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Abstract

This document lists some open problems related to the notion of discrete Ricci
curvature defined in [Oll09, Oll07]. Do not hesitate to contact me for precisions.

Please inform me if you seriously work on one of these problems, so that I don’t
put a student on it!

The problems are not ordered.

Problem A (Log-concave measures).
Ricci curvature is positive for R

N equipped with a Gaussian measure, and this gener-
alizes to smooth, uniformly strictly log-concave measures. What happens for a general
log-concave measure? The next example would be a convex set (whose boundary has
“positive curvature” in an intuitive geometric sense), with associated process a Brownian
motion conditioned not to leave the convex body.

Problem B (Finsler manifolds).
Ricci curvature is 0 for R

N equipped with an Lp norm. Does this give anything interesting
in Finsler manifolds? (Compare [Oht] and forthcoming work by Ohta and Sturm using
the displacement convexity definition.)

Problem C (Nilpotent groups).
Ricci curvature of Z

N is 0. What happens on discrete or continuous nilpotent groups?
For example, on the discrete Heisenberg group 〈 a, b, c | ac = ca, bc = cb, [a, b] = c 〉,

the natural discrete random walk analogous to the hypoelliptic diffusion operator on
the continuous Heisenberg group is the random walk generated by a and b. Since these
generators are free up to length 8, clearly Ricci curvature is negative at small scales, but
does it tend to 0 at larger and larger scales?

Problem D (Continuous-time).
In lots of examples, the natural process is a continuous-time one. When the space is finite
or compact, or when one has good explicit knowledge of the process (as for Ornstein–
Uhlenbeck on R

N ), discretization works very well, but this might not be the case in full
generality.

Suppose a continuous-time Markov semigroup (mt
x)x∈X,t∈R+

is given. One can define
a Ricci curvature in a straightforward manner as

κ(x, y) := lim inf
t→0+

1

t

d(x, y) − T1(m
t
x, mt

y)

d(x, y)
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but then, in the proofs of the elementary properties above, there arise non-trivial issues
of commutation between limits and integrals, especially if the generator of the process is
unbounded. Is the definition above, combined with some assumption on the process (e.g.
non-explosion), enough to get all the properties above in full generality, for both diffusions
and jump processes? Given an unbounded generator for the process, is positivity of the
κ(x, y) above enough to ensure non-explosion? (One could directly use the Lipschitz
norm contraction as a definition [RS05, Jou07], but first, this is not a local criterion, and
second, it only defines a lower bound on Ricci curvature, not a value at a given point.)
(These questions are currently being solved by my student Laurent Veysseire.)

Problem E (Non-reversible spectral gap).
Ricci curvature gives a spectral gap bound when the random walk is reversible or when
the space is finite. What happens to the spectral gap in the non-reversible case? There
are different ways to formulate the question: spectral radius of the averaging operator,
operator norm, Poincaré inequality. (Note that a Poincaré inequality with a worse con-
stant and with a “blurred” gradient always holds, cf. the section on log-Sobolev inequality
in [Oll09].) Is is possible to use a finite-space approximation?

Problem F (Sharp Lichnerowicz theorem).
For the ε-step random walk on a Riemannian manifold, the operator ∆ = M − Id of
the random walk behaves ε2

2(N+2) times the Laplace-Beltrami operator and the coarse

Ricci curvature is ε2

2(N+2) times ordinary Ricci curvature, so that we get a spectral gap
estimate of inf Ric(v) for the Laplace-Beltrami operator. On the other hand, the Lich-
nerowicz theorem has a qualitatively comparable but slightly better spectral gap estimate

N
N−1 inf Ric(v), which is sharp for the sphere. This is because our definition of κ(x, y)
somehow overlooks that the sectional curvature K(v, v) in the direction of xy is 0. Is
there a way to take this into account, e.g. using couplings by reflection? (Note that our
estimate is sharp for the discrete cube as well as for the Ornstein–Uhlenbeck process, so
the phenomenon is rather specific to the Riemannian, drift-free situation.)

Problem G (Non-constant curvature).
The estimate above uses the infimum of κ(x, y). Is it possible to relax this assumption
and, for example, include situations where κ takes “not too many” negative or zero
values? Using the Ricci curvature of the iterates mt

x for some t > 2 should “smoothen
out” exceptional values of κ(x, y), so that for large t the Ricci curvature of mt

x should be
close to an “average” Ricci curvature of mx (probably involving large deviations of the
average value of κ(x, y) along trajectories of the random walk).

This may be interesting e.g. on random objects (graphs...) where locally some nega-
tive curvature is bound to occur somewhere.

Problem H (Isoperimetric profile and curvature at infinity).
Suppose that inf κ(x, y) = 0 but that the same infimum taken on balls of increasing
radii around some origin is non-zero. Is there a systematic correspondence between the
way curvature decreases to 0 at infinity and the isoperimetric profile? (Compare the
section of [Oll09] devoted to the relationship between non-negative Ricci curvature and
exponential concentration.) An interesting example is the M/M/k queue.
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Problem I (Local assumptions for concentration).
In the Gaussian concentration theorem, the condition σ∞ < ∞ can be replaced with a
local Gaussian-type assumption, namely that for each measure mx there exists a number
sx such that Emx

eλf 6 eλ2s2
x
/2eλEmx

f for any 1-Lipschitz function f . Then a similar theo-
rem holds, with σ(x)2/nx replaced with s2

x. (When s2
x is constant this is Proposition 2.10

in [DGW04].) However, this is not at all well-suited to discrete settings, because when
transition probabilities are small, the best s2

x for which such an inequality is satisfied is
usually much larger than the actual variance σ(x)2: for example, if two points x and y
are at distance 1 and mx(y) = ε, sx must satisfy s2

x > 1/2 ln(1/ε) ≫ ε. Thus making
this assumption will provide extremely poor estimates of the variance D2 when some
transition probabilities are small (e.g. for binomial distributions on the discrete cube).
In particular, when taking a continuous-time limit as above, such estimates diverge. So,
is there a way to relax the assumption σ∞, yet keep an estimate based on the local
variance σ2, and can this be done so that the estimate stays bounded when taking a
continuous-time limit?

Problem J (Functional inequalities).
The Laplace transform estimate Eeλ(f−Ef) 6 eD2λ2/2 often used to establish Gaussian
concentration for a measure ν is equivalent, by a result of Bobkov and Götze [BG99], to
the following inequality: T1(µ, ν) 6

√

2D2 Ent(dµ/dν) for any probability measure µ ≪
ν. Is there a way to formulate our results in terms of functional inequalities? As such, the
inequality above will fail as concentration can be non-Gaussian far away from the mean
(e.g. in the simple example of the binomial distributions on the cube), so in a coarse
setting it might be necessary to plug additive terms in the formulation of the inequality
to account for what happens at small measures or small scales. Another suggestion by
Villani is to use a Talagrand inequality where the L2 transportation distance is replaced
with a quadratic-then-linear transportation cost and use the results in [GL07].

Problem K (Sturm–Lott–Villani definition).
What is the relationship (if any) between our notion and the one defined by Sturm
and Lott–Villani [Stu06, LV]? The latter is generally more difficult to work out on
concrete examples, and is not so well suited to discrete settings (though see [BS]), but
under the stronger CD(K, N) version, some more theorems are proven, including the
Brunn–Minkowski inequality and Bishop–Gromov comparison theorem, together with
applications to the Finsler case [Oht, OS].

Problem L (Bishop–Gromov theorem).
Is it possible to generalize more traditional theorems of positive Ricci curvature, i.e. the
Bishop–Gromov theorem, or something close to the isoperimetric form of the Gromov–
Lévy theorem? It is not clear what a reference constant curvature space would be in
this context. Observe for example that, in the discrete cube, the growth of balls in
exponential-like for small values of the radius (namely N , N(N − 1)/2, etc.). Such
theorems may be limited to manifold-like spaces for which a reference comparison space
exists. Yet in the case of the cube, the isoperimetric behavior of balls still has something
to do with that of the sphere and “slows down” in a positive-curvature-like way. A maybe
useful definition of the “boundary” of a part A is T1(1A, 1A∗m). Also compare Problem R
below.
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Problem M (Entropy decay).
The logarithmic Sobolev inequalities (under the form comparing Ent f2 to

∫

‖∇f‖2, not
under the modified form comparing Ent f to

∫

‖∇f‖2 /f) usually implies an exponential
decreasing of entropy by the Markov chain. Is there some form of this phenomenon in our
setting? (Once more, it is necessary to keep in mind the case of binomial distributions
on the cube, for which the modified form of the Sobolev logarithmic inequality was
introduced.)

Problem N (Discrete Ricci flow).
Define a “discrete Ricci flow” by letting the distance on X evolve according to Ricci
curvature

d

dt
d(x, y) = −κ(x, y) d(x, y)

where κ(x, y) is computed using the current value of the distance (and by either keeping
the same transition kernel mx or having it evolve according to some rule). What can
be said of the resulting evolution? (Note that if the same transition kernel is kept, then
this will only compare to the usual Ricci flow up to a change of time, since, e.g. on a
Riemannian sphere, this will amount to using smaller and smaller “diffusion constants”
whereas the diffusion constant C in the Ricci flow dg

dt = −C Ric is taken constant; in
particular, the diameter of a sphere will tend exponentially towards 0 instead of linearly.)

Problem O (Up to δ).
The constraint T1(mx, my) 6 (1 − κ) d(x, y) may be quite strong when x and y are too
close, even if the measures mx, my have a larger support. In order to eliminate completely
the influence of small scales, and in the spirit of δ-hyperbolic spaces, we can define a
“positive curvature up to δ” condition. Namely, κ(x, y) is the best 6 1 constant in the
inequality

T1(mx, my) 6 (1 − κ(x, y)) d(x, y) + δ

so that positive curvature up to some δ becomes an open property in Gromov–Hausdorff
topology. Which theorems extend to this setting? Is it possible, in such a situation, to
choose a discrete subset X ′ ⊂ X and to redefine the random walk on X ′ in a reasonable
way such that is has positive Ricci curvature?

Problem P (Discrete sectional curvature).
A notion equivalent to non-negative sectional curvature for Riemannian manifolds can
be obtained by requiring that there be a coupling between mx and my, such that the
coupling moves all points of mx by at most d(x, y). (This amounts to replacing T1

with the L∞ transportation distance in the definition.) Does this have any interesting
properties? Is it possible to get an actual value for sectional curvature? (In this definition,
the contribution from x and y themselves will generally prevent getting non-zero values.)
Is this related to positive sectional curvature in the sense of Alexandrov? (Though the
latter cannot be applied to discrete spaces.)

Problem Q (Discrete scalar curvature).
In Riemannian geometry, scalar curvature at x is the average of Ric(v) over all unit
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vectors v around x. It controls, in particular, the growth of the volume of balls. Here
one can transpose this definition and set S(x) :=

∫

κ(x, y) dmx(y) (where maybe a weight
depending on d(x, y) should be added). Has it any interesting properties?

Problem R (L2 Bonnet–Myers and the dimension parameter).
For an L2 version of the Bonnet–Myers theorem to hold, it is necessary to make stronger
assumptions than positive curvature, namely that for any points x, x′ and for any small
enough pair of times t, t′ one has

T1(m
∗t
x , m∗t′

x′ ) 6 e−κ inf(t,t′)d(x, x′) +
C(

√
t −

√
t′)2

2d(x, x′)

whereas before one used only the case t = t′. (The second term is obtained by consid-
ering Gaussian measures of variance t and t′ centered at x and x′ in R

N .) Then (see
the section on strong Bonnet–Myers theorem in [Oll09]) one gets a diameter estimate

diam X 6 π
√

C
2κ so that C plays the role of N − 1. Is the constant C somehow re-

lated to a “dimension”, in particular to the “dimension” n in the Bakry–Émery CD(K, n)
condition?

Problem S (Alexandrov spaces).
What happens for spaces with positive sectional curvature in the sense of Alexandrov?
Do they have positive Ricci curvature for a reasonable choice of mx? (For the Sturm–
Lott–Villani definition this has been proven in 2009 by Petrunin [Pet].) Would it be
enough to approximate these spaces by manifolds or use a parallel transport in Alexan-
drov spaces? (See also Problem P above.)

Problem T (Expanders).
Is there a family of expanders (i.e. a family of graphs of bounded degree, spectral gap
bounded away from 0 and diameter tending to ∞) with non-negative Ricci curvature?
(Suggested by A. Naor and E. Milman.)

Problem U (Permutation groups).
For the permutation groups, with respect to the random walk generated by transposi-
tions, Ricci curvature is positive but does not allow to recover concentration of measure
with the correct order of magnitude. Is this related to results by N. Beresticky about
the δ-hyperbolic-like properties of the permutation groups, which thus appear to have a
mixture of positive and negative curvature properties?
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