 𝜃, the latter is defined as

𝐽(𝜃) := E𝑦∼𝑝(𝑦|𝜃)

[︃
𝜕 ln 𝑝(𝑦|𝜃)

𝜕𝜃

⊗2]︃
= −E𝑦∼𝑝(𝑦|𝜃)

[︃
𝜕2 ln 𝑝(𝑦|𝜃)

𝜕𝜃2

]︃
(1.5)

Definition 1 below formally introduces the online natural gradient. If the
model for 𝑦 involves an input 𝑢, then an expectation or empirical average
over the input is introduced in the definition of 𝐽 [AN00, §8.2] [Mar14, §5].

However, this comes at a large computational cost for large-dimensional
models: just storing the Fisher matrix already costs 𝑂((dim 𝜃)2). Various
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strategies are available to approximate the natural gradient for complex mod-
els such as neural networks, using diagonal or block-diagonal approximation
schemes for the Fisher matrix, e.g., [LMB07, Oll15, MCO16, GS15, MG15].

Definition 1 (Online natural gradient). Consider a statistical
model with parameter 𝜃 that predicts an output 𝑦 given an input 𝑢. Suppose
that the prediction takes the form 𝑦 ∼ 𝑝(𝑦|𝑦) where 𝑦 = ℎ(𝜃, 𝑢) depends on
the input via a model ℎ with parameter 𝜃. Given observation pairs (𝑢𝑡, 𝑦𝑡),
the goal is to minimize, online, the loss function∑︁

𝑡

ℓ𝑡(𝑦𝑡), ℓ𝑡(𝑦) := − ln 𝑝(𝑦|𝑦𝑡) (1.6)

as a function of 𝜃.
The online natural gradient maintains a current estimate 𝜃𝑡 of the param-

eter 𝜃, and a current approximation 𝐽𝑡 of the Fisher matrix. The parameter
is estimated by a gradient descent with preconditioning matrix 𝐽−1

𝑡 , namely

𝐽𝑡 ← (1− 𝛾𝑡)𝐽𝑡−1 + 𝛾𝑡 E𝑦∼𝑝(𝑦|𝑦𝑡)

[︃
𝜕ℓ𝑡(𝑦)

𝜕𝜃

⊗2]︃
(1.7)

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡 𝐽−1
𝑡

(︂
𝜕ℓ𝑡(𝑦𝑡)

𝜕𝜃

)︂⊤
(1.8)

with learning rate 𝜂𝑡 and Fisher matrix decay rate 𝛾𝑡.

In the Fisher matrix update, the expectation over all possible val-
ues 𝑦 ∼ 𝑝(𝑦|𝑦) can often be computed algebraically, but this is some-
times computationally bothersome (for instance, in neural networks, it
requires dim(𝑦𝑡) distinct backpropagation steps [Oll15]). A common solution
[APF00, LMB07, Oll15, PB13] is to just use the value 𝑦 = 𝑦𝑡 (outer product
approximation) instead of the expectation over 𝑦. Another is to use a Monte
Carlo approximation with a single sample of 𝑦 ∼ 𝑝(𝑦|𝑦𝑡) [Oll15, MCO16],
namely, using the gradient of a synthetic sample instead of the actual obser-
vation 𝑦𝑡 in the Fisher matrix. These latter two solutions are often confused;
only the latter provides an unbiased estimate, see discussion in [Oll15, PB13].

The online “smoothed” update of the Fisher matrix in (1.7) mixes past
and present estimates (this or similar updates are used in [LMB07, MCO16]).
The reason is at least twofold. First, the “genuine” Fisher matrix involves an
expectation over the inputs 𝑢𝑡 [AN00, §8.2]: this can be approximated online
only via a moving average over inputs (e.g., 𝛾𝑡 = 1/𝑡 realizes an equal-weight
average over all inputs seen so far). Second, the expectation over 𝑦 ∼ 𝑝(𝑦|𝑦𝑡)
in (1.7) is often replaced with a Monte Carlo estimation with only one value
of 𝑦, and averaging over time compensates for this Monte Carlo sampling.

As a consequence, since 𝜃𝑡 changes over time, this means that the estimate
𝐽𝑡 mixes values obtained at different values of 𝜃, and converges to the Fisher
matrix only if 𝜃𝑡 changes slowly, i.e., if 𝜂𝑡 → 0. The correspondence below
with Kalman filtering suggests using 𝛾𝑡 = 𝜂𝑡.
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1.3 Kalman filtering for parameter estimation

One possible definition of the extended Kalman filter is as follows [Sim06,
§15.1]. We are trying to estimate the current state of a dynamical system
𝑠𝑡 whose evolution equation is known but whose precise value is unknown;
at each time step, we have access to a noisy measurement 𝑦𝑡 of a quantity
𝑦𝑡 = ℎ(𝑠𝑡) which depends on this state.

The Kalman filter maintains an approximation of a Bayesian posterior on
𝑠𝑡 given the observations 𝑦1, . . . , 𝑦𝑡. The posterior distribution after 𝑡 obser-
vations is approximated by a Gaussian with mean 𝑠𝑡 and covariance matrix
𝑃𝑡. (Indeed, Bayesian posteriors always tend to Gaussians asymptotically
under mild conditions, by the Bernstein–von Mises theorem [vdV00].) The
Kalman filter prescribes a way to update 𝑠𝑡 and 𝑃𝑡 when new observations
become available.

The Kalman filter update is summarized in Definition 5 below. It is built
to provide the exact value of the Bayesian posterior in the case of linear
dynamical systems with Gaussian measurements and a Gaussian prior. In
that sense, it is exact at first order.

The Kalman filtering viewpoint on a statistical learning problem is that
we are facing a system with hidden variable 𝜃, with an unknown value that
does not evolve in time, and that the observations 𝑦𝑡 bring more and more
information on 𝜃. Thus, a statistical learning problem can be tackled by
applying the extended Kalman filter to the unknown variable 𝑠𝑡 = 𝜃, whose
underlying dynamics from time 𝑡 to time 𝑡 + 1 is just to remain unchanged
(𝑓 = Id and noise on 𝑠 is 0 in Definition 5). In such a setting, the posterior
covariance matrix 𝑃𝑡 will generally tend to 0 as observations accumulate
and the parameter is identified better3 (this occurs at rate 1/𝑡 for the basic
filter, which estimates from all 𝑡 past observations at time 𝑡, or at other
rates if fading memory is included, see below). The initialization 𝜃0 and its
covariance 𝑃0 can be interpreted as Bayesian priors on 𝜃 [SW88, LS83].

We will refer to this as a static Kalman filter. In the static case and
without fading memory, the posterior covariance 𝑃𝑡 after 𝑡 observations will
decrease like 𝑂(1/𝑡), so that the parameter gets updated by 𝑂(1/𝑡) after
each new observation. Introducing fading memory for past observations
(equivalent to adding noise on 𝜃 at each step, 𝑄𝑡 ∝ 𝑃𝑡|𝑡−1 in Def. 5) leads to
a larger covariance and faster updates.

An example: Feedforward neural networks. The Kalman approach
above can be applied to any parametric statistical model. For instance
[SW88] treat the case of a feedforward neural network. In our setting
this is described as follows. Let 𝑢 be the input of the model and 𝑦 the
true (desired) output. A feedforward neural network can be described as

3But 𝑃𝑡 must still be maintained even if it tends to 0, since it is used to update the
parameter at the correct rate.
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a function 𝑦 = ℎ(𝜃, 𝑢) where 𝜃 is the set of all parameters of the network,
where ℎ represents all computations performed by the network on input 𝑢,
and 𝑦 encodes the network prediction for the value of the output 𝑦 on input 𝑢.
For categorical observations 𝑦, 𝑦 is usually a set of predicted probabilities for
all possible classes; while for regression problems, 𝑦 is directly the predicted
value. In both cases, the error function to be minimized can be defined as
ℓ(𝑦) := − ln 𝑝(𝑦|𝑦): in the regression case, 𝑦 is interpreted as a mean of a
Gaussian model on 𝑦, so that − ln 𝑝(𝑦|𝑦) is the square error up to a constant.

Training the neural network amounts to estimating the network parameter
𝜃 from the observations. Applying a static Kalman filter for this problem
[SW88] amounts to using Def. 5 with 𝑠 = 𝜃, 𝑓 = Id and 𝑄 = 0. At first glance
this looks quite different from the common gradient descent (backpropagation)
approach for neural networks. The backpropagation operation is represented
in the Kalman filter by the computation of 𝐻 = 𝜕ℎ(𝑠,𝑢)

𝜕𝑠 (2.17) where 𝑠 is
the parameter. We show that the additional operations of the Kalman filter
correspond to using a natural gradient instead of a vanilla gradient.

Unfortunately, for models with high-dimensional parameters such as
neural networks, the Kalman filter is computationally costly and requires
block-diagonal approximations for 𝑃𝑡 (which is a square matrix of size dim 𝜃);
moreover, computing 𝐻𝑡 = 𝜕𝑦𝑡/𝜕𝜃 is needed in the filter, and requires doing
one separate backpropagation for each component of the output 𝑦𝑡.

2 Natural gradient as a Kalman filter: the static
(i.i.d.) case

We now write the explicit correspondence between an online natural gradient
to estimate the parameter of a statistical model from i.i.d. observations, and
a static extended Kalman filter. We first give a heuristic argument that
outlines the main ideas from the proof (Section 2.1).

Then we state the formal correspondences. First, the static Kalman filter
corresponds to an online natural gradient with learning rate 1/𝑡 (Thm. 2).
The rate 1/𝑡 arises because such a filter takes into account all previous
evidence without decay factors (and with process noise 𝑄 = 0 in the Kalman
filter), thus the posterior covariance matrix decreases like 𝑂(1/𝑡). Asymptot-
ically, this is the optimal rate in statistical learning [Ama98]. (Note, however,
that the online natural gradient and extended Kalman filter are identical at
every time step, not only asymptotically.)

The 1/𝑡 rate is often too slow in practical applications, especially when
starting far away from an optimal parameter value. The natural gradi-
ent/Kalman filter correspondence is not specific to the 𝑂(1/𝑡) rate. Larger
learning rates in the natural gradient correspond to a fading memory Kalman
filter (adding process noise 𝑄 proportional to the posterior covariance at each
step, corresponding to a decay factor for the weight of previous observations);
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this is Proposition 3. In such a setting, the posterior covariance matrix in
the Kalman filter does not decrease like 𝑂(1/𝑡); for instance, a fixed decay
factor for the fading memory corresponds to a constant learning rate.

Finally, a fading memory in the Kalman filter may erase prior Bayesian
information (𝜃0, 𝑃0) too fast; maintaining the weight of the prior in a fading
memory Kalman filter is treated in Proposition 4 and corresponds, on the
natural gradient side, to a so-called weight decay [Bis06] towards 𝜃0 together
with a regularization of the Fisher matrix, at specific rates.

2.1 Natural gradient as a Kalman filter: heuristics

As a first ingredient in the correspondence, we interpret Kalman filters as
gradient descents: the extended Kalman filter actually performs a gradient
descent on the log-likelihood of each new observation, with preconditioning
matrix equal to the posterior covariance matrix. This is Proposition 6 below.
This relies on having an exponential family as the output noise model.

Meanwhile, the natural gradient uses the Fisher matrix as a precondi-
tioning matrix. The Fisher matrix is the average Hessian of log-likelihood,
thanks to the classical double definition of the Fisher matrix as square gradi-
ent or Hessian, 𝐽(𝜃) = E𝑦∼𝑝(𝑦|𝜃)

[︂
𝜕 ln 𝑝(𝑦)

𝜕𝜃

⊗2
]︂

= −E𝑦∼𝑝(𝑦|𝜃)
[︁

𝜕2 ln 𝑝(𝑦)
𝜕𝜃2

]︁
for any

probabilistic model 𝑝(𝑦|𝜃) [Kul97].
Assume that the probability of the data given the parameter 𝜃 is ap-

proximately Gaussian, 𝑝(𝑦1, . . . , 𝑦𝑡|𝜃) ∝ exp(−(𝜃 − 𝜃*)⊤Σ−1(𝜃 − 𝜃*)) with
covariance Σ. This often holds asymptotically thanks to the Bernstein–von
Mises theorem; moreover, the posterior covariance Σ typically decreases like
1/𝑡. Then the Hessian (w.r.t. 𝜃) of the total log-likelihood of (𝑦1, . . . , 𝑦𝑡) is
Σ−1, the inverse covariance of 𝜃. So the average Hessian per data point,
the Fisher matrix 𝐽 , is approximately 𝐽 ≈ Σ−1/𝑡. Since a Kalman filter to
estimate 𝜃 is essentially a gradient descent preconditioned with Σ, it will
be the same as using a natural gradient with learning rate 1/𝑡. Using a
fading memory Kalman filter will estimate Σ from fewer past observations
and provide larger learning rates.

Another way to understand the link between natural gradient and Kalman
filter is as a second-order Taylor expansion of data log-likelihood. Assume
that the total data log-likelihood at time 𝑡, 𝐿𝑡(𝜃) := −

∑︀𝑡
𝑠=1 ln 𝑝(𝑦𝑠|𝜃), is

approximately quadratic as a function of 𝜃, with a minimum at 𝜃*
𝑡 and a

Hessian ℎ𝑡, namely, 𝐿𝑡(𝜃) ≈ 1
2(𝜃−𝜃*

𝑡 )⊤ℎ𝑡(𝜃−𝜃*
𝑡 ). Then when new data points

become available, this quadratic approximation would be updated as follows
(online Newton method):

ℎ𝑡 ≈ ℎ𝑡−1 + 𝜕2
𝜃 (− ln 𝑝(𝑦𝑡|𝜃*

𝑡−1)) (2.1)
𝜃*

𝑡 ≈ 𝜃*
𝑡−1 − ℎ−1

𝑡 𝜕𝜃(− ln 𝑝(𝑦𝑡|𝜃*
𝑡−1)) (2.2)
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and indeed these are equalities for a quadratic log-likelihood. Namely, the
update of 𝜃*

𝑡 is a gradient ascent on log-likelihood, preconditioned by the
inverse Hessian (Newton method). Note that ℎ𝑡 grows like 𝑡 (each data point
adds its own contribution). Thus, ℎ𝑡 is 𝑡 times the empirical average of the
Hessian, i.e., approximately 𝑡 times the Fisher matrix of the model (ℎ𝑡 ≈ 𝑡𝐽).
So this update is approximately a natural gradient descent with learning
rate 1/𝑡.

Meanwhile, the Bayesian posterior on 𝜃 (with uniform prior) after ob-
servations 𝑦1, . . . , 𝑦𝑡 is proportional to 𝑒−𝐿𝑡 by definition of 𝐿𝑡. If 𝐿𝑡 ≈
1
2(𝜃 − 𝜃*

𝑡 )⊤ℎ𝑡(𝜃 − 𝜃*
𝑡 ), this is a Gaussian distribution centered at 𝜃*

𝑡 with
covariance matrix ℎ−1

𝑡 . The Kalman filter is built to maintain an approxi-
mation 𝑃𝑡 of this covariance matrix ℎ−1

𝑡 , and then performs a gradient step
preconditioned on 𝑃𝑡 similar to (2.2).

The simplest situation corresponds to an asymptotic rate 𝑂(1/𝑡), i.e.,
estimating the parameter based on all past evidence; the update (2.1) of
the Hessian is additive, so that ℎ𝑡 grows like 𝑡 and ℎ−1

𝑡 in (2.2) produces
an effective learning rate 𝑂(1/𝑡). Introducing a decay factor for older
observations, multiplying the term ℎ𝑡−1 in (2.1), produces a fading memory
effect and results in larger learning rates.

These heuristics justify the statement from [LS83] that “there is only one
recursive identification method”. Close to an optimum (so that the Hessian
is positive), all second-order algorithms are essentially an online Newton step
(2.1)-(2.2) approximated in various ways.

But even though this heuristic argument appears to be approximate or
asymptotic, the correspondence between online natural gradient and Kalman
filter presented below is exact at every time step.

2.2 Statement of the correspondence, static (i.i.d.) case

For the statement of the correspondence, we assume that the output noise
on 𝑦 given 𝑦 is modelled by an exponential family with mean parameter 𝑦.
This covers the traditional Gaussian case 𝑦 = 𝒩 (𝑦, Σ) with fixed Σ often
used in Kalman filters. The Appendix contains necessary background on
exponential families.

Theorem 2 (Natural gradient as a static Kalman filter).
These two algorithms are identical under the correspondence (𝜃𝑡, 𝐽𝑡) ↔
(𝑠𝑡, 𝑃 −1

𝑡 /(𝑡 + 1)):

1. The online natural gradient (Def. 1) with learning rates 𝜂𝑡 = 𝛾𝑡 =
1/(𝑡 + 1), applied to learn the parameter 𝜃 of a model that predicts
observations (𝑦𝑡) with inputs (𝑢𝑡), using a probabilistic model 𝑦 ∼ 𝑝(𝑦|𝑦)
with 𝑦 = ℎ(𝜃, 𝑢), where ℎ is any model and 𝑝(𝑦|𝑦) is an exponential
family with mean parameter 𝑦.
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2. The extended Kalman filter (Def. 5) to estimate the state 𝑠 from
observations (𝑦𝑡) and inputs (𝑢𝑡), using a probabilistic model 𝑦 ∼ 𝑝(𝑦|𝑦)
with 𝑦 = ℎ(𝑠, 𝑢) and 𝑝(𝑦|𝑦) an exponential family with mean parameter
𝑦, with static dynamics and no added noise on 𝑠 (𝑓(𝑠, 𝑢) = 𝑠 and 𝑄 = 0
in Def. 5).

Namely, if at startup (𝜃0, 𝐽0) = (𝑠0, 𝑃 −1
0 ), then (𝜃𝑡, 𝐽𝑡) = (𝑠𝑡, 𝑃 −1

𝑡 /(𝑡+1))
for all 𝑡 > 0.

The correspondence is exact only if the Fisher metric is updated before
the parameter in the natural gradient descent (as in Definition 1).

The correspondence with a Kalman filter provides an interpretation for
various hyper-parameters of online natural gradient descent. In particular,
𝐽0 = 𝑃 −1

0 can be interpreted as the inverse covariance of a Bayesian prior
on 𝜃 [SW88]. This relates the initialization 𝐽0 of the Fisher matrix to the
initialization of 𝜃: for instance, in neural networks it is recommended to
initialize the weights according to a Gaussian of covariance diag(1/fan-in)
(number of incoming weights) for each neuron; interpreting this as a Bayesian
prior on weights, one may recommend to initialize the Fisher matrix to the
inverse of this covariance, namely,

𝐽0 ← diag(fan-in) (2.3)

Indeed this seemed to perform quite well in small-scale experiments.

Learning rates, fading memory, and metric decay rate. Theorem 2
exhibits a 1/(𝑡 + 1) learning rate for the online natural gradient. This is
because the static Kalman filter for i.i.d. observations approximates the max-
imum a posteriori (MAP) of the parameter 𝜃 based on all past observations;
MAP and maximum likelihood estimators change by 𝑂(1/𝑡) when a new
data point is observed.

However, for nonlinear systems, optimality of the 1/𝑡 rate only occurs
asymptotically, close enough to the optimum. In general, a 1/(𝑡 + 1) learning
rate is far from optimal if optimization does not start close to the optimum
or if one is not using the exact Fisher matrix 𝐽𝑡 or covariance matrix 𝑃𝑡.

Larger effective learning rates are achieved thanks to so-called “fading
memory” variants of the Kalman filter, which put less weight on older
observations. For instance, one may multiply the log-likelihood of previous
points by a forgetting factor (1− 𝜆𝑡) before each new observation. This is
equivalent to an additional step 𝑃𝑡−1 ← 𝑃𝑡−1/(1− 𝜆𝑡) in the Kalman filter,
or to the addition of an artificial process noise 𝑄𝑡 proportional to 𝑃𝑡−1 in the
model. Such strategies are reported to often improve performance, especially
when the data do not truly follow the model [Sim06, §5.5, §7.4], [Hay01,
§5.2.2]. See for instance [Ber96] for the relationship between Kalman fading
memory and gradient descent learning rates (in a particular case).
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Proposition 3 (Natural gradient rates and fading mem-
ory). Under the same model and assumptions as in Theorem 2, the following
two algorithms are identical via the correspondence (𝜃𝑡, 𝐽𝑡)↔ (𝑠𝑡, 𝜂𝑡𝑃

−1
𝑡 ):

∙ An online natural gradient step with learning rate 𝜂𝑡 and metric decay
rate 𝛾𝑡

∙ A fading memory Kalman filter with an additional step 𝑃𝑡−1 ←
𝑃𝑡−1/(1− 𝜆𝑡) before the transition step; such a filter iteratively opti-
mizes a weighted log-likelihood function 𝐿𝑡 of recent observations, with
decay (1− 𝜆𝑡) at each step, namely:

𝐿𝑡(𝜃) = ln 𝑝𝜃(𝑦𝑡)+(1−𝜆𝑡) 𝐿𝑡−1(𝜃) , 𝐿0(𝜃) := −1
2(𝜃−𝜃0)⊤𝑃 −1

0 (𝜃−𝜃0)
(2.4)

provided the following relations are satisfied:

𝜂𝑡 = 𝛾𝑡, 𝑃0 = 𝜂0𝐽−1
0 , (2.5)

1− 𝜆𝑡 = 𝜂𝑡−1/𝜂𝑡 − 𝜂𝑡−1 for 𝑡 > 1 (2.6)

For example, taking 𝜂𝑡 = 1/(𝑡 + cst) corresponds to 𝜆𝑡 = 0, no decay
for older observations, and an initial covariance 𝑃0 = 𝐽−1

0 /cst. Taking a
constant learning rate 𝜂𝑡 = 𝜂0 corresponds to a constant decay factor 𝜆 = 𝜂0.

The proposition above computes the fading memory decay factors 1− 𝜆𝑡

from the natural gradient learning rates 𝜂𝑡 via (2.6). In the other direction,
one can start with the decay factors 𝜆𝑡 and obtain the learning rates 𝜂𝑡 via
the cumulated sum of weights 𝑆𝑡: 𝑆0 := 1/𝜂0 then 𝑆𝑡 := (1 − 𝜆𝑡)𝑆𝑡−1 + 1,
then 𝜂𝑡 := 1/𝑆𝑡. This clarifies how 𝜆𝑡 = 0 corresponds to 𝜂𝑡 = 1/(𝑡 + cst)
where the constant is 𝑆0.

The learning rates also control the weight given to the Bayesian prior and
to the starting point 𝜃0. For instance, with 𝜂𝑡 = 1/(𝑡 + 𝑡0) and large 𝑡0, the
gradient descent will move away slowly from 𝜃0; in the Kalman interpretation
this corresponds to 𝜆𝑡 = 0 and a small initial covariance 𝑃0 = 𝐽−1

0 /𝑡0 around
𝜃0, so that the prior weighs as much as 𝑡0 observations.

This result suggests to set 𝛾𝑡 = 𝜂𝑡 in the online natural gradient descent of
Definition 1. The intuitive explanation for this setting is as follows: Both the
Kalman filter and the natural gradient build a second-order approximation
of the log-likelihood of past observations as a function of the parameter 𝜃,
as explained in Section 2.1. Using a fading memory corresponds to putting
smaller weights on past observations; these weights affect the first-order
and the second-order parts of the approximation in the same way. In the
gradient viewpoint, the learning rate 𝜂𝑡 corresponds to the first-order term
(comparing (1.8) and (2.2)) while the Fisher matrix decay rate corresponds
to the rate at which the second-order information is updated. Thus, the
setting 𝜂𝑡 = 𝛾𝑡 in the natural gradient corresponds to using the same decay
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weights for the first-order and second-order expansion of the log-likelihood
of past observations.

Still, one should keep in mind that the extended Kalman filter is itself only
an approximation for nonlinear systems. Moreover, from a statistical point
of view, the second-order object 𝐽𝑡 is higher-dimensional than the first-order
information, so that estimating 𝐽𝑡 based on more past observations may be
more stable. Finally, for large-dimensional problems the Fisher matrix is
always approximated, which affects optimality of the learning rates. So in
practice, considering 𝛾𝑡 and 𝜂𝑡 as hyperparameters to be tuned independently
may still be beneficial, though 𝛾𝑡 = 𝜂𝑡 seems a good place to start.

Regularization of the Fisher matrix and Bayesian priors. A poten-
tial downside of fading memory in the Kalman filter is that the Bayesian
interpretation is partially lost, because the Bayesian prior is forgotten too
quickly. For instance, with a constant learning rate, the weight of the
Bayesian prior decreases exponentially; likewise, with 𝜂𝑡 = 𝑂(1/

√
𝑡), the

filter essentially works with the 𝑂(
√

𝑡) most recent observations, while the
weight of the prior decreases like ≈ 𝑒−

√
𝑡 (as does the weight of the earliest

observations; this is the product
∏︀

(1 − 𝜆𝑡)). But precisely, when working
with fewer data points one may wish the prior to play a greater role.

The Bayesian interpretation can be restored by explicitly optimizing a
combination of the log-likelihood of recent points, and the log-likelihood of
the prior. This is implemented in Proposition 4.

From the natural gradient viewpoint, this translates both as a regulariza-
tion of the Fisher matrix (often useful in practice to numerically stabilize its
inversion) and of the gradient step. With a Gaussian prior 𝒩 (𝜃prior, Id), this
manifests as an additional step towards 𝜃prior and adding 𝜀. Id to the Fisher
matrix, known respectively as weight decay and Tikhonov regularization
[Bis06, §3.3, §5.5] in statistical learning.

Proposition 4 (Bayesian regularization of the Fisher ma-
trix). Let 𝜋 = 𝒩 (𝜃prior, Σ0) be a Gaussian prior on 𝜃. Under the same
model and assumptions as in Theorem 2, the following two algorithms are
equivalent:

∙ A modified fading memory Kalman filter that iteratively optimizes
𝐿𝑡(𝜃) + 𝑛prior ln 𝜋(𝜃) where 𝐿𝑡 is a weighted log-likelihood function of
recent observations with decay (1− 𝜆𝑡):

𝐿𝑡(𝜃) = ln 𝑝𝜃(𝑦𝑡) + (1− 𝜆𝑡) 𝐿𝑡−1(𝜃), 𝐿0 := 0 (2.7)

initialized with 𝑃0 = 𝜂1
1+𝑛prior𝜂1

Σ0.

∙ A regularized online natural gradient step with learning rate 𝜂𝑡 and
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metric decay rate 𝛾𝑡, initialized with 𝐽0 = Σ−1
0 ,

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡

(︁
𝐽𝑡 + 𝜂𝑡𝑛priorΣ−1

0

)︁−1
(︃

𝜕ℓ𝑡(𝑦𝑡)
𝜕𝜃

⊤
+ 𝜆𝑡𝑛priorΣ−1

0 (𝜃 − 𝜃prior)
)︃

(2.8)

provided the following relations are satisfied:

𝜂𝑡 = 𝛾𝑡, 1− 𝜆𝑡 = 𝜂𝑡−1/𝜂𝑡 − 𝜂𝑡−1, 𝜂0 := 𝜂1 (2.9)

Thus, the regularization terms are fully determined by choosing the
learning rates 𝜂𝑡, a prior such as 𝒩 (0, 1/fan-in) (for neural networks), and
a value of 𝑛prior such as 𝑛prior = 1 (the prior weighs as much as 𝑛prior
data points). This holds both for regularization of the Fisher matrix 𝐽𝑡 +
𝜂𝑡𝑛priorΣ−1

0 , and for regularization of the parameter via the extra gradient
step 𝜆𝑡𝑛priorΣ−1

0 (𝜃 − 𝜃prior).
The relative strength of regularization in the Fisher matrix decreases like

𝜂𝑡. In particular, a constant learning rate results in a constant regularization.
The added gradient step 𝜆𝑡𝑛priorΣ−1

0 (𝜃− 𝜃prior) is modulated by 𝜆𝑡 which
depends on 𝜂𝑡; this extra term pulls towards the prior 𝜃prior. The Bayesian
viewpoint guarantees that this extra term will not ultimately prevent conver-
gence of the gradient descent (as the influence of the prior vanishes when
the number of observations increases).

It is not clear how much these recommendations for natural gradient
descent coming from its Bayesian interpretation are sensitive to using only
an approximation of the Fisher matrix.

2.3 Proofs for the static case

The proof of Theorem 2 starts with the interpretation of the Kalman filter
as a gradient descent (Proposition 6).

We first recall the exact definition and the notation we use for the
extended Kalman filter.

Definition 5 (Extended Kalman filter). Consider a dynamical
system with state 𝑠𝑡, inputs 𝑢𝑡 and outputs 𝑦𝑡,

𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑢𝑡) +𝒩 (0, 𝑄𝑡), 𝑦𝑡 = ℎ(𝑠𝑡, 𝑢𝑡), 𝑦𝑡 ∼ 𝑝(𝑦|𝑦𝑡) (2.10)

where 𝑝(·|𝑦) denotes an exponential family with mean parameter 𝑦 (e.g.,
𝑦 = 𝒩 (𝑦, 𝑅) with fixed covariance matrix 𝑅).

The extended Kalman filter for this dynamical system estimates the
current state 𝑠𝑡 given observations 𝑦1, . . . , 𝑦𝑡 in a Bayesian fashion. At
each time, the Bayesian posterior distribution of the state given 𝑦1, . . . , 𝑦𝑡 is
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approximated by a Gaussian𝒩 (𝑠𝑡, 𝑃𝑡) so that 𝑠𝑡 is the approximate maximum
a posteriori, and 𝑃𝑡 is the approximate posterior covariance matrix. (The
prior is 𝒩 (𝑠0, 𝑃0) at time 0.) Each time a new observation 𝑦𝑡 is available,
these estimates are updated as follows.

The transition step (before observing 𝑦𝑡) is

𝑠𝑡|𝑡−1 ← 𝑓(𝑠𝑡−1, 𝑢𝑡) (2.11)

𝐹𝑡−1 ←
𝜕𝑓

𝜕𝑠

⃒⃒⃒⃒
(𝑠𝑡−1,𝑢𝑡)

(2.12)

𝑃𝑡|𝑡−1 ← 𝐹𝑡−1𝑃𝑡−1𝐹⊤
𝑡−1+ 𝑄𝑡 (2.13)

𝑦𝑡 ← ℎ(𝑠𝑡|𝑡−1, 𝑢𝑡) (2.14)

and the observation step after observing 𝑦𝑡 is

𝐸𝑡 ← sufficient statistics(𝑦𝑡)− 𝑦𝑡 (2.15)
𝑅𝑡 ← Cov(sufficient statistics(𝑦)|𝑦𝑡) (2.16)

(these are just the error 𝐸𝑡 = 𝑦𝑡 − 𝑦𝑡 and the covariance matrix 𝑅𝑡 = 𝑅 for a
Gaussian model 𝑦 = 𝒩 (𝑦, 𝑅) with known 𝑅)

𝐻𝑡 ←
𝜕ℎ

𝜕𝑠

⃒⃒⃒⃒
(𝑠𝑡|𝑡−1,𝑢𝑡)

(2.17)

𝐾𝑡 ← 𝑃𝑡|𝑡−1𝐻⊤
𝑡

(︁
𝐻𝑡𝑃𝑡|𝑡−1𝐻⊤

𝑡 + 𝑅𝑡

)︁−1
(2.18)

𝑃𝑡 ← (Id−𝐾𝑡𝐻𝑡) 𝑃𝑡|𝑡−1 (2.19)
𝑠𝑡 ← 𝑠𝑡|𝑡−1 + 𝐾𝑡𝐸𝑡 (2.20)

For non-Gaussian output noise, the definition of 𝐸𝑡 and 𝑅𝑡 above via
the mean parameter 𝑦 of an exponential family, differs from the practice of
modelling non-Gaussian noise via a nonlinear function applied to Gaussian
noise. This allows for a straightforward treatment of various output models,
such as discrete outputs or Gaussians with unknown variance. In the Gaussian
case with known variance our definition is fully standard. 4

The proof starts with the interpretation of the Kalman filter as a gradient
descent preconditioned by 𝑃𝑡. Compare this result and Lemma 9 to [Hay01,
(5.68)–(5.73)].

4Non-Gaussian output noise is often modelled in Kalman filtering via a continuous
nonlinear function applied to a Gaussian noise [Sim06, 13.1]; this cannot easily represent
discrete random variables. Moreover, since the filter linearizes the function around the
0 value of the noise [Sim06, 13.1], the noise is still implicitly Gaussian, though with a
state-dependent variance.

17



Proposition 6 (Kalman filter as preconditioned gradient
descent). The update of the state 𝑠 in a Kalman filter can be seen as an
online gradient descent on data log-likelihood, with preconditioning matrix 𝑃𝑡.
More precisely, denoting ℓ𝑡(𝑦) := − ln 𝑝(𝑦|𝑦𝑡), the update (2.20) is equivalent
to

𝑠𝑡 = 𝑠𝑡|𝑡−1 − 𝑃𝑡

(︃
𝜕ℓ𝑡(𝑦𝑡)
𝜕𝑠𝑡|𝑡−1

)︃⊤

(2.21)

where in the derivative, ℓ𝑡 depends on 𝑠𝑡|𝑡−1 via 𝑦𝑡 = ℎ(𝑠𝑡|𝑡−1, 𝑢𝑡).

Lemma 7 (Errors and gradients). When the output model is an
exponential family with mean parameter 𝑦𝑡, the error 𝐸𝑡 is related to the gra-
dient of the log-likelihood of the observation 𝑦𝑡 with respect to the prediction
𝑦𝑡 by

𝐸𝑡 = 𝑅𝑡

(︂
𝜕 ln 𝑝(𝑦𝑡|𝑦𝑡)

𝜕𝑦𝑡

)︂⊤

Proof of the lemma.
For a Gaussian 𝑦𝑡 = 𝒩 (𝑦𝑡, 𝑅), this is just a direct computation. For a general
exponential family, consider the natural parameter 𝛽 of the exponential
family which defines the law of 𝑦, namely, 𝑝(𝑦|𝛽) = exp(

∑︀
𝑖 𝛽𝑖𝑇𝑖(𝑦))/𝑍(𝛽)

with sufficient statistics 𝑇𝑖 and normalizing constant 𝑍. An elementary
computation (Appendix, (A.3)) shows that

𝜕 ln 𝑝(𝑦|𝛽)
𝜕𝛽𝑖

= 𝑇𝑖(𝑦)− E𝑇𝑖 = 𝑇𝑖(𝑦)− 𝑦𝑖 (2.22)

by definition of the mean parameter 𝑦. Thus,

𝐸𝑡 = 𝑇 (𝑦𝑡)− 𝑦𝑡 =
(︂

𝜕 ln 𝑝(𝑦𝑡|𝛽)
𝜕𝛽

)︂⊤
(2.23)

where the derivative is with respect to the natural parameter 𝛽. To express
the derivative with respect to 𝑦, we apply the chain rule

𝜕 ln 𝑝(𝑦𝑡|𝛽)
𝜕𝛽

= 𝜕 ln 𝑝(𝑦𝑡|𝑦)
𝜕𝑦

𝜕𝑦

𝜕𝛽

and use the fact that, for exponential families, the Jacobian matrix of the
mean parameter 𝜕𝑦

𝜕𝛽 is equal to the covariance matrix 𝑅𝑡 of the sufficient
statistics (Appendix, (A.11) and (A.6)).

Lemma 8. The extended Kalman filter satisfies 𝐾𝑡𝑅𝑡 = 𝑃𝑡𝐻
⊤
𝑡 .

Proof of the lemma.
This relation is known, e.g., [Sim06, (6.34)]. Indeed, using the definition
of 𝐾𝑡, we have 𝐾𝑡𝑅𝑡 = 𝐾𝑡(𝑅𝑡 + 𝐻𝑡𝑃𝑡|𝑡−1𝐻⊤

𝑡 )−𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−1𝐻⊤
𝑡 = 𝑃𝑡|𝑡−1𝐻⊤

𝑡 −
𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−1𝐻⊤

𝑡 = (Id−𝐾𝑡𝐻𝑡)𝑃𝑡|𝑡−1𝐻⊤
𝑡 = 𝑃𝑡𝐻

⊤
𝑡 .
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Proof of Proposition 6.
By definition of the Kalman filter we have 𝑠𝑡 = 𝑠𝑡|𝑡−1 + 𝐾𝑡𝐸𝑡. By Lemma 7,

𝐸𝑡 = 𝑅𝑡

(︂
𝜕ℓ𝑡

𝜕𝑦𝑡

)︂⊤
. Thanks to Lemma 8 we find 𝑠𝑡 = 𝑠𝑡|𝑡−1 + 𝐾𝑡𝑅𝑡

(︂
𝜕ℓ𝑡

𝜕𝑦𝑡

)︂⊤
=

𝑠𝑡|𝑡−1 + 𝑃𝑡𝐻
⊤
𝑡

(︂
𝜕ℓ𝑡

𝜕𝑦𝑡

)︂⊤
= 𝑠𝑡|𝑡−1 + 𝑃𝑡

(︂
𝜕ℓ𝑡

𝜕𝑦𝑡
𝐻𝑡

)︂⊤
. But by the definition of 𝐻,

𝐻𝑡 is 𝜕𝑦𝑡

𝜕𝑠𝑡|𝑡−1
so that 𝜕ℓ𝑡

𝜕𝑦𝑡
𝐻𝑡 is 𝜕ℓ𝑡

𝜕𝑠𝑡|𝑡−1
.

The first part of the next lemma is known as the information filter in
the Kalman filter literature, and states that the observation step for 𝑃 is
additive when considered on 𝑃 −1 [Sim06, §6.2]: after each observation, the
Fisher information matrix of the latest observation is added to 𝑃 −1.

Lemma 9 (Information filter). The update (2.18)–(2.19) of 𝑃𝑡 in
the extended Kalman filter is equivalent to

𝑃 −1
𝑡 ← 𝑃 −1

𝑡|𝑡−1 + 𝐻⊤
𝑡 𝑅−1

𝑡 𝐻𝑡 (2.24)

(assuming 𝑃𝑡|𝑡−1 and 𝑅𝑡 are invertible).
In particular, for static dynamical systems (𝑓(𝑠, 𝑢) = 𝑠 and 𝑄𝑡 = 0), the

whole extended Kalman filter (2.12)-(2.20) is equivalent to

𝑃 −1
𝑡 ← 𝑃 −1

𝑡−1 + 𝐻⊤
𝑡 𝑅−1

𝑡 𝐻𝑡 (2.25)

𝑠𝑡 ← 𝑠𝑡−1 − 𝑃𝑡

(︂
𝜕ℓ𝑡(𝑦𝑡)
𝜕𝑠𝑡−1

)︂⊤
(2.26)

Proof.
The first statement is well-known for Kalman filters [Sim06, (6.33)]. Indeed,
expanding the definition of 𝐾𝑡 in the update (2.19) of 𝑃𝑡, we have

𝑃𝑡 = 𝑃𝑡|𝑡−1 − 𝑃𝑡|𝑡−1𝐻⊤
𝑡

(︁
𝐻𝑡𝑃𝑡|𝑡−1𝐻⊤

𝑡 + 𝑅𝑡

)︁−1
𝐻𝑡𝑃𝑡|𝑡−1 (2.27)

but this is equal to (𝑃 −1
𝑡|𝑡−1 + 𝐻⊤

𝑡 𝑅−1
𝑡 𝐻𝑡)−1 thanks to the Woodbury matrix

identity.
The second statement follows from Proposition 6 and the fact that for

𝑓(𝑠, 𝑢) = 𝑠, the transition step of the Kalman filter is just 𝑠𝑡|𝑡−1 = 𝑠𝑡−1 and
𝑃𝑡|𝑡−1 = 𝑃𝑡−1.

Lemma 10. For exponential families 𝑝(𝑦|𝑦), the term 𝐻⊤
𝑡 𝑅−1

𝑡 𝐻𝑡 appearing
in Lemma 9 is equal to the Fisher information matrix of 𝑦 with respect to
the state 𝑠,

𝐻⊤
𝑡 𝑅−1

𝑡 𝐻𝑡 = E𝑦∼𝑝(𝑦|𝑦𝑡)

[︃
𝜕ℓ𝑡(𝑦)
𝜕𝑠𝑡|𝑡−1

⊗2]︃
where ℓ𝑡(𝑦) = − ln 𝑝(𝑦|𝑦𝑡) depends on 𝑠 via 𝑦 = ℎ(𝑠, 𝑢).
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Proof.
Let us omit time indices for brevity. We have 𝜕ℓ(𝑦)

𝜕𝑠
= 𝜕ℓ(𝑦)

𝜕𝑦

𝜕𝑦

𝜕𝑠
= 𝜕ℓ(𝑦)

𝜕𝑦
𝐻.

Consequently, E𝑦

[︃
𝜕ℓ(𝑦)

𝜕𝑠

⊗2]︃
= 𝐻⊤E𝑦

[︃
𝜕ℓ(𝑦)

𝜕𝑦

⊗2]︃
𝐻. The middle term E𝑦

[︃
𝜕ℓ(𝑦)

𝜕𝑦

⊗2]︃
is the Fisher matrix of the random variable 𝑦 with respect to 𝑦.

Now, for an exponential family 𝑦 ∼ 𝑝(𝑦|𝑦) in mean parameterization 𝑦,
the Fisher matrix with respect to 𝑦 is equal to the inverse covariance matrix
of the sufficient statistics of 𝑦 (Appendix, (A.16)), that is, 𝑅−1

𝑡 .

Proof of Theorem 2.
By induction on 𝑡. By the combination of Lemmas 9 and 10, the update of
the Kalman filter with static dynamics (𝑠𝑡|𝑡−1 = 𝑠𝑡−1) is

𝑃 −1
𝑡 ← 𝑃 −1

𝑡−1 + E𝑦∼𝑝(𝑦|𝑦𝑡)

[︃
𝜕ℓ𝑡(𝑦)
𝜕𝑠𝑡−1

⊗2]︃
(2.28)

𝑠𝑡 ← 𝑠𝑡−1 − 𝑃𝑡

(︂
𝜕ℓ𝑡(𝑦𝑡)
𝜕𝑠𝑡−1

)︂⊤
(2.29)

Defining 𝐽𝑡 = 𝑃 −1
𝑡 /(𝑡 + 1), this update is equivalent to

𝐽𝑡 ←
𝑡

𝑡 + 1𝐽𝑡−1 + 1
𝑡 + 1E𝑦∼𝑝(𝑦|𝑦𝑡)

[︃
𝜕ℓ𝑡(𝑦)
𝜕𝑠𝑡−1

⊗2]︃

𝑠𝑡 ← 𝑠𝑡−1 −
1

𝑡 + 1𝐽−1
𝑡

(︂
𝜕ℓ𝑡(𝑦𝑡)
𝜕𝑠𝑡−1

)︂⊤

Under the identification 𝑠𝑡−1 ↔ 𝜃𝑡−1, this is the online natural gradient
update with learning rate 𝜂𝑡 = 1/(𝑡 + 1) and metric update rate 𝛾𝑡 =
1/(𝑡 + 1).

The proof of Proposition 3 is similar, with additional factors (1 − 𝜆𝑡).
Proposition 4 is proved by applying a fading memory Kalman filter to a
modified log-likelihood 𝐿̄0 := 𝑛prior ln 𝜋(𝜃), 𝐿̄𝑡 := ln 𝑝𝜃(𝑦𝑡) + (1− 𝜆𝑡)𝐿̄𝑡−1 +
𝜆𝑡𝑛prior ln 𝜋(𝜃) so that the prior is kept constant in 𝐿̄𝑡.

3 Natural gradient as a Kalman filter: the state
space (recurrent) case

3.1 Recurrent models, RTRL

Let us now consider non-memoryless models, i.e., models defined by a
recurrent or state space equation

𝑦𝑡 = Φ(𝑦𝑡−1, 𝜃, 𝑢𝑡) (3.1)
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with 𝑢𝑡 the observations at time 𝑡. To save notation, here we dump into
𝑦𝑡 the whole state of the model, including both the part that contains the
prediction about 𝑦𝑡 and all state or internal variables (e.g., all internal and
output layers of a recurrent neural network, not only the output layer). The
state 𝑦𝑡, or a part thereof, defines a loss function ℓ𝑡(𝑦𝑡) := − ln 𝑝(𝑦𝑡|𝑦𝑡) for
each observation 𝑦𝑡.

The current state 𝑦𝑡 can be seen as a function which depends on 𝜃 via
the whole trajectory. The derivative of the current state with respect to 𝜃
can be computed inductively just by differentiating the recurrent equation
(3.1) defining 𝑦𝑡:

𝜕𝑦𝑡

𝜕𝜃
= 𝜕Φ(𝑦𝑡−1, 𝜃, 𝑢𝑡)

𝜕𝜃
+ 𝜕Φ(𝑦𝑡−1, 𝜃, 𝑢𝑡)

𝜕𝑦𝑡−1

𝜕𝑦𝑡−1
𝜕𝜃

(3.2)

Real-time recurrent learning [Jae02] uses this equation to keep an estimate
𝐺𝑡 of 𝜕𝑦𝑡

𝜕𝜃 . RTRL then uses 𝐺𝑡 to estimate the gradient of the loss function
ℓ𝑡 with respect to 𝜃 via the chain rule, 𝜕ℓ𝑡/𝜕𝜃 = (𝜕ℓ𝑡/𝜕𝑦𝑡)(𝜕𝑦𝑡/𝜕𝜃) =
(𝜕ℓ𝑡/𝜕𝑦𝑡)𝐺𝑡.

Definition 11 (Real-time recurrent learning). Given a recur-
rent model 𝑦𝑡 = Φ(𝑦𝑡−1, 𝜃𝑡−1, 𝑢𝑡), real-time recurrent learning (RTRL) learns
the parameter 𝜃 via

𝐺𝑡 ←
𝜕Φ

𝜕𝜃𝑡−1
+ 𝜕Φ

𝜕𝑦𝑡−1
𝐺𝑡−1, 𝐺0 := 0 (3.3)

𝑔𝑡 ←
𝜕ℓ𝑡(𝑦𝑡)

𝜕𝑦𝑡
𝐺𝑡 (3.4)

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡𝑔
⊤
𝑡 (3.5)

Since 𝜃 changes at each step, the actual estimate 𝐺𝑡 in RTRL is only
an approximation of the gradient 𝜕𝑦𝑡

𝜕𝜃 at 𝜃 = 𝜃𝑡, valid in the limit of small
learning rates 𝜂𝑡.

In practice, RTRL has a high computational cost due to the necessary
storage of 𝐺𝑡, a matrix of size dim 𝜃 × dim 𝑦. For large-dimensional models,
backpropagation through time is usually preferred, truncated to a certain
length in the past [Jae02]; [OTC15, TO17] introduce a low-rank, unbiased
approximation of 𝐺𝑡.

3.2 Statement of the correspondence, recurrent case

There are several ways in which a Kalman filter can be used to estimate 𝜃
for such recurrent models.

1. A first possibility is to view each 𝑦𝑡 as a function of 𝜃 via the whole
trajectory, and to apply a Kalman filter on 𝜃. This would require,
in principle, recomputing the whole trajectory from time 0 to time 𝑡
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using the new value of 𝜃 at each step, and using RTRL to compute
𝜕𝑦𝑡/𝜕𝜃, which is needed in the filter. In practice, the past trajectory is
not updated, and truncated backpropagation through time is used to
approximate the derivatice 𝜕𝑦𝑡/𝜕𝜃 [Jae02, Hay01].

2. A second possibility is the joint Kalman filter, namely, a Kalman filter
on the pair (𝜃, 𝑦𝑡) [Hay01, §5], [Sim06, §13.4]. This does not require
going back in time, as 𝑦𝑡 is a function of 𝑦𝑡−1 and 𝜃. This is the version
appearing in Theorem 12 below.

3. A third possibility is the dual Kalman filter [WN96]: a Kalman filter
for 𝜃 given 𝑦, and another one for 𝑦 given 𝜃. This requires to explicitly
couple the two Kalman filters by manually adding RTRL-like terms to
account for the (linearized) dependency of 𝑦 on 𝜃 [Hay01, §5].

Intuitively, the joint Kalman filter maintains a covariance matrix on
(𝜃, 𝑦𝑡), whose off-diagonal term is the covariance between 𝑦𝑡 and 𝜃. This
term captures how the current state would change if another value of the
parameter had been used. The decomposition (3.13) in the theorem makes
this intuition precise in relation to RTRL: the Kalman covariance between
𝑦𝑡 and 𝜃 is directly given by the RTRL gradient 𝐺𝑡.

Theorem 12 (Kalman filter on (𝜃, 𝑦) as RTRL+natural gra-
dient+state correction). Consider a recurrent model 𝑦𝑡 = Φ(𝑦𝑡−1, 𝜃𝑡−1, 𝑢𝑡).
Assume that the observations 𝑦𝑡 are predicted with a probabilistic model
𝑝(𝑦|𝑦𝑡) that is an exponential family with mean parameter a subset of 𝑦𝑡.

Given an estimate 𝐺𝑡 of 𝜕𝑦𝑡/𝜕𝜃, and an observation 𝑦, denote

𝑔𝑡(𝑦) := 𝜕ℓ𝑡(𝑦)
𝜕𝑦𝑡

𝐺𝑡 (3.6)

the corresponding estimate of 𝜕ℓ𝑡(𝑦)/𝜕𝜃.
Then these two algorithms are equivalent:

∙ The extended Kalman filter on the pair (𝜃, 𝑦) with transition function

(Id, Φ), initialized with covariance matrix 𝑃
(𝜃,𝑦)
0 =

(︃
𝑃 𝜃

0 0
0 0

)︃
, and with

no process noise (𝑄 = 0).

∙ A natural gradient RTRL algorithm with learning rate 𝜂𝑡 = 1/(𝑡 + 1),
defined as follows. The state, RTRL gradient and Fisher matrix have a
transition step

𝑦𝑡 ← Φ(𝑦𝑡−1, 𝜃𝑡−1, 𝑢𝑡) (3.7)

𝐺𝑡 ←
𝜕Φ

𝜕𝜃𝑡−1
+ 𝜕Φ

𝜕𝑦𝑡−1
𝐺𝑡−1, 𝐺0 := 0 (3.8)

𝐽𝑡 ← (1− 𝜂𝑡)𝐽𝑡−1 + 𝜂𝑡E𝑦∼𝑝(𝑦|𝑦𝑡)
[︁
𝑔𝑡(𝑦)⊗2

]︁
, 𝐽0 := (𝑃 𝜃

0 )−1 (3.9)
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and after observing 𝑦𝑡, the state and parameter are updated as

𝛿𝜃 ← 𝐽−1
𝑡 𝑔𝑡(𝑦𝑡)⊤ (3.10)

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡 𝛿𝜃 (3.11)
𝑦𝑡 ← 𝑦𝑡 − 𝜂𝑡 𝐺𝑡 𝛿𝜃 (3.12)

Moreover, at each time 𝑡, the covariance matrix of the extended Kalman
filter over (𝜃, 𝑦) is related to 𝐺𝑡 and 𝐽𝑡 via

𝑃
(𝜃,𝑦)
𝑡 = 𝜂𝑡

(︃
𝐽−1

𝑡 𝐽−1
𝑡 𝐺⊤

𝑡

𝐺𝑡𝐽
−1
𝑡 𝐺𝑡𝐽

−1
𝑡 𝐺⊤

𝑡

)︃
(3.13)

This result may explain an observation from [Wil92, §4.2] that RTRL can
be obtained by introducing some drastic simplifications in the Kalman filter
equations (changing the formula of the Kalman optimal gain and neglecting
the covariance matrix update).

Again, the expectation for the Fisher matrix in (3.9) may be estimated by
a Monte Carlo sample 𝑦 ∼ 𝑝(𝑦|𝑦𝑡), or by just using the current observation
𝑦 = 𝑦𝑡, as discussed after Definition 1.

As before, learning rates 𝜂𝑡 different from 1/(𝑡 + 1) can be obtained by
introducing a fading memory (i.e., process noise 𝑄 proportional to 𝑃 ) in the
joint Kalman filter. We omit the statement for simplicity, but it is analogous
to Propositions 3 and 4.

The algorithm above features a state update (3.12) together with the
parameter update; this is not commonly used in online recurrent neural
network algorithms. In small-scale experiments, we have not found any clear
effect of this; besides, such state updates must be applied cautiously if the
range of possible values for the state 𝑦 is somehow constrained.

In the result above, the Kalman filter is initialized with a covariance
matrix in which every uncertainty comes from uncertainty on 𝜃 rather than
the initial state 𝑦0. This has the advantage of making the correspondence
algebraically simple, but is not a fundamental restriction. If modelling an
initial uncertainty on 𝑦0 is important, one can always apply the theorem
by incorporating the initial condition as an additional component of the
parameter 𝜃, with its own variance; in this case, 𝐺0 must be initialized to Id
on the corresponding component of 𝜃, namely

𝜃+init := (𝜃, 𝑦0)⊤, 𝐺0 := 𝜕𝑦0
𝜕𝜃+init = (0, Id) (3.14)

and then Theorem 12 can be applied to 𝜃+init.
Actually this operation is often not needed at all: indeed, if the dynamical

system is such that the initial condition is forgotten reasonably quickly, then
the initial covariance of 𝑦0 decreases (terms 𝑊 in the proof below) and the
Kalman covariance tends to the type (3.13) above exponentially fast, even
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without using 𝜃+init. This is the case, for instance, for any stable linear
dynamical system, as a consequence of Lemmas 13-14, and more generally
for any system with geometric memory in the sense that 𝜕𝑦𝑡

𝜕𝑦𝑡−1
is contracting

for a fixed parameter and a given input.
The filtering literature contains updates similar to the above for 𝐺𝑡, but

more complex [LS83, Hay01]; this is, first, because they are expressed over
the variable Cov(𝑦𝑡, 𝜃) = 𝐺𝑡𝐽

−1
𝑡 instead of 𝐺𝑡 alone, second, because we have

initialized the uncertainty on 𝑦0 to 0, and, third, because in dual rather than
joint filter approaches, higher-order terms depending on second derivatives
of 𝐹 are sometimes included. Interestingly, there is some debate in the
literature about whether to add some second-order corrections to the joint
Kalman filter (especially [LS83, §2.3.3], see discussion in [Hay01, §5.3.4]).
The interpretation in Theorem 12 makes it clear which terms are neglected:
in particular, in RTRL 𝐺𝑡 is not recomputed after the update of 𝜃 and 𝑦𝑡, so
that 𝐺𝑡 contains a mixture of derivatives at different values of 𝜃 over time.
Correcting for this would involve second derivatives of 𝐹 (as in [Hay01, §5,
Appendix A]), thus amounting to a partial implementation of a second-order
extended Kalman filter (EKF2, [Sim06, §13.3]).

In terms of computational cost, for recurrent neural networks (RNNs),
RTRL alone is already as costly as the joint Kalman filter [Wil92]. Indeed,
RTRL requires (dim 𝜃) forward tangent propagations at each step, each of
which costs 𝑂(dim 𝜃) for a standard RNN model [Jae02], thus for a total cost
of 𝑂((dim 𝜃)2) per time step. The Fisher matrix is of size (dim 𝜃)2; if a single
Monte Carlo sample 𝑦 ∼ 𝑝(𝑦|𝑦𝑡) is used, then the Fisher matrix update is
rank-one and costs 𝑂((dim 𝜃)2); the update of the inverse Fisher matrix can
be maintained at the same cost thanks to the Woodbury matrix identity (as
done, e.g., in [LMB07]). Thus, if RTRL is computationally affordable, there
is little point in not using the Fisher matrix on top.

3.3 Proofs for the recurrent case

We now turn to the proof for the recurrent case, involving a joint Kalman
filter on (𝜃, 𝑦). The key is to decompose the Kalman covariance matrix of
the pair (𝜃, 𝑦) into three variables (3.17): the covariance of 𝜃, the correlation
between 𝜃 and 𝑦, and the part of the covariance of 𝑦 that does not come
from its correlation with 𝜃 (its so-called Schur complement). This provides a
nice expression for the transition step of the Kalman filter (Lemma 13).

Then we find that the correlation between 𝜃 and 𝑦 is exactly the gradient
𝐺 = 𝜕𝑦

𝜕𝜃 maintained by RTRL (Corollary 15); meanwhile, we find 𝜃 and
its covariance essentially follow a standalone Kalman filter related to the
observations via 𝐺, which is a natural gradient for the same reasons as in
the static case.

In the recurrent case, we are applying an extended Kalman filter to the
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state 𝑠 =
(︃

𝜃
𝑦

)︃
with transition function 𝑓 =

(︃
Id
Φ

)︃
. Let us decompose the

covariance matrix 𝑃𝑡 of this system as

𝑃𝑡 =
(︃

𝑃 𝜃
𝑡 (𝑃 𝜃𝑦

𝑡 )⊤

𝑃 𝜃𝑦
𝑡 𝑃 𝑦

𝑡

)︃
(3.15)

From now on, for simplicity we omit the time indices when no ambiguity
is present.

By the theory of Schur complement for positive-semidefinite matrices
[BV04, Appendix A.5.5], letting 𝑃 + be any generalized inverse of 𝑃 𝜃, we know
that 𝑃 𝑦 − 𝑃 𝜃𝑦𝑃 +𝑃 𝜃𝑦⊤ is positive-semidefinite and that 𝑃 𝜃𝑦(Id−𝑃 +𝑃 𝜃) = 0.
The latter rewrites as 𝑃 𝜃𝑦 = 𝑃 𝜃𝑦𝑃 +𝑃 𝜃. Let us set

𝑊 := 𝑃 𝑦 − 𝑃 𝜃𝑦𝑃 +𝑃 𝜃𝑦⊤
, 𝐺 := 𝑃 𝜃𝑦𝑃 + (3.16)

Then 𝑃 𝜃𝑦 = 𝐺𝑃 𝜃 and 𝑊 = 𝑃 𝑦 − 𝐺𝑃 𝜃𝐺⊤. Thus, at each time 𝑡 we can
decompose 𝑃𝑡 as

𝑃𝑡 =
(︃

𝑃 𝜃 (𝐺𝑃 𝜃)⊤
𝐺𝑃 𝜃 𝑊 + 𝐺𝑃 𝜃𝐺⊤

)︃
(3.17)

without loss of generality, where 𝑊 is positive-semidefinite. This decomposi-
tion tells us which part of the covariance of the current state 𝑦 comes from
the covariance of the parameter 𝜃 via the dynamics of the system.

First, we will show that if 𝑊0 = 0, then 𝑊𝑡 = 0 for all 𝑡, and that in this
case 𝐺𝑡 satisfies the RTRL equation.

Lemma 13. Consider the extended Kalman filter on the pair 𝑠 = (𝜃, 𝑦)⊤
with transition function 𝑓 = (𝜃, Φ(𝑦, 𝜃, 𝑢))⊤ and no added noise (𝑄𝑡 = 0).
Then the Kalman transition step (2.13) on 𝑃 , expressed in the decomposition
(3.17), is equivalent to

𝑃 𝜃 ← 𝑃 𝜃 (3.18)

𝑊 ← 𝜕Φ
𝜕𝑦

𝑊
𝜕Φ
𝜕𝑦

⊤
(3.19)

𝐺← 𝜕Φ
𝜕𝜃

+ 𝜕Φ
𝜕𝑦

𝐺 (3.20)

This equation for 𝐺 is the RTRL update.

Proof of the lemma.
This is a direct computation using the Kalman transition step (2.13) for 𝑃 .
Indeed, the decomposition (3.17) of 𝑃 rewrites as

𝑃𝑡 =
(︃

Id 0
𝐺 Id

)︃(︃
𝑃 𝜃 0
0 𝑊

)︃(︃
Id 𝐺⊤

0 Id

)︃
(3.21)
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Now, the Kalman transition step (2.13) for 𝑃 is 𝑃𝑡|𝑡−1 = 𝜕𝑓
𝜕𝑠 𝑃𝑡−1

𝜕𝑓
𝜕𝑠

⊤ when

𝑄 = 0. So the update is equivalent to replacing
(︃

Id 0
𝐺 Id

)︃
with 𝜕𝑓

𝜕𝑠

(︃
Id 0
𝐺 Id

)︃

on both sides in (3.21). Here we have 𝜕𝑓
𝜕𝑠 =

(︃
Id 0
𝜕Φ
𝜕𝜃

𝜕Φ
𝜕𝑦

)︃
. This yields the

result.

Lemma 14. Consider the extended Kalman filter on the pair 𝑠 = (𝜃, 𝑦)⊤
with transition function 𝑓 = (𝜃, Φ(𝑦, 𝜃, 𝑢))⊤. Then the observation update
(2.18)–(2.19) of 𝑃𝑡, expressed in the variables 𝑃 𝜃, 𝑊 , and 𝐺, is given by

𝑃 𝜃 ← 𝑃 𝜃 − 𝑃 𝜃𝐺⊤(𝑊 + 𝑅 + 𝐺𝑃 𝜃𝐺⊤)−1𝐺𝑃 𝜃 (3.22)
𝑊 ←𝑊 −𝑊 (𝑊 + 𝑅)−1𝑊 (3.23)
𝐺← (Id−𝑅−1𝑊 )𝐺 (3.24)

in that order, where 𝑅 is given by (2.16). Moreover, if 𝑃 𝜃 or 𝑊 are invertible
then their respective updates are equivalent to

(𝑃 𝜃)−1 ← (𝑃 𝜃)−1 + 𝐺⊤(𝑊 + 𝑅)−1𝐺 (3.25)

and
𝑊 −1 ←𝑊 −1 + 𝑅−1 (3.26)

Thus, the updates for 𝑊 , (3.19) and (3.23), are just the updates of an
extended Kalman filter on 𝑦 alone, with covariance matrix 𝑊 and noise
measurement 𝑅. The update for 𝑃 𝜃 is identical to an extended Kalman filter
on 𝜃 where measurements are made on 𝑦, with 𝑦 seen as a function of 𝜃 with
derivative 𝜕𝑦/𝜕𝜃 = 𝐺, and where the measurement noise on 𝑦 is 𝑅 + 𝑊
(the measurement noise on 𝑦 plus the covariance of 𝑦). Thus, these two
lemmas relate the joint Kalman filter on (𝜃, 𝑦) to the dual Kalman filter that
filters separately 𝜃 given 𝑦 and 𝑦 given 𝜃, together with an estimate of 𝜕𝑦/𝜕𝜃.
As far as we could check, this decomposition is specific to a situation in
which one component (the parameter) is supposed to have static underlying
dynamics, 𝜃𝑡+1 = 𝜃𝑡.

Proof of the lemma.
In our case, the function ℎ of the extended Kalman filter is the function that
sends (𝜃, 𝑦) to 𝑦. In particular, 𝐻𝑡 = (0, Id).

First, if 𝑃 𝜃 and 𝑊 are invertible, then the updates (3.22), (3.23) for 𝑃 𝜃

and 𝑊 follow from the updates (3.25), (3.26) on their inverses, thanks to
the Woodbury matrix identity. Since working on the inverses is simpler, we
shall prove only the latter. Since (3.22), (3.23) are continuous in 𝑃 𝜃 and 𝑊 ,
the non-invertible case follows by continuity.
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Starting again with the decomposition of 𝑃𝑡 as a product (3.21), the
inverse of 𝑃𝑡 is

𝑃 −1
𝑡 =

(︃
Id 𝐺⊤

0 Id

)︃−1(︃
𝑃 𝜃 0
0 𝑊

)︃−1(︃
Id 0
𝐺 Id

)︃−1

(3.27)

=
(︃

(𝑃 𝜃)−1 + 𝐺⊤𝑊 −1𝐺 −𝐺⊤𝑊 −1

−𝑊 −1𝐺 𝑊 −1

)︃
(3.28)

From Lemma 9, the Kalman observation udpate for 𝑃𝑡 amounts to adding

𝐻⊤𝑅−1𝐻 to 𝑃 −1
𝑡 . Here 𝐻 = (0, Id) so that 𝐻⊤𝑅−1𝐻 is

(︃
0 0
0 𝑅−1

)︃
. So the

update for 𝑃𝑡 amounts to

𝑃 −1
𝑡 ←

(︃
(𝑃 𝜃)−1 + 𝐺⊤𝑊 −1𝐺 −𝐺⊤𝑊 −1

−𝑊 −1𝐺 𝑊 −1 + 𝑅−1

)︃
(3.29)

To interpret this as an update on 𝑃 𝜃, 𝑊 and 𝐺, we have to introduce
new variables 𝑊̃ , 𝐺̃, and 𝑃 𝜃 such that (3.29) takes the original form (3.28)
in these new variables.

Introducing 𝑊̃ −1 := 𝑊 −1 + 𝑅−1, the update rewrites as

𝑃 −1
𝑡 ←

(︃
(𝑃 𝜃)−1 + 𝐺⊤𝑊 −1𝐺 −𝐺⊤(Id−𝑅−1𝑊̃ )𝑊̃ −1

−𝑊̃ −1(Id−𝑊̃𝑅−1)𝐺 𝑊̃ −1

)︃
(3.30)

Introducing 𝐺̃ := (Id−𝑊̃𝑅−1)𝐺 and (𝑃 𝜃)−1 := (𝑃 𝜃)−1 + 𝐺⊤𝑊 −1𝐺 −
𝐺̃⊤𝑊̃ −1𝐺̃, we get back the original form (3.28). This provides the updates
𝑊̃ and 𝐺̃ for 𝑊 and 𝐺. We still have to find a more explicit expression for
(𝑃 𝜃)−1.

Since we have defined 𝑊̃ and 𝐺̃ by identifying (3.29) with the original
form (3.28), we have 𝑊̃ 𝐺̃ = 𝑊𝐺 by construction. Thus

(𝑃 𝜃)−1 = (𝑃 𝜃)−1 + 𝐺⊤𝑊 −1𝐺− 𝐺̃⊤𝑊̃ −1𝐺̃ (3.31)
= (𝑃 𝜃)−1 + 𝐺⊤𝑊 −1𝐺− 𝐺̃⊤𝑊̃ −1𝑊̃𝑊̃ −1𝐺̃ (3.32)
= (𝑃 𝜃)−1 + 𝐺⊤𝑊 −1𝐺−𝐺⊤𝑊 −1𝑊̃𝑊 −1𝐺 (3.33)

Thanks to the identity 𝐴−1 − 𝐴−1𝐵𝐴−1 = (𝐴 + (𝐵−1 − 𝐴−1)−1)−1 for
any matrices 𝐴 and 𝐵 (this follows from the matrix inversion formula
(𝐴 + 𝐶)−1 = 𝐴−1 −𝐴−1(𝐴−1 + 𝐶−1)−1𝐴−1 applied to 𝐶 = (𝐵−1 −𝐴−1)−1),
we find

𝑊 −1 −𝑊 −1𝑊̃𝑊 −1 = (𝑊 + (𝑊̃ −1 −𝑊 −1)−1)−1 (3.34)

but by definition, 𝑊̃ −1 = 𝑊 −1 + 𝑅−1 so that

𝑊 −1 −𝑊 −1𝑊̃𝑊 −1 = (𝑊 + 𝑅)−1 (3.35)
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thus
(𝑃 𝜃)−1 = (𝑃 𝜃)−1 + 𝐺⊤(𝑊 + 𝑅)−1𝐺 (3.36)

which concludes the proof of the lemma.

Putting the last two lemmas side by side in the case 𝑊 = 0, we obtain a
much simpler update.

Corollary 15. Consider the extended Kalman filter on the pair 𝑠 =
(𝜃, 𝑦)⊤ with transition function 𝑓(𝑠) = (𝜃, Φ(𝑦, 𝜃, 𝑢))⊤ and no added noise
(𝑄𝑡 = 0). Decompose the covariance 𝑃 of the state 𝑠 as in (3.17) using 𝑃 𝜃,
𝐺, 𝑊 . If 𝑊 = 0 and 𝑃 𝜃 is invertible then performing the Kalman transition
update followed by the observation update is equivalent to

𝐺← 𝜕Φ
𝜕𝜃

+ 𝜕Φ
𝜕𝑦

𝐺 (3.37)

(𝑃 𝜃)−1 ← (𝑃 𝜃)−1 + 𝐺⊤𝑅−1𝐺 (3.38)
𝑊 ← 0 (3.39)

in that order.

From this, the end of the proof of Theorem 12 essentially proceeds as
in the non-recurrent case. Since we initialize 𝑊 to 0 in Theorem 12, we
have 𝑊 = 0 at all times. As before, for exponential families 𝑅−1 is equal

to the Fisher matrix with respect to 𝑦𝑡, namely, 𝑅−1 = E𝑦∼𝑝(𝑦|𝑦)

[︃
𝜕ℓ𝑡(𝑦)

𝜕𝑦𝑡

⊗2]︃
(Appendix). Now, the term E𝑦∼𝑝(𝑦|𝑦)

[︀
𝑔𝑡(𝑦)⊗2]︀ in the Fisher matrix update

(3.9) uses 𝑔𝑡(𝑦) = 𝜕ℓ𝑡(𝑦)
𝜕𝑦𝑡

𝐺𝑡 (3.6) to estimate the derivative of the loss ℓ𝑡(𝑦)

with respect to 𝜃. So the term 𝐺⊤𝑅−1𝐺 in (3.38) coincides with the Fisher
matrix update term E𝑦∼𝑝(𝑦|𝑦)

[︀
𝑔𝑡(𝑦)⊗2]︀ in (3.9). (Compare Lemma 10.) So if

we just define 𝐽𝑡 := 𝜂𝑡(𝑃 𝜃
𝑡 )−1 with 𝜂𝑡 = 1/(𝑡 + 1), the additive update (3.38)

on (𝑃 𝜃)−1 translates as the online Fisher matrix update (3.9) on 𝐽𝑡.
Moreover, since the Kalman gradient is an ordinary gradient precondi-

tioned with the covariance matrix 𝑃𝑡 (Proposition 6), the update of the pair
(𝜃, 𝑦) is (︃

𝜃𝑡

𝑦𝑡

)︃
←
(︃

𝜃𝑡−1
𝑦𝑡

)︃
− 𝑃𝑡

⎛⎜⎝ 0
𝜕ℓ𝑡

𝜕𝑦𝑡

⊤

⎞⎟⎠ (3.40)

(indeed ℓ𝑡 does not depend explicitly on 𝜃 in recurrent models, only via

the current state 𝑦𝑡). Given the decomposition 𝑃𝑡 =
(︃

𝑃 𝜃 (𝐺𝑃 𝜃)⊤
𝐺𝑃 𝜃 𝐺𝑃 𝜃𝐺⊤

)︃
, this

translates as (︃
𝜃𝑡

𝑦𝑡

)︃
←
(︃

𝜃𝑡−1
𝑦𝑡

)︃
−
(︃

𝑃 𝜃

𝐺𝑃 𝜃

)︃(︂
𝜕ℓ𝑡

𝜕𝑦𝑡
𝐺

)︂⊤
(3.41)

which is the update in Theorem 12.
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A Appendix: reminder on exponential families
An exponential family of probability distributions on a variable 𝑥 (discrete or contin-
uous), with sufficient statistics 𝑇1(𝑥), . . . , 𝑇𝐾(𝑥), is the following family of distribu-
tions, parameterized by 𝛽 ∈ R𝐾 :

𝑝𝛽(𝑥) = 1
𝑍(𝛽) e

∑︀
𝑘

𝛽𝑘𝑇𝑘(𝑥) 𝜆(d𝑥) (A.1)

where 𝑍(𝛽) is a normalizing constant, and 𝜆(d𝑥) is any reference measure on 𝑥, such
as the Lebesgue measure or any discrete measure. The family is obtained by varying
the parameter 𝛽 ∈ R𝐾 , called the natural or canonical parameter. We will assume
that the 𝑇𝑘 are linearly independent as functions of 𝑥 (and linearly independent
from the constant function); this ensures that different values of 𝛽 yield distinct
distributions.

For instance, Bernoulli distributions are obtained with 𝜆 the uniform measure
on 𝑥 ∈ {0, 1} and with a single sufficient statistic 𝑇 (0) = 0, 𝑇 (1) = 1. Gaussian
distributions with a fixed variance are obtained with 𝜆(d𝑥) the Gaussian distribution
centered on 0, and 𝑇 (𝑥) = 𝑥.

Another, often convenient parameterization of the same family is the following:
each value of 𝛽 gives rise to an average value 𝑇 of the sufficient statistics,

𝑇𝑘 := E𝑥∼𝑝𝛽
𝑇𝑘(𝑥) (A.2)

For instance, for Gaussian distributions with fixed variance, this is the mean, and
for a Bernoulli variable this is the probability to sample 1.

Exponential families satisfy the identities

𝜕 ln 𝑝𝛽(𝑥)
𝜕𝛽𝑘

= 𝑇𝑘(𝑥)− 𝑇𝑘,
𝜕 ln 𝑍

𝜕𝛽𝑘
= 𝑇𝑘 (A.3)

by a simple computation [AN00, (2.33)].
These identities are useful to compute the Fisher matrix 𝐽𝛽 with respect to the

variable 𝛽, as follows [AN00, (3.59)]:

(𝐽𝛽)𝑖𝑗 := E𝑥∼𝑝𝛽

[︂
𝜕 ln 𝑝𝛽(𝑥)

𝜕𝛽𝑖

𝜕 ln 𝑝𝛽(𝑥)
𝜕𝛽𝑗

]︂
(A.4)

= E𝑥∼𝑝𝛽

[︀
(𝑇𝑖(𝑥)− 𝑇𝑖)(𝑇𝑗(𝑥)− 𝑇𝑗)

]︀
(A.5)

= Cov(𝑇𝑖, 𝑇𝑗) (A.6)

or more synthetically
𝐽𝛽 = Cov(𝑇 ) (A.7)

where the covariance is under the law 𝑝𝛽 . That is, for exponential families the Fisher
matrix is the covariance matrix of the sufficient statistics. In particular it can be
estimated empirically, and is sometimes known algebraically.

In this work we need the Fisher matrix with respect to the mean parameter 𝑇 ,

(𝐽𝑇 )𝑖𝑗 = E𝑥∼𝑝𝛽

[︂
𝜕 ln 𝑝𝛽(𝑥)

𝜕𝑇𝑖

𝜕 ln 𝑝𝛽(𝑥)
𝜕𝑇𝑗

]︂
(A.8)
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By substituting 𝜕 ln 𝑝(𝑥)
𝜕𝛼 = 𝜕 ln 𝑝(𝑥)

𝜕𝛽
𝜕𝛽
𝜕𝛼 , the Fisher matrices 𝐽𝛼 and 𝐽𝛽 with respect

to parameterizations 𝛼 and 𝛽 are related to each other via

𝐽𝛼 = 𝜕𝛽

𝜕𝛼

⊤
𝐽𝛽

𝜕𝛽

𝜕𝛼
(A.9)

(consistently with the interpretation of the Fisher matrix as a Riemannian metric
and the behavior of metrics under change of coordinates [GHL87, §2.3]). So we
need to compute 𝜕𝑇/𝜕𝛽. Using the log-trick

𝜕E𝑥∼𝑝𝑓(𝑥) = E𝑥∼𝑝 [𝑓(𝑥) 𝜕 ln 𝑝(𝑥)] (A.10)

together with (A.3), we find

𝜕𝑇𝑖

𝜕𝛽𝑗
= 𝜕E𝑇𝑖(𝑥)

𝜕𝛽𝑗
= E

[︀
𝑇𝑖(𝑥)(𝑇𝑗(𝑥)− 𝑇𝑗)

]︀
= E

[︀
(𝑇𝑖(𝑥)− 𝑇𝑖)(𝑇𝑗(𝑥)− 𝑇𝑗)

]︀
= (𝐽𝛽)𝑖𝑗

(A.11)

so that
𝜕𝑇

𝜕𝛽
= 𝐽𝛽 (A.12)

(see [AN00, (3.32)], where 𝜂 denotes the mean parameter) and consequently
𝜕𝛽

𝜕𝑇
= 𝐽−1

𝛽 (A.13)

so that we find the Fisher matrix with respect to 𝑇 to be

𝐽𝑇 = 𝜕𝛽

𝜕𝑇

⊤
𝐽𝛽

𝜕𝛽

𝜕𝑇
(A.14)

= 𝐽−1
𝛽 𝐽𝛽𝐽−1

𝛽 (A.15)
= 𝐽−1

𝛽 = Cov(𝑇 )−1 (A.16)

that is, the Fisher matrix with respect to 𝑇 is the inverse covariance matrix of the
sufficient statistics.

This gives rise to a simple formula for the natural gradient of expectations with
respect to the mean parameters. Denoting ∇̃ the natural gradient,

∇̃𝑇 E𝑓(𝑥) := 𝐽−1
𝑇

𝜕E𝑓(𝑥)
𝜕𝑇

⊤
(A.17)

= 𝐽−1
𝑇

𝜕𝛽

𝜕𝑇

⊤ 𝜕E𝑓(𝑥)
𝜕𝛽

⊤
(A.18)

= 𝐽𝛽𝐽−1
𝛽

𝜕E𝑓(𝑥)
𝜕𝛽

⊤
(A.19)

= 𝜕E𝑓(𝑥)
𝜕𝛽

⊤
(A.20)

= E
[︂
𝑓(𝑥) 𝜕 ln 𝑝𝛽(𝑥)

𝜕𝛽

]︂
(A.21)

= E
[︀
𝑓(𝑥)(𝑇 (𝑥)− 𝑇 )

]︀
(A.22)

= Cov(𝑓, 𝑇 ) (A.23)

which in particular, can be estimated empirically.
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