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When observing data 𝑥1, . . . , 𝑥𝑡 modelled by a probabilistic distribution
𝑝𝜃(𝑥), the maximum likelihood (ML) estimator 𝜃ML = arg max𝜃

∑︀𝑡
𝑖=1 ln 𝑝𝜃(𝑥𝑖)

cannot, in general, safely be used to predict 𝑥𝑡+1. For instance, for a Bernoulli
process, if only “tails” have been observed so far, the probability of “heads”
is estimated to 0. (Thus for the standard log-loss scoring rule, this results in
infinite loss the first time “heads” appears.)

Bayesian estimators suffer less from this problem, as every value of 𝜃
contributes, to some extent, to the Bayesian prediction of 𝑥𝑡+1 knowing 𝑥1:𝑡.
However, their use can be limited by the need to integrate over parameter
space or to use Monte Carlo samples from the posterior distribution.

For Bernoulli distributions, Laplace’s famous “add-one” rule of succession
(e.g., [CBL06, Grü07]) regularizes 𝜃 by adding 1 to the count of “heads” and
of “tails” in the observed sequence, thus estimating the Bernoulli parameter
𝑝𝐻 by 𝑝𝐻 := 𝑛𝐻+1

𝑛𝐻+𝑛𝑇 +2 given 𝑛𝐻 “heads” and 𝑛𝑇 “tails” observations. On
the other hand the maximum likelihood estimator is 𝑛𝐻

𝑛𝐻+𝑛𝑇
so that the two

differ at order 𝑂(1/𝑛) after 𝑛 = 𝑛𝐻 + 𝑛𝑇 observations.
For Bernoulli distributions, Laplace’s rule is equivalent to using a uni-

form Bayesian prior on the Bernoulli parameter [CBL06, Ch. 9.6]. The
non-informative Jeffreys prior on the Bernoulli parameter corresponds to
Krichevsky and Trofimov’s “add-one-half” rule [KT81], namely 𝑝𝐻 := 𝑛𝐻+1/2

𝑛𝐻+𝑛𝑇 +1 .
Thus, in this case, some Bayesian predictors have a simple implementation.

We claim (Theorem 1) that for exponential families1, Bayesian predic-
tors can be approximated by mixing the ML estimator with the sequential
normalized maximum likelihood (SNML) estimator from universal coding
theory [RSKM08, RR08], which is a fully canonical version of Laplace’s rule.
The weights of this mixture depend on the density of the desired Bayesian
prior with respect to the non-informative Jeffreys prior, and are equal to
1/2 for the Jeffreys prior, thus extending Krichevsky and Trofimov’s result.
The resulting mixture also approximates the “flattened” ML estimator from
[KGDR10].

Thus, it is possible to approximate Bayesian predictors without the cost
of integrating over 𝜃 or sampling from the posterior. The statements below
emphasize the special role of the Jeffreys prior and the Fisher information

1For simplicity we only state the results with i.i.d. models. However the ideas extend
to non-i.i.d. sequences with 𝑝𝜃(𝑥𝑡+1|𝑥1:𝑡) in an exponential family, e.g., Markov models.
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metric. Moreover, the analysis reveals that the direction of the shift from
the ML predictor to Bayesian predictors is systematic and given by an
intrinsic, information-geometric vector field on statistical manifolds. This
could contribute to regularization procedures in statistical learning.

1. Notation and statement. Let 𝑝𝜃(𝑥) d𝑥 be a family of distributions
on a variable 𝑥, smoothly parametrized by 𝜃, with density 𝑝𝜃(𝑥) with respect
to some reference measure d𝑥 (typically d𝑥 is the counting measure for
discrete 𝑥, or the Lebesgue measure in R𝑑).

Let 𝑥1, . . . , 𝑥𝑡 be a sequence of observations to be predicted online using
𝑝𝜃. The maximum likelihood predictor 𝑝ML is given by the probability density

𝑝ML(𝑥𝑡+1 = 𝑦|𝑥1:𝑡) := 𝑝𝜃ML
𝑡

(𝑦), 𝜃ML
𝑡 := arg max

𝜃

𝑡∑︁
𝑖=1

ln 𝑝𝜃(𝑥𝑖) (1)

assuming this arg max is well-defined. Bayesian predictors (e.g., Laplace’s
rule) usually differ from 𝑝ML at order 1/𝑡.

The sequential normalized maximum likelihood predictor ([RSKM08,
RR08], see also [TW00]) uses, for each possible value 𝑦 of 𝑥𝑡+1, the pa-
rameter 𝜃ML+𝑦 that would yield the best probability if 𝑦 had already been
observed. Since this increases the probability of every 𝑦, it is necessary to
renormalize. Define

𝜃ML+𝑦
𝑡 := arg max

𝜃

{︃
ln 𝑝𝜃(𝑦) +

𝑡∑︁
𝑖=1

ln 𝑝𝜃(𝑥𝑖)
}︃

(2)

as the ML estimator when adding 𝑦 at position 𝑡 + 1. For each 𝑦, define the
SNML predictor2 for time 𝑡 + 1 by the probability density

𝑝SNML(𝑥𝑡+1 = 𝑦|𝑥1:𝑡) := 1
𝑍

𝑝
𝜃ML+𝑦

𝑡
(𝑦) (3)

where 𝑍 is a normalizing constant (assuming 𝑍 < ∞).
For Bernoulli distributions, 𝑝SNML coincides with Laplace’s “add-one”

rule.3 For other distributions the two may differ4: for instance, defining
Laplace’s rule for continuous-valued 𝑥 requires choosing a prior distribution
on 𝑥, whereas the SNML distribution is completely canonical.

2This variant of SNML is SNML-1 in [RSKM08] and CNML-3 in [Grü07].
3Note that we describe it in a different way. The usual presentation of Laplace’s rule

is to define 𝜃Lap := arg max𝜃{ln 𝑝𝜃(“heads”) + ln 𝑝𝜃(“tails”) +
∑︀

ln 𝑝𝜃(𝑥𝑖)} and then use
𝜃Lap to predict 𝑥𝑡+1. Here we follow the SNML viewpoint and use a different 𝜃ML+𝑦 for
each possible value 𝑦 of 𝑥𝑡+1.

4[HB12, BGH+13] contain a characterization of those one-dimensional exponential
families for which the variants of NML predictors coincide exactly between themselves
and with a Bayesian prior, which is then necessarily the Jeffreys prior. Here Theorem 1
shows that this happens in some approximate sense for any exponential family; further
relationship between these results is not obvious.
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We claim that for exponential families, 1
2(𝑝ML + 𝑝SNML) is close to the

Bayesian predictor using the Jeffreys prior. This generalizes the “add-one-half”
rule.

This extends to any Bayesian prior 𝜋 by using a weighted SNML predictor

𝑝𝑤-SNML(𝑦) := 1
𝑍

𝑤(𝜃ML+𝑦) 𝑝𝜃ML+𝑦 (𝑦) (4)

The weight 𝑤(𝜃) to be used for a given prior 𝜋 will depend on the ratio between
𝜋 and the Jeffreys prior. Recall that the latter is 𝜋Jeffreys(d𝜃) :=

√︀
det ℐ(𝜃) d𝜃

where ℐ is the Fisher information matrix of the family (𝑝𝜃),

ℐ(𝜃) := −E𝑥∼𝑝𝜃
𝜕2

𝜃 ln 𝑝𝜃(𝑥) (5)

where 𝜕2
𝜃 stands for the Hessian matrix of a function of 𝜃.

Theorem 1. Let 𝑝𝜃(𝑥) d𝑥 be an exponential family of probability distri-
butions, and let 𝜋 be a Bayesian prior on 𝜃. Then, under suitable regularity
assumptions, the Bayesian predictor with prior 𝜋 knowing 𝑥1:𝑡 has probability
density

1
2𝑝ML(·|𝑥1:𝑡) + 1

2𝑝𝛽2-SNML(·|𝑥1:𝑡) (6)

up to 𝑂(1/𝑡2), where 𝛽(𝜃) is the density of 𝜋 with respect to the Jeffreys
prior, i.e., 𝜋(d𝜃) = 𝛽(𝜃)

√︀
det ℐ(𝜃) d𝜃 with ℐ the Fisher matrix.

More precisely, both under the prior 𝜋 and under 1
2(𝑝ML + 𝑝𝛽2-SNML), the

probability density that 𝑥𝑡+1 = 𝑦 given 𝑥1:𝑡 is asymptotically

𝑝𝜃ML
𝑡

(𝑦)
(︂

1 + 1
2𝑡

‖𝜕𝜃 ln 𝑝𝜃(𝑦)‖2
𝐹 + 1

𝑡
⟨𝜕𝜃 ln 𝛽 , 𝜕𝜃 ln 𝑝𝜃(𝑦)⟩𝐹 − dim Θ

2𝑡
+ 𝑂(1/𝑡2)

)︂
(7)

provided 𝑝𝜃ML
𝑡

(𝑦) > 0, where ⟨𝜕𝜃𝑓 , 𝜕𝜃𝑔⟩𝐹 := (𝜕𝜃𝑓)⊤ℐ−1(𝜃)𝜕𝜃𝑔 is the Fisher
scalar product and ‖𝜕𝜃𝑓‖2

𝐹 = ⟨𝜕𝜃𝑓 , 𝜕𝜃𝑓⟩𝐹 is the Fisher metric norm of 𝜕𝜃𝑓 .

For the Jeffreys prior (constant 𝛽), this also coincides up to 𝑂(1/𝑡2)
with the “flattened” or “squashed” ML predictor from [KGDR10, GK10]
with 𝑛0 = 0. In particular, the latter is 𝑂(1/𝑡2) close to the Jeffreys prior,
and the optimal regret guarantees in [KGDR10] apply to (7). Note that a
multiplicative 1 + 𝑂(1/𝑡2) difference between predictors results in an 𝑂(1)
difference on cumulated log-loss regrets.

Regularity assumptions. In most of the article we assume that 𝑝𝜃(𝑥𝑡+1|𝑥1:𝑡)
is a non-degenerate exponential family of probability distributions, with 𝜃
belonging to an open set of parameters Θ. The key property we need
from exponential families is the existence of a parametrization 𝜃 in which
𝜕2

𝜃 ln 𝑝𝜃(𝑥) = −ℐ(𝜃) for all 𝑥 and 𝜃: this holds in the natural parametrization
for any exponential family (indeed, 𝑝𝜃(𝑥) = e𝜃·𝑇 (𝑥)/𝑍(𝜃) yields 𝜕𝜃 ln 𝑝𝜃(𝑥) =
𝑇 (𝑥) − 𝜕𝜃 ln 𝑍(𝜃) so that 𝜕2

𝜃 ln 𝑝𝜃(𝑥) = −𝜕2
𝜃 ln 𝑍(𝜃) for any 𝑥).
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For simplicity we assume that the space for 𝑥 is compact, so that to prove
𝑂(1/𝑡2) convergence of distributions over 𝑥 it is enough to prove 𝑂(1/𝑡2)
convergence for each value of 𝑥. We assume that the sequence of observations
(𝑥𝑡)𝑡∈N is an ineccsi sequence [Grü07], namely, that for 𝑡 large enough, the
maximum likelihood estimate is well-defined and stays in a compact subset of
the parameter space. We also need to assume the same in a Bayesian sense,
namely, that for 𝑡 large enough, the Bayesian maximum a posteriori using
prior 𝜋 is well-defined and stays in a compact subset of Θ. The Bayesian
priors are assumed to be smooth with positive densities. On the other hand
we do not assume that the Jeffreys prior or the prior 𝜋 are proper; it is enough
that the posterior given the observations is proper, so that the Bayesian
predictor at time 𝑡 is well-defined.

In some parts of the article we do not need 𝑝𝜃 to be an exponential family,
but we still assume that the model 𝑝𝜃 is smooth, that there is a well-defined
maximum 𝜃ML

𝑡 for any 𝑥1:𝑡 and no other log-likelihood local maxima.

2. Computing the SNML predictor. We prove Theorem 1 by proving
that both predictors are given by (7). Further proofs are gathered at the
end of the text.

We first work on 𝑝SNML. Here we do not assume that 𝑝𝜃 is an exponential
family. Let 𝐽𝑡 be the observed information matrix, assumed to be positive-
definite,

𝐽𝑡(𝜃) := −1
𝑡

𝑡∑︁
𝑖=1

𝜕2
𝜃 ln 𝑝𝜃(𝑥𝑖) (8)

Proposition 2. Under suitable regularity assumptions, the maximum
likelihood update from 𝑡 to 𝑡 + 1 satisfies

𝜃ML
𝑡+1 = 𝜃ML

𝑡 + 1
𝑡
𝐽𝑡(𝜃ML

𝑡 )−1 𝜕𝜃 ln 𝑝𝜃(𝑥𝑡+1) + 𝑂(1/𝑡2) (9)

For exponential families, this update is the natural gradient of ln 𝑝(𝑥𝑡+1)
with learning rate 1/𝑡 [Ama98], because 𝐽𝑡(𝜃ML

𝑡 ) = ℐ(𝜃ML
𝑡 ), the exact Fisher

information matrix. (For exponential families in the natural parametrization,
𝐽𝑡(𝜃) = ℐ(𝜃) for all 𝜃. But since the Hessian of a function 𝑓 on a manifold is
a well-defined tensor at a critical point of 𝑓 , it follows that at 𝜃ML

𝑡 one has
𝐽𝑡(𝜃ML

𝑡 ) = ℐ(𝜃ML
𝑡 ) for any parametrization of an exponential family.)

Proposition 3. Under suitable regularity assumptions,

𝑝SNML(𝑦|𝑥1:𝑡) = 1
𝑍

𝑝𝜃ML
𝑡

(𝑦)
(︂

1 + 1
𝑡
(𝜕𝜃 ln 𝑝𝜃(𝑦))⊤𝐽−1

𝑡 𝜕𝜃 ln 𝑝𝜃(𝑦) + 𝑂(1/𝑡2)
)︂

(10)
provided 𝑝𝜃ML

𝑡
(𝑦) > 0, where 𝐽𝑡 is as above and the derivatives are taken at

𝜃ML
𝑡 .
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Importantly, the normalization constant 𝑍 can be computed without
having to sum over 𝑦 explicitly. Indeed (cf. [KGDR10]), by definition of ℐ(𝜃),

E𝑦∼𝑝𝜃
(𝜕𝜃 ln 𝑝𝜃(𝑦))⊤𝐽−1

𝑡 𝜕𝜃 ln 𝑝𝜃(𝑦) = Tr(𝐽−1
𝑡 ℐ(𝜃)) (11)

so that 𝑍 = 1+ 1
𝑡 Tr(𝐽−1

𝑡 ℐ(𝜃ML
𝑡 ))+𝑂(1/𝑡2). For exponential families, 𝐽𝑡 = ℐ

at 𝜃ML
𝑡 so that 𝑍 = 1 + dim Θ

𝑡 + 𝑂(1/𝑡2) and

𝑝𝜃ML
𝑡

(𝑦)
(︂

1 + 1
𝑡
(𝜕𝜃 ln 𝑝𝜃(𝑦))⊤ℐ−1 𝜕𝜃 ln 𝑝𝜃(𝑦) − dim Θ

𝑡

)︂
(12)

is an 𝑂(1/𝑡2) approximation of 𝑝SNML(𝑦|𝑥1:𝑡).
For the weighted SNML distribution 𝑝𝑤-SNML, a similar argument yields

𝑝𝑤-SNML(𝑦|𝑥1:𝑡) = 1
𝑍

𝑝𝜃ML
𝑡

(𝑦)
(︂

1 + 1
𝑡
(𝜕𝜃 ln 𝑝𝜃(𝑦))⊤𝐽−1

𝑡 (𝜕𝜃 ln 𝑝𝜃(𝑦) + 𝜕𝜃 ln 𝑤(𝜃)) + 𝑂(1/𝑡2)
)︂

(13)
with 𝑍 = 1 + 1

𝑡 Tr(𝐽−1
𝑡 ℐ(𝜃ML

𝑡 )) + 𝑂(1/𝑡2) as above. (The 𝜕𝜃 ln 𝑤 term does
not contribute to 𝑍 because

∑︀
𝑦 𝑝𝜃(𝑦)𝜕𝜃 ln 𝑝𝜃(𝑦) = 0.)

Computing 1
2𝑝ML + 1

2𝑝𝑤-SNML with 𝑤(𝜃) = 𝛽(𝜃)2 in (13), and using that
𝐽𝑡(𝜃ML) = ℐ for exponential families, proves one half of Theorem 1.

3. Computing the Bayesian posterior. Next, let us establish the
asymptotic behavior of the Bayesian posterior. This relies on results from
[TK86]. The following proposition may have independent interest.

Proposition 4. Consider a Bayesian prior 𝜋(d𝜃) = 𝛼(𝜃) d𝜃. Then the
posterior mean of a smooth function 𝑓(𝜃) given data 𝑥1:𝑡 and prior 𝜋 is
asymptotically

𝑓(𝜃ML
𝑡 )+ 1

𝑡
(𝜕𝜃𝑓)⊤𝐽−1

𝑡 𝜕𝜃

⎛⎝ln 𝛼√︁
det(−𝜕2

𝜃 𝐿)

⎞⎠+ 1
2𝑡

Tr(𝐽−1
𝑡 𝜕2

𝜃 𝑓)+𝑂(1/𝑡2) (14)

where 𝐿(𝜃) := 1
𝑡 ln 𝑝𝜃(𝑥1:𝑡) is the average log-likelihood function, 𝜕2

𝜃 is the
Hessian matrix w.r.t. 𝜃, and 𝐽𝑡 := −𝜕2

𝜃 𝐿(𝜃ML
𝑡 ) is the observed information

matrix.

When 𝑝𝜃 is an exponential family in the natural parametrization, for any
𝑥1:𝑡, −𝜕2

𝜃 𝐿 is equal to the Fisher matrix ℐ, so that the denominator in the
log is the Jeffreys prior

√
det ℐ. In particular, for exponential families in

natural coordinates, the first term vanishes if the prior 𝜋 is the Jeffreys prior.

Corollary 5. Let 𝑝𝜃 be an exponential family. Consider a Bayesian prior
𝛽(𝜃)

√︀
det ℐ(𝜃) d𝜃 having density 𝛽 with respect to the Jeffreys prior. Then

the posterior probability that 𝑥𝑡+1 = 𝑦 knowing 𝑥1:𝑡 is asymptotically given
by (7) as in Theorem 1.

This proves the second half of Theorem 1.
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4. Intrinsic viewpoint. When rewritten in intrinsic Riemannian terms,
Proposition 4 emphasizes a systematic discrepancy at order 1/𝑡 between ML
prediction and Bayesian prediction, which is often more “centered” as in
Laplace’s rule.

This is characterized by a canonical vector field on a statistical manifold
indicating the direction of the difference between ML and Bayesian predictors,
as follows. In intrinsic terms, the posterior mean (14) in Proposition 4 is5

𝑓(𝜃ML)−1
𝑡
(∇2𝐿)−1

(︃
d𝑓, d ln 𝜋√︀

det(−∇2𝐿)

)︃
− 1

2𝑡
Tr
(︁
(∇2𝐿)−1∇2𝑓

)︁
+𝑂(1/𝑡2)

(15)
where 𝐿(𝜃) =

∑︀𝑡
𝑖=𝑡 ln 𝑝𝜃(𝑥𝑖) as above and where ∇2 is the Riemannian

Hessian with respect to any Riemannian metric on 𝜃, for instance the
Fisher metric. This follows from a direct Riemannian-geometric compu-
tation (e.g., in normal coordinates). In this expression both, the prior 𝜋(d𝜃)
and

√︀
det(−∇2𝐿) are volume forms on the tangent space so that their ratio

is coordinate-independent.6
At first order in 1/𝑡, this is the average of 𝑓 under a Riemannian Gaussian

distribution7 with covariance matrix 1
𝑡 (−∇2𝐿)−1, but centered at 𝜃ML −

1
𝑡 (∇2𝐿)−1 d ln(𝜋/

√︀
det(−∇2𝐿)) instead of 𝜃ML.

Thus, if we want to approximate the posterior Bayesian distribution by a
Gaussian, there is a systematic shift 1

𝑡 𝑉 (𝜃ML) between the ML estimate and
the center of the Bayesian posterior, where 𝑉 is the data-dependent vector
field

𝑉 := −(∇2𝐿)−1 d ln
(︂

𝜋/
√︁

det(−∇2𝐿)
)︂

(16)

A particular case is when 𝜋 is the Jeffreys prior: then

𝑉 = 1
2(∇2𝐿)−1 d ln det(−ℐ−1∇2𝐿) (17)

is an intrinsic vector field defined on any statistical manifold, depending on
𝑥1:𝑡.

Proposition 6. When the prior is the Jeffreys prior, the vector 𝑉 is

𝑉 𝑖 = 1
2(∇𝑖∇𝑗𝐿)−1(∇𝑘∇𝑙𝐿)−1 ∇𝑗∇𝑘∇𝑙𝐿 (18)

in Einstein notation, where 𝐿(𝜃) = 1
𝑡

∑︀𝑡
𝑠=1 ln 𝑝𝜃(𝑥𝑠) is the log-likelihood

function, and ∇ is the Levi-Civita connection of the Fisher metric.8

5The equality between (14) and (15) holds only at 𝜃ML
𝑡 ; the value of (14) is not intrinsic

away from 𝜃ML. The equality relies on 𝜕𝜃𝐿 = 0 at 𝜃ML to cancel curvature contributions.
6This is clear when dividing both by the Riemannian volume form

√
det 𝑔: both the

prior density 𝜋/
√

det 𝑔 and
√︀

det(−𝑔−1∇2𝐿) are intrinsic.
7i.e., the image by the exponential map of a Gaussian distribution in a tangent plane.
8Note that ∇𝑗∇𝑘∇𝑙𝐿 is not fully symmetric. Still it is symmetric at 𝜃ML, because the

various orderings differ by a curvature term applied to ∇𝐿 with vanishes at 𝜃ML.
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If 𝑝𝜃 is an exponential family with the Jeffreys prior, the value of 𝑉 at
𝜃ML does not depend on the observations 𝑥1:𝑡 and is equal to

𝑉 𝑖(𝜃ML) = 1
4ℐ𝑖𝑗ℐ𝑘𝑙𝑇𝑗𝑘𝑙 (19)

where 𝑇 is the skewness tensor [AN00, Eq. (2.28)]

𝑇𝑗𝑘𝑙(𝜃) := E𝑥∼𝑝𝜃

𝜕 ln 𝑝𝜃(𝑥)
𝜕𝜃𝑗

𝜕 ln 𝑝𝜃(𝑥)
𝜕𝜃𝑘

𝜕 ln 𝑝𝜃(𝑥)
𝜕𝜃𝑙

(20)

𝑉 (𝜃ML) is thus an intrinsic, data-independent vector field for exponential
families, which characterizes the discrepancy between maximum likelihood
and the “center” of the Jeffreys posterior distribution. Note that 𝑉 can
be computed from log-likelihood derivatives only. This could be useful for
regularization of the ML estimator in statistical learning.

5. Proofs (sketch).

Proof of Proposition 2.
Minimization of a Taylor expansion of log-likelihood around 𝜃ML

𝑡 . This is
justified formally by applying the implicit function theorem to 𝐹 : (𝜀, 𝜃) ↦→
𝜕𝜃

(︁
𝜀 ln 𝑝𝜃(𝑥𝑡+1) + 1

𝑡

∑︀𝑡
𝑖=1 ln 𝑝𝜃(𝑥𝑡)

)︁
at point (0, 𝜃ML).

Proof of Proposition 3.
Abbreviate 𝜃𝑦 := 𝜃ML+𝑦

𝑡 . From Proposition 2 we have

𝜃𝑦 = 𝜃ML
𝑡 + 1

𝑡
𝐽−1

𝑡 𝜕𝜃 ln 𝑝𝜃(𝑦) + 𝑂(1/𝑡2) (21)

and expanding ln 𝑝𝜃(𝑦) around 𝜃ML
𝑡 yields 𝑝𝜃𝑦 (𝑦) = 𝑝𝜃ML

𝑡
(𝑦)(1 + (𝜃𝑦 −

𝜃ML
𝑡 )⊤𝜕𝜃 ln 𝑝𝜃(𝑦)) + 𝑂((𝜃𝑦 − 𝜃ML)2) and plugging in the value of 𝜃𝑦 − 𝜃ML

𝑡

yields the result.

Proof of Proposition 4.
The posterior mean is (

∫︀
𝑓(𝜃)𝛼(𝜃)𝑝𝜃(𝑥1:𝑡) d𝜃)/(

∫︀
𝛼(𝜃)𝑝𝜃(𝑥1:𝑡) d𝜃). From

[TK86], if 𝐿1(𝜃) = 1
𝑡 ln 𝑝𝜃(𝑥1:𝑡) + 1

𝑡 𝑔1(𝜃) and 𝐿2 = 1
𝑡 ln 𝑝𝜃(𝑥1:𝑡) + 1

𝑡 𝑔2(𝜃)
we have ∫︀

e𝑡𝐿2(𝜃) d𝜃∫︀
e𝑡𝐿1(𝜃) d𝜃

=
√︃

det 𝐻1
det 𝐻2

e𝑡(𝐿2(𝜃2)−𝐿1(𝜃1))(1 + 𝑂(1/𝑡2)) (22)

where 𝜃1 = arg max 𝐿1, 𝜃2 = arg max 𝐿2, and 𝐻1 and 𝐻2 are the Hessian
matrices of −𝐿1 and −𝐿2 at 𝜃1 and 𝜃2, respectively. Here we have 𝑔1 = ln 𝛼(𝜃)
and 𝑔2 = 𝑔1 + ln 𝑓(𝜃) (assuming 𝑓 is positive; otherwise, add a constant to
𝑓).

From a Taylor expansion of 𝐿1 as in Proposition 2 we find 𝜃1 = 𝜃ML
𝑡 +

1
𝑡 𝐽−1

𝑡 𝜕𝜃𝑔1(𝜃ML
𝑡 ) + 𝑂(1/𝑡2) and likewise for 𝜃2. So 𝜃1 − 𝜃2 = 1

𝑡 𝐽−1
𝑡 𝜕𝜃(𝑔1 −
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𝑔2)(𝜃ML
𝑡 ) + 𝑂(1/𝑡2). Since 𝜃2 maximizes 𝐿2, a Taylor expansion of 𝐿2 around

𝜃2 gives

𝐿2(𝜃1) = 𝐿2(𝜃2) − 1
2(𝜃1 − 𝜃2)⊤𝐻2(𝜃1 − 𝜃2) + 𝑂(1/𝑡3) (23)

so that, using 𝐿2 = 𝐿1 + 1
𝑡 ln 𝑓 we find

𝐿2(𝜃2) − 𝐿1(𝜃1) = 𝐿2(𝜃1) − 𝐿1(𝜃1) + 1
2(𝜃1 − 𝜃2)⊤𝐻2(𝜃1 − 𝜃2) + 𝑂(1/𝑡3)

(24)

= 1
𝑡

ln 𝑓(𝜃1) + 1
2𝑡2 (𝜕𝜃 ln 𝑓)⊤𝐽−1

𝑡 𝐻2𝐽−1
𝑡 𝜕𝜃 ln 𝑓 + 𝑂(1/𝑡3)

(25)

where the second term is evaluated at 𝜃ML
𝑡 . We have 𝐻2 = 𝐽𝑡 + 𝑂(1/𝑡),

so exp(𝑡(𝐿2(𝜃2) − 𝐿1(𝜃1))) = 𝑓(𝜃1)(1 + 1
2𝑡(𝜕𝜃 ln 𝑓)⊤𝐽−1

𝑡 𝜕𝜃 ln 𝑓 + 𝑂(1/𝑡2)).
Meanwhile, by a Taylor expansion of ln det(−𝜕2

𝜃 𝐿2(𝜃2)) around 𝜃2,

det 𝐻2 = det(−𝜕2
𝜃 𝐿2(𝜃2)) = det(−𝜕2

𝜃 𝐿2(𝜃1))
(︁
1 + (𝜃2 − 𝜃1)⊤𝜕𝜃 ln det(−𝜕2

𝜃 𝐿2) + 𝑂(𝜃2 − 𝜃1)2
)︁

(26)

and from 𝐿2 = 𝐿1+ 1
𝑡 ln 𝑓 and det(𝐴+𝜀𝐵) = det(𝐴)(1+𝜀 Tr(𝐴−1𝐵)+𝑂(𝜀2)),

det(−𝜕2
𝜃 𝐿2(𝜃1)) = det(−𝜕2

𝜃 𝐿1(𝜃1))
(︂

1 + 1
𝑡

Tr
(︁
(𝜕2

𝜃 𝐿1)−1𝜕2
𝜃 (ln 𝑓)

)︁
+ 𝑂(1/𝑡2)

)︂
(27)

= (det 𝐻1)
(︂

1 − 1
𝑡

Tr
(︁
𝐻−1

1 𝜕2
𝜃 (ln 𝑓)

)︁
+ 𝑂(1/𝑡2)

)︂
(28)

so, collecting,√︃
det 𝐻1
det 𝐻2

= 1 − 1
2(𝜃2 − 𝜃1)⊤𝜕𝜃 ln det(−𝜕2

𝜃 𝐿2) + 1
2𝑡

Tr
(︁
𝐻−1

1 𝜕2
𝜃 (ln 𝑓)

)︁
+ 𝑂(1/𝑡2)

(29)

but 𝜃2−𝜃1 = 𝐽−1
𝑡 𝜕𝜃 ln 𝑓 +𝑂(1/𝑡2), and 𝐿2 = 𝐿+𝑂(1/𝑡) and 𝐻1 = 𝐽𝑡+𝑂(1/𝑡),

so that√︃
det 𝐻1
det 𝐻2

= 1 − 1
2𝑡

(𝜕𝜃 ln 𝑓)⊤𝐽−1
𝑡 𝜕𝜃 ln det(−𝜕2

𝜃 𝐿) + 1
2𝑡

Tr
(︁
𝐽−1

𝑡 𝜕2
𝜃 (ln 𝑓)

)︁
+ 𝑂(1/𝑡2)

(30)

Collecting from (22), expanding 𝑓(𝜃1) = 𝑓(𝜃ML
𝑡 )(1+1

𝑡 (𝜕𝜃 ln 𝑓)⊤𝐽−1
𝑡 𝜕𝜃 ln 𝛼+

𝑂(1/𝑡2)), and expanding 𝜕𝜃 ln 𝑓 in terms of 𝜕𝜃𝑓 proves Proposition 4.
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Proof of Corollary 5.
Let us work in natural coordinates for an exponential family (indeed, since
the statement is intrinsic, it is enough to prove it in some coordinate system).
In these coordinates, for any 𝑥, 𝜕2

𝜃 ln 𝑝𝜃(𝑥) = −ℐ(𝜃) with ℐ the Fisher matrix,
so that −𝜕2

𝜃 𝐿 = ℐ(𝜃). Apply Proposition 4 to 𝑓(𝜃) = 𝑝𝜃(𝑦), expanding
𝜕𝜃𝑓 = 𝑓𝜕𝜃 ln 𝑓 and using 𝜕2

𝜃 ln 𝑓 = −ℐ(𝜃).

Proof of Proposition 6.
The Levi-Civita connection on a Riemannian manifold with metric 𝑔 satisfies
∇𝑙 ln det 𝐴𝑗

𝑖 = (𝐴−1)𝑖
𝑗∇𝑙𝐴

𝑗
𝑖 thanks to 𝜕 ln det 𝑀 = Tr(𝑀−1𝜕𝑀) and by

expanding ∇𝐴. Applying this to 𝐴𝑗
𝑖 = ℐ𝑗𝑘∇2

𝑘𝑖𝐿 and using ∇ℐ = 0 proves
the first statement. Moreover, for any function 𝑓 , at a critical point of 𝑓 ,
∇𝑙∇𝑗∇𝑘𝑓 = ∇𝑙𝜕𝑗𝜕𝑘𝑓 − Γ𝑖

𝑗𝑘∇𝑙∇𝑖𝑓 and consequently at a critical point of 𝑓 ,
with 𝐻𝑖𝑗 = ∇𝑖∇𝑗𝑓 ,

∇𝑙 ln det(𝑔𝑖𝑗𝐻𝑗𝑘) = (𝐻−1)𝑖𝑗∇𝑙𝜕𝑖𝜕𝑗𝑓 − (𝐻−1)𝑗𝑘Γ𝑖
𝑗𝑘𝐻𝑖𝑙 (31)

In the natural parametrization of an exponential family, −𝜕2𝐿 is iden-
tically equal to the Fisher metric ℐ. Consequently, ∇𝑙 ln det(−ℐ𝑖𝑗∇2

𝑗𝑘𝐿) =
ℐ𝑖𝑗∇𝑙ℐ𝑖𝑗 − ℐ𝑗𝑘Γ𝑖

𝑗𝑘ℐ𝑖𝑙 = −ℐ𝑗𝑘Γ𝑖
𝑗𝑘ℐ𝑖𝑙 since ∇ℐ = 0. So from (17), using

𝑑 = ∇ = 𝜕 for scalars, and ∇2𝐿 = −ℐ at 𝜃ML, we get in this parametrization

𝑉 𝑚 = −1
2ℐ𝑚𝑙𝜕𝑙 ln det(−ℐ−1∇2𝐿) = 1

2ℐ𝑚𝑙ℐ𝑗𝑘Γ𝑖
𝑗𝑘ℐ𝑖𝑙 = 1

2ℐ𝑗𝑘Γ𝑚
𝑗𝑘 (32)

The Christoffel symbols Γ in this parametrization can be computed from

𝜕𝑖ℐ𝑗𝑘(𝜃) = 𝜕𝑖E𝑥∼𝑝𝜃
𝜕𝑗 ln 𝑝𝜃(𝑥)𝜕𝑘 ln 𝑝𝜃(𝑥) (33)

= 𝑇𝑖𝑗𝑘 − ℐ𝑖𝑗E𝑥∼𝑝𝜃
𝜕𝑘 ln 𝑝𝜃(𝑥) − ℐ𝑖𝑘E𝑥∼𝑝𝜃

𝜕𝑗 ln 𝑝𝜃(𝑥) = 𝑇𝑖𝑗𝑘 (34)

because 𝜕𝑖𝜕𝑗 ln 𝑝𝜃(𝑥) = −ℐ𝑖𝑗(𝜃) for any 𝑥 in this parametrization, and because
E𝜕 ln 𝑝𝜃(𝑥) = 0. So Γ𝑖

𝑗𝑘 = 1
2ℐ𝑖𝑙𝑇𝑗𝑘𝑙 in this parametrization. This ends the

proof.
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