
Laplace’s Rule of Succession in
Information Geometry

Yann Ollivier

CNRS & Paris-Saclay University, France

Second International Conference on Geometric Science of Information
(GSI 2015), École polytechnique, October 29, 2015



Sequential prediction

Sequential prediction problem: given observations x1, . . . , xt , build a
probabilistic model pt+1 for xt+1, iteratively.

Example: given that w women and m men entered this room, what
is the probability that the next person who enters is a woman/man?

Common performance criterion for prediction: cumulated log-loss

LT := −
T−1∑︁
t=0

log pt+1(xt+1 | x1...t)

to be minimized.
This corresponds to compression cost, and is also equal to square
loss for Gaussian models.
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Maximum likelihood estimator
Maximum likelihood strategy: Fix a parametric model p𝜃(x). At
each time, the best parameter based on past observations:

𝜃ML
t := arg max

𝜃

⎧⎨⎩ ∏︁
s6t

p𝜃(xs)

⎫⎬⎭
= arg min

𝜃

⎧⎨⎩−
∑︁
s6t

log p𝜃(xs)

⎫⎬⎭

Then, predict xt+1 using this 𝜃ML
t :

pML(xt+1|x1...t) := p𝜃ML
t

(xt+1)

This is the maximum likelihood or “plug-in” estimator.

Heavily used in machine learning. Argmax often computed via
gradient descent.
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Problems with the ML estimator

Example: Given that there are w women and m men in this room,
the next person to enter will be a man with probability

m
w + m

according to the ML estimator.

=⇒ The ML estimator is not satisfying:
I How do you predict the first observation?

I Zero-frequency problem: If you have seen only women so far,
the probability to see a man is estimated to 0.

I Often overfits in machine learning.
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Laplace’s rule of succession

Laplace suggested a quick fix for these problems: add one to the
counts of each possibility. That is, predict according to

p(woman) = w + 1
w + m + 2 p(man) = m + 1

w + m + 2

instead of w
w+m and m

w+m . This is Laplace’s rule of succession.

I Solves the zero-frequency problem: After having seen t women
and no men, the probability to see a man is estimated to
1/(t + 2).

I Generalizes to other discrete data (“additive smoothing”).

I May seem arbitrary but has a beautiful Bayesian interpretation.
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Bayesian predictors
Bayesian predictors start with a parametric model p𝜃(x) together
with a prior 𝛼(𝜃) on 𝜃.
At time t, the next symbol xt+1 is predicted by mixing all possible
models p𝜃 with all values of 𝜃,

p𝛼-Bayes(xt+1|x1...t) =
∫︁

𝜃
p𝜃(xt+1) qt(𝜃) d𝜃

where qt(𝜃) is the Bayesian posterior on 𝜃 given data x1...t ,

qt(𝜃) ∝ 𝛼(𝜃)
∏︁
s6t

p𝜃(xs)

Proposition (folklore)
For Bernoulli distributions on a binary variable, e.g., {woman, man},
Laplace’s rule coincides with the Bayesian predictor with a uniform
prior on the Bernoulli parameter 𝜃 ∈ [0; 1].
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Bayesian predictors (2)

Bayesian predictors
I solve the zero-frequency problem
I have theoretical guarantees
I do not overfit

but
I are difficult to compute: one must perform an integral over 𝜃,

and keep track of the Bayesian posterior which is an arbitrary
function of 𝜃.

Is there a simple way to approximate Bayesian
predictors that would generalize Laplace’s rule?
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Theorem
Let (p𝜃) be an exponential family of probability distributions.

Under suitable regularity conditions, these two predictors coincide at
first order in 1/t:

I The Bayesian predictor using the non-informative Jeffreys prior
𝛼(𝜃) ∝

√︀
det I(𝜃) with I(𝜃) the Fisher information matrix.

I The average
1
2pML +

1
2pSNML

of the maximum likelihood predictor and the “sequential
normalized maximum likelihood” predictor [Shtarkov 1987, Roos,
Rissanen...]

“The predictors p and p′ coincide at first order” means that

p′(xt+1|x1...t) = p(xt+1|x1...t) (1 + O(1/t2))

for any sequence (xt), assuming both are non-zero.
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The sequential normalized maximum likelihood predictor
The SNML predictor pSNML is defined as follows. For each possible
value y of xt+1, let

𝜃ML+y := arg max
𝜃

⎧⎨⎩log p𝜃(y) +
∑︁
s6t

log p𝜃(xs)

⎫⎬⎭
be the value of the ML estimator if this value of xt+1 had already
been observed.

Define
q(y) := p𝜃ML+y (y)

Usually q is not a probability distribution,
∫︀

y q(y) > 1.
=⇒ Rescale q:

pSNML :=
q∫︀
q

and use this for prediction of xt+1.
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Example: For a Bernoulli distribution, the SNML predictor is the
same as Laplace’s rule.

The theorem states that the Bayesian predictor with canonical Jeffreys
prior is approximately the average of the ML and SNML predictors.

=⇒ For Bernoulli distributions, we recover the “add-one-half” rule
for the Jeffreys prior (Krichevsky–Trofimov estimator).

I Relatively easy to compute

I Different estimators usually differ at first order in 1/t (e.g., ML
estimator or Bayesian estimators with different priors). The
theorem is precise at first order in 1/t so recovers these
differences.

I Multiplicative error (1 + O(1/t2)) in the theorem yields at
most a bounded difference on cumulated log-loss.
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Corollary: From ML to Bayes
For exponential families, there is an explicit approximate formula to
compute the Bayesian predictor with Jeffreys prior if the ML predictor
is known:

pJeffreys(xt+1) ≈ pML(xt+1)

(︂
1 +

1
2t ‖𝜕𝜃 log p𝜃(xt+1)‖2

Fisher − dim(𝜃)

2t

)︂
up to O(1/t2).

Here ‖𝜕𝜃 log p𝜃(xt+1)‖Fisher is the norm of the gradient of log p𝜃(xt+1)
in the Riemannian metric given by the Fisher information matrix.
(Compare “flattened ML” [Kotłowski–Grünwald–de Rooij 2010].)

Note: valid only when these probabilities are non-zero, so does not
solve the zero-frequency problem.
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From ML to Bayes (2)

Proof of the corollary (idea):

𝜃ML+xt+1 ≈ 𝜃ML +
1
t ∇̃𝜃 log p𝜃(xt+1)

where ∇̃𝜃 = I(𝜃)−1 𝜕
𝜕𝜃 is Amari’s natural gradient given by the Fisher

matrix.

”When adding a data point, the ML estimator moves by 1/t times
the natural gradient of the new point’s log-likelihood.”

What about other priors?
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Arbitrary Bayesian priors

Consider a Bayesian prior with density 𝛽(𝜃) with respect to the
Jeffreys prior

𝛼(𝜃) = 𝛽(𝜃)
√︁

det I(𝜃)

Then a similar theorem holds if the definition of the SNML predictor
pSNML is modified as

q(y) := 𝛽
(︁
𝜃ML+y

)︁2
p𝜃ML+y (y) , pSNML :=

q∫︀
q

for each possible value y of xt+1.
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Posterior means: a systematic shift between ML and Bayes

Another way to compare ML and Bayesian predictors is to use test
functions.

“Is the Bayesian posterior approximately centered around the ML
estimator?”

=⇒ No!
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Posterior means: a systematic shift between ML and Bayes

Let f (𝜃) be a smooth test function of 𝜃. Then there is a systematic
direction of the difference between f (𝜃ML) and the Bayesian posterior
mean of f .

For exponential families and the Jeffreys prior, this
difference is approximately

1
t 𝜕𝜃f · V (𝜃ML)
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Conclusions

I For exponential families, Bayesian predictors can be
approximated using modified ML predictors.

I The difference between Bayesian and ML predictors can be
computed from the Fisher metric.

I There is a systematic direction of the shift from ML to
Bayesian posterior means.

I Extends to non-i.i.d. models if p𝜃(xt+1|x1...t) is an exponential
family.
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