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Abstract. Random groups provide a rigorous way to tackle such ques-
tions as “What does a typical (finitely generated) group look like?” or
“What is the behavior of an element of a group when nothing particular
happens?”

We review the results obtained on random groups as of January 2005.
We give proper definitions and list known properties of typical groups. We
also emphasize properties of random elements in a given group. In addition
we present more specific, randomly twisted group constructions providing
new, “wild” examples of groups.

A comprehensive discussion of open problems and perspectives is in-
cluded.
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Foreword

Our aim here is to present, within the limited scope of the author’s knowl-
edge, the state of the art of random groups. The decision to write such a
survey arose from consideration of the rapidly growing number of publica-
tions on the subject, which, from a bunch of theorems, is slowly shaping
into a theory. A whole section has been devoted to the statement of open
problems of various difficulty.

The accompanying“primer to geometric group theory” is meant as a gen-
tle introduction to the necessary background material, may readers outside
of the field find some appeal in random groups.

There are no proofs in this book, except that of the foundational density
1/2 phase transition theorem, which constitutes a standalone chapter at
the end of the text. Most results are indeed very technical and gathering
all proofs would have resulted in a heavy (in all senses of the word) treatise
rather than an “invitation”.

The goal was not to track down the origins of the generic way of think-
ing in group theory or neighboring fields, but to review the results in that
branch of mathematics which treats of the groups obtained from random
presentations. In particular, and mainly because of the author’s incompe-
tence on these matters, the asymptotic theory of finite groups and proper-
ties of random elements therein are not covered.

The information presented here has deliberately been limited to the
works available to the author as of January 31st, 2005, except for bibli-
ographical references to then unpublished manuscripts, which have been
updated for the reader’s convenience.

The roots of all current mathematical work related to random groups lie
unquestionably in Misha Gromov’s fertile mind, and can be traced back to
his seminal 1987 paper [Gro87] on hyperbolic groups. In order to illustrate
the importance of his newly defined [Gro78, Gro83] class of groups, he
stated (without proof) that“most”groups with a fixed number of generators
and relations and “long enough” relation length are hyperbolic (see § I.1.).

He later substantiated his thoughts on the subject in Chapter 9 of [Gro93],
entitled Finitely presented groups: density of random groups and other spec-
ulations, where the density model of random groups is defined and the in-
tuition behind it thoroughly discussed. This model allows a sharp control
of the quantity of relations put in a random group, and has proven very
fruitful over the years, especially since the properties obtained vary with
density (cf. § I.2.).
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The subject received considerable attention from the general mathemat-
ical community (see e.g. [Ghy03, Pan03]) when Gromov published his Ran-
dom walk in random groups [Gro03] (elaborating on the equally renowned
Spaces and questions [Gro00]), in which he uses random methods to build a
group with “wild” geometric properties linked to the Baum-Connes conjec-
ture with coefficients (see § III.2.), although these partially random groups
have no pretention at all to model a “typical” group.

The first motivation for the study of random groups is the following
somewhat philosophical question: “What does a typical group look like?”
This theme is addressed in § I., Models of typical groups, where known
properties of those are discussed. The word “typical” here is used as a con-
venient loose term interpolating between “random”, which entails a prob-
abilistic setting, and “generic”, rather implying a topological framework.
The latter is specifically developed in § I.4., where some results on the
space of all marked groups are presented.

A slightly different approach is to look at properties of “typical” ele-
ments in a given group, either for themselves or in order to achieve certain
goals. This is the theme of § II., Typical elements in a group. For ex-
ample, a lot of “unrelated”“typical” elements in a hyperbolic group can be
killed without harming too much the group (§ II.1.); this intuition has been
present since the very beginning of hyperbolic group theory. Also, consid-
ering that typical relations in a presentation do not exhibit any special
structure led to a sharp evaluation of the number of different one-relator
groups (§ II.3.).

But random groups now have found applications to other fields of math-
ematics. Indeed, the use of random ingredients in constructions specifically
designed to achieve certain goals allows to prove existence of groups with
new properties, which are counterexamples to open questions, such as Gro-
mov’s celebrated group (§ III.2.) whose Cayley graph admits no uniform
embedding into the Hilbert space, or a bunch of new groups with prop-
erty (T ) and somewhat unexpected properties (§ III.3.). Though these
groups cannot pretend to be good candidates for “typicality”, they are def-
initely of interest to people in and outside of group theory.

Yet for the author, the primary appeal of the field is still the study of
properties of “typical” groups for themselves, rather than the applications
just discussed. This is, of course, a matter of (philosophical?) taste.

Acknowledgements. I would like to thank Goulnara Arzhantseva, Vin-
cent Beffara, Yves de Cornulier, Thomas Delzant, Christophe Deroulers,
Étienne Ghys, Misha Gromov, Alice Guionnet, Frédéric Haglund, Ilya
Kapovich, Richard Kenyon, Marc Mézard, Pierre Pansu, Pierre Senellart,
Bruno Sévennec, Jean-Claude Sikorav, Alain Valette, Maria Eulália Vares
and Dani Wise for their help and comments with preparing this book.
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Notation and conventions

N: the set of natural numbers, including 0.

#A: number of elements of the set A.

Fm: free group of rank m over the set of generators a1, . . . , am and their
formal inverses. Unless otherwise stated, we assume m > 2.

〈R〉: normal subgroup generated by the set of elements R.

〈 a1, . . . , am | R 〉: group presented by generators a1, . . . , am with set of
relators R, that is, the group Fm/〈R〉.
|w|: length of the word w.

|D|: number of faces of the van Kampen diagram D.

|∂D|: boundary length of the van Kampen diagram D.

Reduced word : a word not containing any letter immediately followed by
its inverse.

Non-elementary hyperbolic group: a hyperbolic group which is neither
finite nor quasi-isometric to Z.

Hyperbolicity: the fact of being non-elementary hyperbolic.

With overwhelming probability: with probability tending to 1 when some
natural parameter (often denoted `) tends to infinity.
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A primer to geometric group

theory

This part of the book is aimed at those not so familiar with geometric
group theory. It covers the necessary material for understanding what
random groups are all about (though it can be read without any interest
in random groups), namely: basic facts on group presentations and free
groups; the construction of Cayley graphs and complexes; an introduction
to the geometric viewpoint in group theory; a sketch of what van Kampen
diagrams are; and the different definitions of hyperbolic groups. An explicit
example then gathers it all in two pictures.

We do not pretend to give an overview of geometric group theory as a
whole: many important aspects of the field are not mentioned, and focus
is primarily placed on the material somehow relevant to random groups.

A few selected references are given at the end as suggested reading.

Free groups, group presentations

From a geometric group theorist’s viewpoint, which may not be everyone’s,
the simplest of all groups are free groups over some set of generators.

Let S+ be any set (frequently S+ = {a1, . . . , am} is finite). Intuitively
speaking, the free group on S+ is the group consisting of all formal products
of elements of S+ and their formal inverses, with the cancellation xx−1 =
x−1x = e as the only computation rule.

More precisely, let S− be the set of formal inverses x−1 of the elements
x ∈ S, which is just a distinct copy of S+, and let S = S+ t S−. For
n ∈ N, a word of length n on the alphabet S is a sequence of n elements of
S. In the particular case n = 0 there is only one such sequence, called the
empty word. A word on S is just a word of any length, i.e. an element of⊔
n=0,1,2... S

n.

A word is said to be reduced if it does not contain as a subword any
sequence of the form xx−1 or x−1x, for any x ∈ S. With any word can
be associated a reduced word, by iterated removal of all such cancellable
pairs (the reduced word obtained does not depend on the order in which
removals are performed), an operation called reduction.

The free group generated by S (or by S+, terminology is floppy) has all
reduced words on S as its elements. Multiplication is simply the concate-
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nation of words, followed by reduction if necessary. The neutral element e
is the empty word.

Of special importance is the case when S = {a1, . . . , am} is finite; the
corresponding free group is denoted by Fm. When m = 1 it is isomorphic
to the group of integers Z.

Now any group can be seen as a free group but with more “computation
rules” than simply xx−1 = x−1x = e. This gives rise to the notion of group
presentations: a group specified by a given set of generators S, with some
“enforced” computation rules. For example, the presentation

〈
a | a3 = e

〉

(read: the group generated by a, knowing that a3 = e) defines a group
isomorphic to Z/3Z.

Namely, a computation rule is any equality w1 = w2 where w1, w2 are
words on a given alphabet S. Any such rule can be rewritten w1w

−1
2 = e,

and so most of the time rules are specified by giving only one word r, with
the rule r = e in mind.

So let R be a set of words on a given alphabet S = S+ t S−. The group
presented by 〈S+ | {r = e}r∈R 〉, or, more simply, by 〈S+ | R 〉, is defined as
follows. Start from the free group FS generated by S+. The way to enforce
a relation r = e is to quotient FS by the normal subgroup generated by r.
So let 〈R〉 be the normal closure of the subgroup of FS generated by all
words r ∈ R. The group presented by 〈S+ | R 〉 is the group FS/〈R〉. It is
the “largest” group in which all relations r = e, r ∈ R, hold.

Let us give a few examples: the free group F1 of rank one (a.k.a. Z) has
the presentation 〈 a | ∅ 〉. The cyclic groups Z/nZ are given by 〈 a | an = e 〉.
The free group of rank two is F2 = 〈 a, b | ∅ 〉; if we force a and b to commute
we get Z × Z = 〈 a, b | ab = ba 〉.

The elements of S+ in a presentation 〈S+ | R 〉 are called generators.
Those of R are called relators. It is easily seen that relators can always be
assumed to be reduced words.

Note that any group has some presentation, in a kind of tautological way.
Let G be a group and take S+ = G i.e. all elements of G will be generators.
Now let the set of words R consist of all products of elements of S which
happen to be equal to e in G. It is easy to check that G = 〈S+ | R 〉. (Of
course this presentation is, in general, way too large.)

This means that free groups have a“universal”property, namely, for each
group G there is a set S and a surjective homomorphism from a free group
FS to G. More precisely, if X ⊂ G is any set which generates G together
with X−1, then there is a surjective homomorphism FX → G “sending X
to X” i.e. sending an abstract word in the generators to its image in G. If
R is the kernel of this homomorphism, then any part R ⊂ R the normal
closure of which is R, will give rise to a presentation G = 〈X | R 〉.

A group is finitely presented if it admits a presentation 〈S+ | R 〉 with
both S+ and R finite. A group is finitely generated (or of finite type) if S+
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is finite.
Presentations of a given group are by no means unique. For example,

the trivial group {e} has arbitrarily (not so) stupid presentations such as〈
a, b | a = e, b2ab−1 = e

〉
. (In fact it is not even algorithmically decidable

whether a given presentation defines the trivial group or not!)

Cayley graphs and complexes

Hereafter, in order to get locally compact objects, we suppose that all sets
of generators S are finite.

Cayley graphs. The above may seem quite combinatorial but actually
carries a geometrical meaning, which is sometimes a more natural way to
think of group presentations. For example, the group given by

〈
a | a3 = e

〉

can be thought of as a three-edge cycle.
Let G be a group generated by a set S = S+ t S−. The Cayley graph

of G with respect to S is the graph with elements of G as vertices and in
which edges correspond to multiplication on the right by the generators.

More precisely, the Cayley graph is an unoriented graph with some dec-
oration. Vertices are the elements of G. Now for each x ∈ G and s ∈ S+,
add an unoriented edge between the vertices x and xs, so that edges are in
bijection with G× S+ (this may result in multiple edges and loops). Now
keep track of this on the edges, by deciding that with each edge together
with an orientation choice, will be associated a label in S+ t S−; namely,
the edge from x to xs, oriented this way, will have label s, and label s−1

when oriented the other way around1.
Basic examples are (w.r.t. the obvious generating sets): The Cayley

graph of the free group Fm is an infinite tree in which each vertex has
valency 2m. The Cayley graph of the group Z×Z is an infinite square grid
in the plane. The Cayley graph of the cyclic group of order n is an n-edge
cycle.

The Cayley graph is homogeneous: all vertices play the same role and
could have been chosen to represent the neutral element e.

Given any vertex x in the Cayley graph and any word w on the alphabet
S, we can start at x and track w in the graph by“following the edge labels”,
which brings us at xw. This path is called the lift of w (starting at x). Note
that w is reduced if and only if this path has no local backtracks.

Left and right actions. The group G acts on the vertices of the Cayley
graph in two ways: by left or right multiplication.

Left multiplication by g ∈ G is a graph action: it brings adjacent vertices
to adjacent vertices, preserving edges. In particular it preserves the graph

1The details of these definitions guarantee that each vertex has valency 2×#S+ and
that the Cayley graph of the cyclic group of order n is an n-cycle even for n = 1, 2.
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distance. Note however that it does not bring a point to a nearby point: x
and gx can be very far away in the graph.

Conversely, right multiplication by g ∈ G is not, in general, a graph
action, because a priori one does not pass from xg to xsg by multiplication
by s. So two points linked by an edge are not mapped to two points linked
by an edge: right multiplication acts only at the level of vertices of the
Cayley graph. However, right multiplication by g moves a given point by a
distance at most the length of g (since it corresponds to following the path
labelled by g in the Cayley graph, starting at the given point).

Consequently, when one mentions the action of G on its Cayley graph,
it is the left action which is meant. (Test all this in F2...)

Cayley complexes. It is worthy to note that any word equal to e in G
will lift to a loop in the Cayley graph, and conversely. If G is given by a
presentation 〈S+ | R 〉, this will be the case, in particular, for the relators
r ∈ R.

The Cayley complex of a presentation G = 〈S+ | R 〉 is a 2-dimensional
complex obtained by gluing a disk on all paths of the Cayley graph labelled
by a relator r ∈ R. More precisely, to each x ∈ G and r ∈ R, consider the
lift of r starting at x in the Cayley graph, which is a closed path, and glue
a disk along this path. Consequently the set of faces of the Cayley complex
is in bijection with G×R.

Basic examples are (w.r.t. the usual presentations): The Cayley complex
of a free group is just its Cayley graph. The Cayley complex of Z×Z is the
square tiling of the plane. The Cayley complex of the cyclic group of order
n consists of n disks sharing a common boundary (a copy of the relation
an = e is glued to each element)2.

Most importantly, the Cayley complex is simply connected. Indeed, loops
in the Cayley graph label words equal to the identity. Since by definition,
relators generate all relations in the group, such words are exactly products
of (conjugates of) relators in the presentation. We precisely added disks
along loops of the Cayley graph representing the relators, making these
loops homotopically trivial.

A word about classifying spaces. Here is another method to define
the Cayley graph and complex. Namely, consider a group presentation
G = 〈S+ | R 〉. There is a standard way to get a topological space with
fundamental group G. Start with a bouquet B of #S+ circles, that is, a
graph made of one single vertex (denoted e) and #S+ unoriented loops.

2Several authors, including [LS77], take another convention when some relator is a
proper power, in order to avoid this multiplicity. This sometimes leads to contradictions
in their exposition, such as in Prop. III.4.3 of [LS77]. With the convention used here,
the Cayley complex is the universal covering of the 2-skeleton of the standard classifying
spaces associated with the presentation.
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Choose an orientation for each loop and label loops bijectively by the gen-
erators in S+; consider that the loop with reverse orientation bears the
inverse label in S−.

The fundamental group of this bouquet of circles is the free group with
#S+ generators. The universal cover of this labelled graph is exactly the
Cayley graph of the free group on S+.

Now add “relations” in the following way. Any word on the alphabet
S+ t S− lifts to a closed path in the labelled graph B, just as above for
Cayley graphs. For each relator r ∈ R, add a disk to B along the path
labelled by r. In the fundamental group of B, this has the effect of killing
the element r. Thus at the end, one gets a 2-complex B (with one vertex,
#S+ edges and #R faces) the fundamental group of which is precisely
the group G = 〈S+ | R 〉. The universal cover of B is exactly the Cayley
complex of this presentation.

(By the way, if one goes on with this process and kill all the higher-
dimensional homotopy groups of B by adding sufficiently many balls of
dimension > 3, one gets a so-called classifying space for the group G, i.e.
a space BG with fundamental group G and such that the universal cover
EG is contractible.)

Groups as geometric objects

Here again all groups are assumed to be finitely generated.

Metrics on groups. The Cayley graph of a group w.r.t. some generating
set is naturally a metric space, defining each edge to have length 1.

The combinatorial way to look at this is as follows: Given a group G
generated by a set of elements S+, it is natural to define the norm ‖g‖ of
an element g ∈ G as the smallest length of a word expressing g as a product
of generators in S+tS−. This coincides, of course, with the graph distance
from g to e in the Cayley graph of G w.r.t. this generating set. Note that
‖g‖ =

∥∥g−1
∥∥, and of course ‖gg′‖ 6 ‖g‖ + ‖g′‖.

So we get a distance function on G by setting dist(g, h) to be the graph
distance from g to h in the Cayley graph. Since edges of the Cayley graph
correspond to right multiplication by a generator, this is the smallest length
of a word w such that h = gw, that is, dist(g, h) =

∥∥g−1h
∥∥. The two

properties of ‖·‖ mentioned above are just the usual distance axioms.
As mentioned above, the left action of G on itself preserves this metric.

Changing generators. Of course this distance depends on the chosen
generating set. A finitely generated group is thus not equipped with a
canonical metric, but with a family of metrics associated with all possible
finite generating sets. These metrics are related in some way, which we
explore now.
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Let S+ = {s1, . . . , sn} and S′
+ = {s′1, . . . , s′p} be two finite generating

sets for a group G; let ‖·‖ and ‖·‖′ be the two associated norms. We want
to control ‖·‖′ in terms of ‖·‖.

Since S+ is a generating set, each of the elements in S′
+ has a writing in

terms of the generators in S+ t S−. Let K be the largest length of such a
writing i.e. K = maxs′∈S′

+
‖s′‖. Since S′

+ is finite, we have K <∞.
Now suppose that some element g has a writing of length n in terms of

S′
+ t S′

−. By replacing each element of S′
+ by a writing of it in terms of

S+ t S−, we get a writing of g of length at most Kn in terms of S+ t S−.
So ‖·‖ 6 K ‖·‖′. The reasoning is two-sided, and so we get that the metrics
defined by S+ and S′

+ are bi-Lipschitz equivalent.

Quasi-isometries. Actually a slightly looser definition of equivalence be-
tween metric spaces than bi-Lipschitz equivalence has proven very fruitful:
that of quasi-isometry. It allows, for example, the spaces R and Z to be
quasi-isometric, by neglecting what happens at small scales.

Let (X, dX) and (Y, dY ) be two metric spaces. They are quasi-isometric
if there exist two maps f : X → Y and g : Y → X which distort distances
in a linearly controlled way and which are almost inverse to each other (up
to a finite distance error). That is, there exist constants λ > 0, C > 0 such
that

dY (f(x), f(x′)) 6 λdX(x, x′) + C

dX(g(y), g(y′)) 6 λdY (y, y′) + C

dX(g(f(x)), x) 6 C

dY (f(g(y)), y) 6 C

for all x, x′ ∈ X, y, y′ ∈ Y . This is an equivalence relation.
This notion is relevant for unbounded spaces only: any bounded metric

space is quasi-isometric to a point.
A change in the generating set of a group is in particular a quasi-isometry.

So any quasi-isometry invariant of a metric space, when applied to Cayley
graphs, will provide a well-defined invariant of finitely generated groups.

Van Kampen diagrams

Van Kampen diagrams are a visual way to represent how all equalities
holding in a group are derived from combinations of relators.

Let G = 〈S+ | R 〉 be a group presentation. Since we only have access
to elements of G as products of generators, we want to know when two
words represent the same element of G, i.e. we are interested in the set
of equalities of words x = y that hold in G. Since this can be rewritten
as xy−1 = e, it is enough to determine the set of words representing the
identity element of G (so-called word problem).
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This problem is actually algorithmically unsolvable: there is no algorithm
that, given any finite presentation and any word, always answers whether
the given word is equal to e in the presentation. Moreover, this already
holds for some fixed groups: there exist some group presentations for which
there is no algorithm which, given any word, answers whether or not it is
equal to e in the presentation.

A word is equal to e in the group G presented by 〈S+ | R 〉 = FS+
/〈R〉,

by definition, if it lies in the kernel of the map FS+
→ G, that is, in the

normal subgroup 〈R〉 generated by the relators. Hence, a word w is equal to
e in G if and only if, as a word, it can be written as a product of conjugates
of relators:

w =
N∏

i=1

ui r
±1
i u−1

i

where ri ∈ R and ui is any word. (The number N of relators in this de-
composition, which depends on w, will play an important role below in
the definition of hyperbolic groups.) So algebraically speaking, the set of
consequences of the relators is the normal closure of the subgroup they gen-
erate. Van Kampen diagrams are a visual interpretation of these products
of conjugates.

Giving a topologically clean definition of van Kampen diagrams is beyond
the scope of this review. Basically, the idea is to consider each relator
r ∈ R as a polygon with as many edges as letters in r, the edges of which
are labelled with the successive letters of r (the inverse of r may also be
used to build a polygon with reverse orientation). Here is the polygon
associated with the simple relator aba−1b−1 (starting at bottom left corner,
counterclockwise):

b

a

a

b

Now polygons bearing (same or different) relators can be glued to each
other along edges bearing the same letter. Van Kampen diagrams are the
figures resulting from such connected, simply connected gluings of relator-
bearing polygons. For example, the following van Kampen diagram w.r.t.
the presentation 〈 a, b | ab = ba 〉 (i.e. with the only relator aba−1b−1) is a
visual proof that if a commutes with b, then so does a2.
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b

a

a

a

a

bb

An important theorem of van Kampen states that the boundary words of
such planar diagrams are exactly those words equal to e in the presentation.

The connection with products of conjugates of relators is clear on the fol-
lowing picture, which builds the boundary word b−1a2ba−2 of the van Kam-
pen diagram given above (starting at top left corner, counterclockwise) as
a product b−1rb (ab−1)r(ab−1)−1 of conjugates of the relator r = aba−1b−1.
Shrinking this diagram (by identifying edges arising from the same point
with the same label) produces the two-square one above.

b
b

a

a a

aa

b
b

b b

Incidentally, coming back to the algorithmic decidability problems men-
tioned above, we see that the word problem is semi-decidable: if a word is
indeed equal to e, then, searching through all van Kampen diagrams, we
will eventually find one decomposing the word as a product of conjugates of
relators; but proving that the word is not equal to e would a priori require
examination and rejection of all possible diagrams.

Hyperbolic groups

A class of groups the interest for which has never declined over the years
since its introduction by Gromov is that of hyperbolic groups. They have
a combinatorial definition, word hyperbolicity, and a geometric one, δ-
hyperbolicity. Since (spoiler!) these two notions have turned out to be
equivalent, we simply use the term hyperbolic.

Word hyperbolicity. Let G = 〈 a1, . . . , am | R 〉 be a group with finite
presentation. Recall that any word w equal to e in G can be written as a
product

w =

N∏

i=1

uir
±1
i u−1

i



18 A January 2005 invitation to random groups

(generally not in a unique way). Let N(w) be the minimal number of
relators in such a writing of w. A very natural question is: How does N(w)
behave when the length of w grows larger and larger?

The presentation is said to be word-hyperbolic if N(w) grows at most
linearly with the length of w, that is, if there exists a constant C such that
for any w we have N(w) 6 C |w|.

It is not difficult to see that for finite presentations, this linearity does
not depend on the presentation chosen for a given group G: indeed, each
generator in the second presentation is a product of (finitely many) gen-
erators in the first one, and each relator in the second presentation is a
consequence of (can be written as products of conjugates of) finitely many
relators in the first one, so that, since the number of generators and relators
is finite, the constant C is perturbed by at most these quantities. So this
yields a well-defined notion of a word-hyperbolic group.

When thought of in terms of van Kampen diagrams, this reads as follows:
If w is a word equal to e in the group, then there is a van Kampen diagram
D with w as its boundary word. Now by definition N(w) is the number of
faces |D| of this van Kampen diagram and the length of w is the boundary
length |∂D|. So the word hyperbolicity condition rewrites as

|D| 6 C |∂D|
which is a linear isoperimetric inequality for van Kampen diagrams. Lin-
ear isoperimetric inequalities are a negative curvature phenomenon: for
example, they are satisfied by domains in the hyperbolic plane (with area
standing for |D| and boundary length standing for |∂D|), but not by do-
mains in the Euclidean plane (where boundary length grows only like the
square root of area).

δ-hyperbolicity. This is a more general notion defined in any geodesic
space (that is, a metric space in which the distance between two points is
realized by one or several paths between them, called geodesic segments).
Since any graph is a geodesic space (by definition, edge-paths realize the
distance), it can be applied to Cayley graphs of groups.
δ-hyperbolicity is a way to measure how“negatively curved”or“tree-like”

a space looks at large scale. In a traditional negative curvature setting,
triangles have the property that the sum of their angles is less than 2π:
they are curved inwards. This is measured by Rips’ condition of thinness
of triangles.

A triangle in a geodesic space is specified by a triple of points (x, y, z)
together with three geodesic segments joining them pairwise, noted [xy],
[yz] and [zx]. For δ > 0, the triangle is said to be δ-thin if any point on
[xy] lies at distance at most δ from the union [yz] ∪ [zx] of the two other
sides, and similarly for points on [yz], on [zx]. That is, the “gap” at the
middle of the triangle has size roughly δ: each side does not depart too
much from the other two.
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δδ

For δ > 0, a geodesic space is said to be δ-hyperbolic (or simply hyperbolic
if δ is not specified) if any triangle in it is δ-thin. Note that this must hold
for all choices of geodesics between the vertices in case there are several.

The usual hyperbolic plane is hyperbolic indeed (δ = 10 works). Any
bounded metric space is δ-hyperbolic (take its diameter as δ). The Eu-
clidean plane or the grid Z × Z are not hyperbolic for any δ > 0.

Another important example is a (finite or infinite) tree, which is 0-
hyperbolic (triangles are flattened). In fact, δ-hyperbolic spaces are those
which, “seen from far away”, look like trees; they can actually by approxi-
mated by trees (up to δ) in a very precise sense.

Now a finite group presentation is δ-hyperbolic if the associated Cayley
graph is. The most basic examples (apart from finite groups) are the free
groups Fm, whose Cayley graphs w.r.t. the standard generating set are
trees, hence 0-hyperbolic. Hyperbolic groups are thus a natural geometric
generalization of free groups.

Importantly (but not obviously), δ-hyperbolicity for some δ > 0 is pre-
served under quasi-isometries, although the value of δ may change. In
particular, for a group it does not depend on the choice of a generating set.

Hyperbolicity. A finitely presented group is word-hyperbolic if and only
if it is δ-hyperbolic for some δ > 0. This is a non-trivial theorem and may
actually be the shortest way to show that δ-hyperbolicity does not depend
on the presentation of a given group (though the value of δ does).

Note that we have defined word hyperbolicity only for group presenta-
tions, whereas δ-hyperbolicity makes sense in a more general context; but
the notion of linear isoperimetric inequality of van Kampen diagrams can
be extended to any geodesic space and is still equivalent to δ-hyperbolicity.

Small cancellation. The small cancellation conditions are simple combi-
natorial criteria on a group presentation which imply hyperbolicity. Maybe
the one most frequently encountered is the C′(α) condition. Remember the
idea of van Kampen diagrams: relators in a presentation are represented as
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polygons with boundary labelled by the relator. Now if two such polygons
have a common subword on their boundary (more precisely, if there is a
word w such that w is a subword of the boundary word of the first polygon
and w−1 is a subword of the boundary word of the second one), we can
glue them along this subword to form a two-face van Kampen diagram.

The C′(α) condition for a presentation (for 0 < α < 1) demands that
any such gluing between two polygons bearing relators r1 and r2 in the pre-
sentation occurs along a path w of length less than α times the infimum of
the lengths of r1 and r2 (except for the trivial “degenerate” gluing between
a polygon and the same one with inverse orientation i.e. r2 = r−1

1 ).
If a group presentation satisfies the C′(1/6) condition, then the group

is hyperbolic. This results from a simple Euler characteristic argument
on van Kampen diagrams, which allows to show that those have enough
boundary edges to ensure a linear isoperimetric inequality.

The limit case on which the significance of 1/6 is clear is the standard
hexagonal tiling of the plane, which satisfies C′(1/6 + ε) for any ε > 0 but
not C′(1/6), and which is not hyperbolic (compare the heptagonal tiling of
the hyperbolic plane).

All in one: an example. Let G be the group presented by
〈
a, b, c, d | aba−1b−1cdc−1d−1 = e

〉

which means that the only polygon appearing in van Kampen diagrams is
the following octogon.

c

c

d

d

a

b

a

b

Now the only ways to glue such a polygon with a copy of itself consist
in gluing the two a’s, or gluing the two b’s, or the two c’s, or the two d’s,
but there is no way to find a gluing along two consecutive letters. Since
the length of the relator is 8, this means that this presentation satisfies the
C′(1/8+ε) small cancellation condition (but not C′(1/8)). Since 1/8 < 1/6
the criterion above applies and so this group is hyperbolic.

This example is not anecdotic. Copies of the above octogon can be
glued (in the allowed ways: an a with an a, etc.) to form the standard
octogonal tiling of the hyperbolic plane. Actually this tiling is exactly
the Cayley graph of the group, which we represent on pages 22 and 23 in
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two different Euclidean views: a Poincaré model centered either on a face,
emphasizing the tiling aspect, or on an element, emphasizing the Cayley
graph. (When looking at the figures, keep in mind that the hyperbolic
metric goes to infinity close to the disk boundary, so that all octogons are
actually isometric and play the same role. The second picture is obtained
from the first one by performing a hyperbolic isometry sending the left
vertex of the large bottom a to the center of the disk.)

Since the hyperbolic plane is hyperbolic, this is another way to check
hyperbolicity of this group: the group identifies with vertices of the tiling,
equipped with the edge metric, which is a discrete subset quasi-isometric
to the whole hyperbolic plane. Note how tree-like the Cayley graph looks
in spite of the presence of cycles of length 8.

A group naturally acts on its Cayley graph by left multiplication and so
we can take the quotient of this hyperbolic tiling by action of the group.
This provides a two-dimensional object, the fundamental group of which is
the group.

Let us take a closer look at this quotient. A single octogon is a funda-
mental domain for the action of the group on the tiling (i.e. the set of all
translates of some octogon by the group exactly produces the tiling) and
so the quotient is obtained by taking a single octogon and identifying its
edges according to the labels. So take a single copy of the octogon above
and twist it in three-dimensional space so that the two edges labelled by
a are identified (preserving the orientation implied by the arrows); then
identify the two edges labelled by b, then the two ones labelled by c, then
the ones labelled by d (all eight vertices will be identified along the way).
This actually leaves us with a surface of genus two, i.e. the gluing of two
tori (this is quite hard to figure out—check it first in the simpler case of a
square aba−1b−1 instead of the octogon above: this square transforms into
a torus).

So the group can be represented as the fundamental group of a sur-
face of genus 2. This surface inherits a metric of negative curvature from
that of the hyperbolic plane. Actually, fundamental groups of negatively
curved compact surfaces, or of polyhedra with negative curvature in some
combinatorial sense, were an important motivation for the introduction of
hyperbolic groups and initially the main source of examples.

Suggested reading

Groups as geometric objects, hyperbolic groups, quasi-isometries, Cayley
graphs...
É. Ghys, P. de la Harpe, Sur les groupes hyperboliques d’après Mikhael
Gromov, Progress in Math. 83, Birkhäuser (1990).

Groups as geometric objects, quasi-isometries...
M. Gromov, Infinite groups as geometric objects, in Proceedings of the Inter-
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national Congress of Mathematicians, Vol. 1, 2, Warsaw (1983), 385–392,
PWN, Warsaw, 1984.

Group presentations, free groups, van Kampen diagrams (under the name
“cancellation diagrams”), decision problems...
J. J. Rotman, An introduction to the theory of groups, fourth edition, Grad-
uate Texts in Mathematics 148, Springer (1995), especially chapters 11
and 12.

Group presentations, free groups, van Kampen diagrams, small cancellation
theory...
R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete 89, Springer (1977).

Negative curvature, hyperbolic groups, isoperimetric inequalities...
M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grund-
lehren der mathematischen Wissenschaften 319, Springer (1999), especially
chapters H and Γ.
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I. Models of typical groups

The basic idea of random groups is to take a group presentation at random
and to look at what are “typically” the properties of the group so obtained,
leading to such statements as “almost every group is hyperbolic”. Of course
this makes sense only if some precise way to pick presentations at random
is prescribed: this is what we call a model of random groups.

So a random group will usually be given by a presentation by generators
and relators

G = 〈S | R 〉

where S = {a1, . . . , am} is some finite1 set of generators, and R is a set of
words on the elements of S (and their inverses), taken at random. Since
any group presentation can be written using reduced words only (i.e. words
not containing aia

−1
i or a−1

i ai), usually only such words are considered.
To choose a model of random groups is to specify a probability law for

the set of relators R. Probability and statistics are most relevant when
some parameter is large so that laws of large numbers can be used. In
most (but not all) models, the set of generators S = {a1, . . . , am} is kept
fixed, and the large parameter is the length of the words in R. One more
degree of freedom is to let the number of words in R grow as their length
becomes larger. These choices allow for different models.

The models. Basically there are three models of random groups. The
quite straightforward few-relator model (Def. 1) allows for only a fixed
number of relators, of bounded length; small cancellation, hence hyperbol-
icity, is easily shown to be generic in this model. It is now subsumed as
density 0 in the density model. The few-relator model with various lengths
(Def. 4), which allows very different relator lengths, is more difficult techni-
cally because several scales are involved. The density model (Def. 7) allows
a clear-cut quantitative approach on the number of relators that can be
put before the group collapses; this model has been preferentially focussed
on recently because various values of the density parameter involved seem
to have different, rather concrete geometrical meanings. One variant of
the density model is the triangular model (§ I.3.g.), which is somehow“less
quotiented” and often produces only free groups.

1It must be stressed that although any group has some presentation (as described in
the Primer), group presentations are mainly relevant for countable groups only, and the
geometric methods work best for finitely presented groups. Thus the models of random
groups currently used focus on those.
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All of these models lead to the same conclusion that a typical (finitely
presented) group is hyperbolic. (For hyperbolic groups we refer the reader
to the Primer or to [BH99, Sho91a, GhH90, Ghy90, CDP90, Gro87].)

The topological approach of the space of marked groups (§ I.4.), though
not a model of random groups itself, may be a nice framework to interpret
some of these results in.

Another would-be model, arguably the most natural of all, the tempera-
ture model, is kind of a density model at all relator lengths simultaneously,
thus producing non-finitely presented groups. It is addressed as an open
question in § IV.k. since there still are no results about it.

Partially random groups. There has been some confusion due to the
fact that the most famous (up to date) “random groups”, those constructed
by Gromov having no uniform embedding into the Hilbert space, exhibit
quite different properties from what is hereafter described as typical for a
random group (e.g. they are not hyperbolic). Actually the construction of
these groups (thoroughly discussed in § III.) involves both random ingre-
dients and manipulations quite specific to the goal of controlling uniform
embeddings, and they are thus rather non-typical; dubbing them“partially
random” would be more appropriate.

I.1. Forerunners: few-relator models

The statement that most groups are hyperbolic is statistical. It means that
out of all possible group presentations, asymptotically most of them define
hyperbolic groups. Here the asymptotics are taken with respect to the
length of the relators involved.

Maybe the simplest statement expressing the overwhelming weight of
hyperbolic presentations consists in considering the set of all presentations
with a fixed number of relators and a bounded relator length, as in the
following model.

Definition 1 (Few-relator model of random groups) –
Let Rk,` be the set of all group presentations with k relators of length at
most `

Rk,` = {〈 a1, . . . , am | r1, . . . , rk 〉 , ri reduced, |ri| 6 ` ∀i}

Let P be a property of a presentation. We say that P occurs with
overwhelming probability in this model if the share of presentations in
Rk,` which have property P tends to 1 as ` tends to infinity.

The following proposition was more or less implicit in the original for-
mulation of small cancellation theory. Let us simply recall that C′(λ) for
λ > 0 is the condition that no two relators in a presentation share a com-
mon subword of length at least λ times the infimum of their lengths (we
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refer to [LS77] for small cancellation theory). When λ < 1/6 this implies
hyperbolicity ([Gro87], 0.2.A).

Proposition 2 – For any k, for any λ > 0, the C′(λ) small cancellation
property occurs with overwhelming probability in the few-relator model
of random groups. In particular, hyperbolicity occurs with overwhelming
probability in this model, as well as torsion-freeness and cohomological
dimension 2.

Of course, the overwhelming probability depends on k and λ: for very
small λ’s, it is necessary to take larger ` for the share to become close to 1.

Note also that since the number of possible relators of length ` grows
exponentially with `, a random relator of length at most ` actually has
length between `(1−ε) and `, so that in this model all relators have almost
the same length.

This proposition appears in [Gro87], 0.2.A (in the notation thereof, this
is the case when `2/`1 is very close to 1). This is the model referred
to as “généricité faible” (weak genericity) in [Ch91, Ch95]. The proof is
straightforward. Take e.g. k = 2. The number of couples of reduced relators
of length at most ` behaves like (2m− 1)2`, whereas the number of couples
of relators sharing a common subword of length λ` behaves roughly like
(2m−1)2`−λ`. So the share of couples of relators having a common subword
of length λ`, for some λ > 0, is exponentially small when ` → ∞, so that
the C′(λ) condition is satisfied (a little more care is needed to treat the
case of a piece between two parts of the same relator).

Remark 3 – The few-relator model of random groups appears as the 0-
density case of the density model.

For this reason, results known to hold in this model are discussed below
in § I.2.

In [Gro87], 0.2.A, Gromov immediately notes that it is not necessary to
assume that all relators have lengths of the same order of magnitude to
get hyperbolicity. This yields to the next model, which is technically much
more difficult.

Definition 4 (Few-relator model with various lengths) – Given k
integers `1, . . . , `k, let

Rk,`1,...,`k = {〈 a1, . . . , am | r1, . . . , rk 〉 , ri reduced, |ri| = `i}

be the set of presentations with k relators of prescribed lengths.

Let P be a property of a presentation. We say that P occurs with
overwhelming probability in this model if for any ε > 0 there exists an `
such that, if min `i > `, then the share of presentations in Rk,`1,...,`k which
have property P is greater than 1 − ε.
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In general, the small cancellation condition C′(λ) is not satisfied in this
model. Indeed, as soon as e.g. `2 is exponentially larger than `1, very
probably the relator r1 will appear as a subword of the relator r2.

Once again however, hyperbolicity occurs with overwhelming probabil-
ity. This is stated without proof in [Gro87], 0.2.A, and is referred to
as “Théorème sans preuve” in [GhH90]. A little bit later, proofs were
given independently by Champetier [Ch91, Ch95] (in the case k = 2) and
Ol’shanskĭı [Ols92].

Theorem 5 – With overwhelming probability, a random group in the few-
relator model with various lengths is non-elementary hyperbolic, torsion-
free, of cohomological dimension at most 2.

A few more results are known in this model. For k = 2, the boundary of
the group is a Menger curve [Ch95] (see also § I.3.d.). Also the rank is the
one expected [CS98] (and in particular the cohomological dimension in the
previous theorem is actually 2):

Theorem 6 – With overwhelming probability, a random group in the few-
relator model with various lengths has the following property: the subgroup
generated by any m− 1 generators chosen among a1, . . . , am is free of rank
m− 1.

Moreover, thanks to a theorem of Champetier [Ch93] the spectral radius
of the random walk operator associated with a1, . . . , am (see definition in
§ I.3.f.) is arbitrarily close to the smallest possible value

√
2m− 1/m [CS98].

Using similar spectral bounds, it is proven in [CV96] that for k = 1 (one
relator), the semi-group generated by a1, . . . , am is free.

Let us stress that contrary to the few-relator, one-length model, the few-
relator model with various lengths is not subsumed in the density model
below. It might, however, be recovered as an iterated random quotient at
density 0 (see § II.2.), but the technical details needed to get this are still
unclear.

I.2. Gromov’s density

I.2.a. Definition of density. By the time Champetier and Ol’shan-
skĭı had proven his first statement, Gromov had already invented another
model, the density model ([Gro93], Chapter 9 entitled Finitely presented
groups: density of random groups and other speculations). A continuous
density parameter now controls the quantity of relators put in the random
presentation. The sharpness of the notion is revealed through a phase
transition theorem: if density is less than 1/2, then the random group is
very probably infinite hyperbolic, whereas it is trivial at densities above
1/2.
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Definition 7 (Density model of random groups) –
Let Fm be the free group on m > 2 generators a1, . . . , am. For any integer
` let S` ⊂ Fm be the set of reduced words of length ` in these generators.

Let 0 6 d 6 1. A random set of relators at density d, at length ` is a
(2m− 1)d`-tuple of elements of S`, randomly picked among all elements of
S` (uniformly and independently).

A random group at density d, at length ` is the group G presented by
〈 a1, . . . , am | R 〉 where R is a random set of relators at density d, at length
`.

We say that a property of R, or of G, occurs with overwhelming proba-
bility at density d if its probability of occurrence tends to 1 as `→ ∞, for
fixed d.

Remark 8 – Slight variants of this historical definition exist, sometimes
leading to more nicely expressed statements, e.g. replacing the sphere S`
with the ball B` of words of length at most `. They are discussed in § I.2.c.

Of course, the main point in this definition is the number (2m− 1)d` of
relators taken, which is actually quite large. Note that the set S` contains
about (2m− 1)` words, so that density is measured logarithmically (a fact
we will meet again in § II.). The intuition behind this and the strong anal-
ogy with usual dimension and intersection theory are very nicely explained
in [Gro93] (see also [Ghy03]): for a finite set X , the density of A ⊂ X
defined as d(A) = log #A/ log #X has, for “generic” A, lots of expected
properties of a dimension (e.g. for the dimension of an intersection).

The basic idea is that d` is the “dimension” of the random set of relators
R (the set S` itself being considered of dimension ` because we have `
independent letter choices to make to specify an element in S`).

Classically, the dimension of a set (subspace in a vector space, algebraic
submanifold) is the maximal number of “independent equations” that we
can impose so that there still exists an element in the set satisfying them.
For words, an “equation” will mean prescribing some letter in the word.
Now consider e.g. a set of 2d` random words of length ` in the two letters a
and b; a simple counting argument shows that very probably, one of these
words will begin with roughly d` letters a (but not much more), meaning
that this random set has “dimension” d`. More precisely:

Proposition 9 – Let R be a random set of relators at density d, at length
`. Let 0 6 α < d. Then with overwhelming probability the following
occurs: Any reduced word of length α` appears as a subword of some word
in R.

Note that by a trivial cardinality argument, if α > d there exists a
reduced word of length α` not appearing as a subword of any word in R.

Let us show on another example the strength (and correctness) of di-
mensional reasoning: Let us compute the probability that there exist two
relators in R sharing a common subword of length α`. The dimension of
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R is d`, so that the dimension of the set of couples R × R is 2d`. Now
sharing a common subword of length L imposes L equations, so that the
“dimension” of the set of couples of relators sharing a common subword of
length α` is 2d` − α`. So if d < α/2 this dimension will tend to −∞ as
`→ ∞, implying that there will be no such couple of relators; conversely if
d > α/2 there will exist such a couple because dimension will be positive.
What we have “shown” is:

Proposition 10 – Let α > 0 and d < α/2. Then with overwhelming
probability, a random set of relators at density d satisfies the C′(α) small
cancellation condition.

Conversely, if d > α/2, then with overwhelming probability a random
set of relators at density d does not satisfy the C′(α) small cancellation
condition.

A rigorous proof ([Gro93], 9.B) is obtained by a simple counting argu-
ment, which in fact amounts to raising (2m− 1) to the exponents given by
the various “dimensions” of the sets involved.

I.2.b. The phase transition. The striking phase transition theorem
then proven by Gromov in [Gro93] is as follows.

Theorem 11 – Let G be a random group at density d.

• If d < 1/2, then with overwhelming probability G is infinite, hyper-
bolic, torsion-free, of geometric dimension 2.

• If d > 1/2, then with overwhelming probability G is either {e} or
Z/2Z.

We include a proof of this theorem in § V. The argument appears in
[Gro93], pp. 273–275; it suffers from omission of the case when a van Kam-
pen diagram comprises the same relator several times. The proof of a
similar-looking statement (Theorem 29 in the triangular model, see § I.3.g.)
in [Żuk03] suffers from a similar but more subtle flaw (see § V.). A some-
what lengthy proof is given in [Oll04].

This calls for a few comments: Of course Z/2Z occurs for even `. What
happens at exactly d = 1/2 is unknown and even the right way of asking
the question is unclear (see § IV.a. for an elaboration on this). Note that
Proposition 10 already implies the conclusion for d < 1/12, for then the
presentation satisfies the good old C′(1/6) small cancellation condition.

This theorem generalizes to random quotients of torsion-free hyperbolic
groups (§ II.1. and § II.2.).

The reason for density 1/2 is the following: Recall the probabilistic
pigeon-hole principle2, which states that if in N holes we put much more

2A.k.a. the birthday paradox : in a class of more than 23 pupils there is a good chance
that two of them share the same birthday. This is a simple combinatorial exercise.
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than
√
N pigeons then we will put two pigeons in the same hole (very prob-

ably as N → ∞, provided that the assignment was made at random). In
other words, a generic set of density more than 1/2 does self-intersect.

Density 1/2 is the case when the cardinal of the set of relators R is more
than the square root of the cardinal of the set S` of words of length `. In
particular, this means that we very probably picked twice the same relator
in R. A fortiori, very probably there are two relators r1, r2 ∈ R differing
just at one position i.e. r1 = wa±1

i , r2 = wa±1
j with |w| = ` − 1. But

in the group G = Fm/〈R〉, we have by definition r1 =G r2 =G e, so that
a±1
i =G a±1

j . Since there are only a finite number of generators, this will
eventually occur for every value of i and j and every sign of the exponent,
so that in G any generator will be equal to any other and to its inverse,
implying that the group has only one or two elements.

This proves the trivial part of the theorem.

I.2.c. Variations on the model. Several points in the definition above
are left for interpretation. First, let us stress that it is not crucial to take
relators of length exactly `: choosing lengths between ` and `+ o(`) would
do as well. This even has several advantages: it kills the odd Z/2Z in The-
orem 11 and avoids matters of divisibility by 3 in the property (T ) theorem
(Theorem 27).

Actually the most natural setting is perhaps to choose at random words
of length at most ` (“ball variant”) instead of exactly `. Since the number
of words grows exponentially, most words so taken will be of length close to
`, but since the number of words taken is exponential too, some words will
be shorter (at density d the shortest word will have length approximately
(1−d)`). This variant simplifies the statements of Theorems 11, 27 and 38,
is more natural for random quotients (§ II.), and the validity of all random
group theorems proven so far seems to be preserved. In this text we chose
to keep the historical Definition 7, in order to quote the literature without
change; but e.g. for a textbook on random groups, the ball variant might
be preferable.

There is a slight difference between choosing N times a random word
and having a random set of N words, since some word could be chosen
several times. But for d < 1/2 the probability that a word is chosen twice
is very small and the difference is negligible; anyway this does not affect
our statements, so both interpretations are valid.

Numbers such as (2m− 1)d` are not necessarily integers. We can either
take the integer part, or choose two constants C1 and C2 and consider
taking any number of words between C1(2m − 1)d` and C2(2m − 1)d`.
Once more this does not affect our statements at all.

One may hesitate between choosing reduced or cyclically reduced words.
Once again this does not matter.

Section 4 of [Oll04] (in particular Remark 8) contains an axiomatic frame-
work which allows to handle such a loose model and not to reprove all the
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theorems for each variant.
In all theorems stated in this text, not only does “with overwhelming

probability” mean that the share of groups not having the property under
consideration tends to 0 as ` → ∞, but actually the decay is exponential,
that is, there exists a constant c (depending on everything except `) such
that this share is less than exp(−c`).

A very natural generalization of the density model is the temperature
model, described in § IV.k.

Remark 12 (on density 0) – The intuition makes it clear that the only
thing that matters is the exponent of growth of the number of relators.
Thus, although it would follow from Definition 7 that a random set of
relators at density 0 consists of one relator, we often use “density 0” to
refer to a situation when the number of relators grows subexponentially
with their lengths, e.g. the case of a constant number of relators (the few-
relator model of Def. 1—but not the one of Def. 4).

I.3. Critical densities for various properties

A bunch of properties are now known to hold for random groups. This
ranges from group combinatorics (small cancellation properties) to algebra
(freeness of subgroups) to geometry (boundary at infinity, growth exponent,
CAT(0)-ness) to probability (random walk in the group) to representation
theory on the Hilbert space (property (T ), Haagerup property). Some of
the properties studied here are intrinsic to the group, others depend on a
marked set of generators or on the standard presentation through which
the random group was obtained.

Most interesting is the fact that some intrinsic properties vary with den-
sity (property (T ), Haagerup property), thus proving that different densi-
ties can provide non-isomorphic groups (see § IV.b. for a discussion of this
problem).

I.3.a. Van Kampen diagrams and small cancellation properties.
These are the most immediate properties one gets for a random group.
They are properties of the presentation, not of the abstract group.

Hyperbolicity of random groups is proven through isoperimetry of van
Kampen diagrams (see the Primer for what we need on van Kampen di-
agrams or [LS77, Ols91a, Rot95] for definitions and [Sho91a] for the link
with hyperbolicity). Various, closely related formulations of this inequality
for random groups appear in [Gro93, Ch91, Ols92, Ch95, Oll04, Oll-f]. We
give the most recent one from [Oll-f], which is sharp and, combined with a
result in [Ch94], gives a nice estimate for the hyperbolicity constant:

Theorem 13 – For every ε > 0, with overwhelming probability, every
reduced van Kampen diagram D in a random group at density d < 1/2, at
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length ` satisfies
|∂D| > (1 − 2d− ε) ` |D|

where |∂D| is the boundary length and |D| the number of faces of D.
Consequently, the hyperbolicity constant δ of the random group satisfies

δ 6
4`

1 − 2d

and the length of the smallest relation in the group is at least `(1−2d− ε).
These properties are understood with respect to the standard presenta-

tion from which the random group was obtained.

This theorem of course implies Theorem 11. The complete argument is
given in § V.

The isoperimetric constant is optimal in the sense that, with overwhelm-
ing probability, there exists a two-face van Kampen diagram D satisfying
|∂D| 6 (1 − 2d + ε) ` |D|, which is just the failure of the C′(2d+ ε) small
cancellation property (Prop. 10). For the hyperbolicity constant, clearly `
is the right order of magnitude but the real dependency on d when d→ 1/2
is unclear.

Next come some small cancellation conditions. By the way, actually
as d approaches 1/2, we have arbitrarily large cancellation (which refutes
the expression “small cancellation on average” sometimes applied to this
theory—we indeed measure cancellation on average, but it is not small), as
results from the next proposition.

Recall that, given a group presentation, a piece is a word which appears
as a subword of two different relators in the presentation, or as a subword at
two different positions in the same relator (relators are considered as cyclic
words and up to inversion). For α > 0, the most often used C′(α) condition
states that the length of any piece is less than α times the infimum of the
lengths of the relators on which it appears. For an integer p, the C(p)
condition holds if no relator is the union of less than p pieces. The B(2p)
condition holds if the union of p consecutive pieces always makes less than
half a relator. We have the implications C′(1/2p) ⇒ B(2p) ⇒ C(2p + 1).
The T (p) small cancellation condition is totally irrelevant for groups with
lots of relators.

ConditionsC′(1/6), C(7) orB(6) imply hyperbolicity. Elementary count-
ing arguments [OW-b] yield the following more erudite version of Proposi-
tion 10:

Proposition 14 – With overwhelming probability:

• The C′(α) condition occurs if d < α/2 and fails for d > α/2,
• The C(p) condition occurs if d < 1/p and fails for d > 1/p,
• The B(2p) condition occurs if d < 1/(2p+2) and fails for d > 1/(2p+

2).



Models of typical groups 35

These conditions being understood for the standard presentation from
which the random group was obtained.

In particular, using the C(7) condition, this proposition proves Theo-
rem 11 up to density 1/7.

Closely related to small cancellation are Dehn’s algorithm (see [LS77]),
which holds for a group presentation when every reduced cyclic word rep-
resenting the identity in the group has a subword which is more than
half a subword of a relator in the presentation; and its stronger version,
Greendlinger’s Lemma (see [LS77] too), which holds when every reduced
van Kampen diagram with at least two faces has at least two faces hav-
ing more than half their length on the boundary of the diagram (in one
piece). Every hyperbolic group admits some finite presentation satisfying
Dehn’s algorithm ([Sho91a], Theorem 2.12). However, for the standard
presentation of a random group, a phase transition occurs at 1/5 [Oll-f]:

Theorem 15 – With overwhelming probability, if d < 1/5 the standard
presentation of a random group at density d satisfies Dehn’s algorithm and
Greendlinger’s Lemma. If d > 1/5, with overwhelming probability it does
not satisfy any of the two.

This property is the last remnant of combinatorial small cancellation
when density increases. It is crucial in the proof of Theorems 32 and 33
about action on a cube complex and failure of property (T ).

I.3.b. Dimension of the group. A consequence of the isoperimetric
inequality holding for any reduced van Kampen diagram is that the Cayley
2-complex associated with the presentation is aspherical [Gro93, Oll04], so
that the group has geometric (hence cohomological) dimension 2 as stated
in Theorem 11. The Euler characteristic of the group is thus simply 1 −
m+ (2m− 1)d`.

In particular, since this Euler characteristic is positive for large `, we get
the following quite expected property (at least for d > 0, but this also holds
at density 0 thanks to Theorem 18):

Proposition 16 – With overwhelming probability, a random group in the
density model is not free.

Consideration of the Euler characteristic also implies that, for fixed m,
the “dimension” d` of the set of relations of the group is well-defined by its
algebraic structure.

I.3.c. Algebraic properties at density 0: rank, free subgroups.
When density is 0 (i.e. in the few-relator model, see Def. 1 and Remark 12),
random groups keep lots of algebraic properties of a free group. In a cer-
tain sense, there are “no more” relations holding in the group than those
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explicitly put in the presentation. Several theorems in this direction are
proven by Arzhantseva and Ol’shanskĭı, using a technique of representation
of subgroups of a group by labelled graphs (or finite automata) introduced
by Stallings [Sta83], technique which will be discussed more in § III.1.
Arzhantseva and Ol’shanskĭı are able to extract, from failure of freeness in
subgroups of a random group, a “too small” representation of one of the
relators, which never occurs for random relators.

It is clear that some (all?) of these theorems do not hold at all densities.
But they probably extend to small positive values of d, the determination
of which is an interesting problem.

The first such theorem [AO96] is the following:

Theorem 17 – With overwhelming probability in the few-relator model of
random groups with m generators and n relators, any subgroup generated
by m− 1 elements is free.

This is not true at all densities (see § IV.d.). When the m− 1 generators
of the subgroup are chosen among the m standard generators of the group,
this is a particular case of Theorem 6.

The group itself is not free and more precisely [Ar97]:

Theorem 18 – In the few-relator model of random groups with n > 1
relators, no finite-index subgroup of the group is free.

As a corollary of these two theorems, we see that the rank of the random
group in the few-relator model is exactly m, which, once again, does not
hold at all densities (cf. § IV.d.).

Reusing the methods of Arzhantseva and Ol’shanskĭı, Kapovich and
Schupp prove that there is “only one”m-tuple generating the group. Re-
call [LS77] that for a m-tuple of elements (g1, . . . , gm) in a group, a Nielsen
move consists in replacing some gi with its inverse, or interchanging two
gi’s, or replacing some gi with gigj for some i 6= j. Obviously these moves
do not change the subgroup generated by the m-tuple. The theorem [KS05]
reads:

Theorem 19 – With overwhelming probability, in a random few-relator
groupG, anym-tuple of elements generating a non-free subgroup is Nielsen-
equivalent in G to the standard m-tuple of generators w.r.t. which the
random presentation was taken.

In particular, any automorphism of G lifts to an automorphism of Fm.

More properties of free groups are kept by random few-relator groups.
In a free group, any subgroup is free; any finitely generated subgroup is
quasiconvex; any non-trivial finitely generated normal subgroup has finite
index ([LS77], Prop. I.3.12); the intersection of any two finitely generated
subgroups is finitely generated (Howson’s Theorem, [LS77], Prop. I.3.13).
These properties are generalized as follows in [Ar97, Ar98]:
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Theorem 20 – Let L > 1 be an integer. With overwhelming probability,
a random few-relator group satisfies the following properties.

• Any subgroup of rank at most L and of infinite index is free.
• Any subgroup of rank at most L is quasiconvex.
• Any non-trivial normal subgroup of rank at most L has finite index.

• The intersection of any two subgroups of rank at most L is quasicon-
vex and finitely generated.

The overwhelming probability depends on L. For example, it is not clear
whether all infinite-index subgroups are free or not.

The last point follows from the second one, noting that, in a finitely gen-
erated group, the intersection of two quasiconvex subgroups is quasiconvex
and quasiconvex subgroups are finitely generated (see the nice [Sho91b]).

The results mentioned so far deal with properties of subgroups in the ran-
dom group. One can wonder how subgroups of the free group are mapped
to the random group. A theorem in this direction is the following [Ar00]:

Theorem 21 – Let h1, . . . , hk be elements of the free group Fm generating
a subgroup H of infinite index. Then with overwhelming probability, the
map from Fm to a random few-relator group is injective on H .

Conversely, it is easily seen that subgroups of finite index do not embed.
Of course this holds for elements h1, . . . , hk fixed in advance: it cannot

be true that the quotient map is injective on all subgroups...

I.3.d. Boundary and geometric properties of the Cayley graph.
We refer to [GhH90, CDP90, BH99] for the notion of boundary of a hyper-
bolic space.

Since the dimension of a random group is 2 (§ I.3.b.), by Corollary 1.4
of [BM91], the dimension of its boundary is 1. Champetier ([Ch95], The-
orem 4.18) proves that at small density, the boundary is the most general
object of dimension 1:

Theorem 22 – Let d < 1/24. Then with overwhelming probability, the
boundary of a random group is a Menger curve. In particular the group is
one-ended.

The bound 1/24 is probably not sharp. Let us recall that the Menger
curve is the universal object in the category of compact metric spaces of di-
mension 1, see [And58]; it is (almost) characterized as the 1-dimensional, lo-
cally connected, locally non-planar continuum without local cut points (the
boundary of a one-ended hyperbolic group never has cut points [Swa96]).

One-endedness probably holds at any density, but between 1/24 and 1/3
no simple criterion seems to apply. For d > 1/3, using Serre’s theory of
groups acting on trees [Ser77, HV89] it is a corollary of Theorem 27 on
property (T ):



38 A January 2005 invitation to random groups

Proposition 23 – Let d > 1/3. Then with overwhelming probability, a
random group is one-ended.

At density 0, the Cayley graph of the group is not planar [AC04] (pla-
narity of Cayley graph and complexes is an old story, see discussion in
[AC04]). The result actually holds for generic C′(1/8) small cancellation
groups and so:

Theorem 24 – Let d < 1/16. With overwhelming probability, the Cayley
graph (w.r.t. the standard generating set) of a random group at density d
is not planar.

Actually the technique used in [AC04] allows to embed subdivisions of
lots of finite graphs into the Cayley graph of a small-density random group.

I.3.e. Growth exponent. The growth exponent of a group presen-
tation G = 〈 a1, . . . , am | R 〉 measures the rate of growth of balls in the
group. Let BL be the set of elements of the group G which can be written
as a word of length at most L in the generators a±1

1 , . . . , a±1
m . If G is the

free group Fm, the number of elements of BL is 1+
∑L
k=1(2m)(2m−1)L−1

which is the number of elements at distance at most L from the origin in
the valency-2m regular tree. The thing that matters here is the exponential
growth rate of the balls,

g = lim
L→∞

1

L
log2m−1 #BL

(the limit exists thanks to the relation #BL+L′ 6 #BL #BL′). This
quantity is the growth exponent of the group G w.r.t. the generating set
a1, . . . , am. It is at most 1, and equal to 1 if and only if G is the free
group Fm on these generators. See [Har00] (chapters VI and VII), [GH97]
or [Ver00] for some surveys and applications related to growth of groups.

Actually, the growth exponent of a random group at any density d <
1/2 is arbitrarily close to that of a free group with the same number of
generators [Oll-b]. Of course, by Theorem 13 a random group behaves like
a free group up to scales `(1 − 2d), but growth is an asymptotic invariant
taking into account the non-trivial geometry of the group at scale `, so it is
somewhat surprising that the growth exponent is large independently of the
density d (except if d > 1/2 where of course it drops to 0). Computing the
growth exponent was initially an attempt to build a continuous quantity
depending on density.

Theorem 25 – Let ε > 0 and 0 6 d < 1/2. Then with overwhelming
probability, the growth exponent of a random group at density d lies in the
interval [1 − ε; 1) (w.r.t. the standard generating set).

Note that non-sharp bounds for the growth exponent can be obtained
from the spectral estimates discussed in § I.3.f. (see discussion in [Oll-b]).
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When d < 1/12 the random group satisfies the C′(1/6) small cancel-
lation condition, and in this case this result is related to a theorem of
Shukhov [Shu99] stating that C′(1/6) groups with long enough relators
and “not too many” relators have growth exponent close to 1. Shukhov’s
“not too many” relators condition is strikingly reminiscent of a density con-
dition.

I.3.f. Random walk in a typical group. A group together with a
generating set defines a random walk, which consists in starting at e and, at
each step, multiplying by one of the generators or its inverse, chosen at ran-
dom (this is the simple random walk on the Cayley graph). A foundational
paper of this theory is that of Kesten [Kes59], see also [Gri80, GH97, Woe00]
for some reviews.

One quantity containing a lot of information about the random walk is
the spectral radius of the random walk operator (see [Kes59]). Let Pt be
the probability that at time t, the random walk starting at e is back at e.
The spectral radius of the random walk is defined as

ρ = lim
t→∞
t even

(Pt)
1/t

(the limit exists thanks to the property Pt+t′ > PtPt′). One restricts
oneself to even t because there might be no odd-length path from e to e
in the Cayley graph. This quantity is at most 1 (a value achieved if and

only if the group is amenable [Kes59]), and at least
√

2m−1
m where m is the

number of generators (achieved if and only if the group is free on these
generators).

Just as for the growth exponent, it came out as a surprising fact that the
spectral radius of the random walk on a random group does not depend on
density [Oll05a], except of course when d > 1/2 where it suddenly jumps
to 1. Once again this cannot be interpreted simply by saying that random
groups are free up to scale `(1 − 2d), because the spectral radius is an
asymptotic invariant taking into account the non-trivial geometry at scale
`.

Theorem 26 – Let ε > 0 and 0 6 d < 1/2. Let ρ(Fm) =
√

2m−1
m be the

spectral radius of the random walk on the free group Fm.
Then with overwhelming probability, the spectral radius of the random

walk on a random group at density d lies in the interval (ρ(Fm); ρ(Fm)+ε).

At density 0 this follows from a theorem of Champetier [Ch93], which, as
mentioned earlier (§ I.1.), also holds in the few-relator model with various
lengths.

Consequently, the growth exponent of the kernel of the map Fm → G
(the cogrowth exponent of G) is less than 1/2 + ε, thanks to a formula by
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Grigorchuk ([Gri80, Ch93, Oll04]). This answers Gromov’s question 9.B.(c)
in [Gro93]: normal closures of random sets of density < 1/2 generated by
random large elements in Fm have “density” (growth exponent) less than
1/2 + ε.

This result also has a nice interpretation in terms of a random walk on
an infinite tree with lots of “zero-length” bridges added at random (in an
“equivariant” way). Indeed the random walk on a random group G can be
thought of as a random walk on the Cayley graph of the free group Fm
where elements of Fm mapping to the same element of G are linked by a
bridge through which the random walk can“instantly”travel. The theorem
then states that adding “lots of” bridges equivariantly does not change the
probability to come back to (a point connected by bridges to) the origin,
up till some density when suddenly any point is connected to the origin by
a sequence of bridges.

I.3.g. Property (T ) and the triangular model. Kazhdan’s property
(T ) of a group has to do with the behavior of unitary actions of the group on
the Hilbert space and basically asks that, if there are unitary vectors which
the group action moves by arbitrarily small amounts, then there is a vector
fixed by the action. It has proven to be linked with numerous algebraic or
geometric properties of the group. We refer to [HV89, BHV, Val02a] for
reviews and basic properties.

The so-called spectral criterion is a sufficient condition for property (T )
of a discrete group, which is an explicitly checkable property of the ball
of radius 1 in the Cayley graph w.r.t. some generating set. The neatest
statement is to be found in [Żuk03], see also [Żuk96, BŚ97, Pan98, Wan98,
Val02a]. Gromov (part 3 of [Gro03]) put this result in a more general
context, which allowed Ghys to write a very simple proof [Ghy03, Oll-d].

It happens that in the density model, after suitable manipulations of
the presentation, this criterion is satisfied as soon as d > 1/3. It is not
known whether this latter value is optimal (compare Theorem 32 below
and § IV.c.).

Theorem 27 – Let d > 1/3 and let G be a random group at density d
and at lengths `, `+ 1 and `+ 2. Then, with overwhelming probability, G
has property (T ).

The necessity to take a random quotient at three lengths simultaneously
is a technical annoyance due to the too restrictive definition of the density
model, which disappears if we replace the sphere by the ball in Definition 7
(see Remark 8 and § I.2.c.). This results from the necessity to have some
relators of length a multiple of 3, as we explain now.

This theorem is proven using an intermediate random group model bet-
ter suited to apply the spectral criterion, the triangular model, which we
now define. This model consists in taking relators of length only 3, but let-
ting the number of distinct generators tend to infinity. Żuk [Żuk03] wrote
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a proof that property (T ) holds in this model at density d > 1/3 (Theo-
rem 31); it is then possible to carry the result to the density model (but
actually Theorem 27 seems not to be written anywhere explicitly in the
literature).

Definition 28 (Triangular model) – Let n be an integer and let b1, . . . , bn
be n distinct symbols. LetWn,3 be the set of words of length 3 in b1, . . . , bn, b

±1
1 , . . . , b±1

n

which are cyclically reduced.
Let 0 6 d 6 1. A random group on n relators at density d in the

triangular model is the group presented by G = 〈 b1, . . . , bn | R3 〉 where R3

is a set of (#Wn,3)
d words taken at random in Wn,3.

A property of G is said to occur with overwhelming probability in this
model if its probability of occurrence tends to 1 as n→ ∞.

Note that #Wn,3 ∼ (2n)3 for large n. The density intuition is the same
as above: the number of relators taken is a power of the total number of
possibilities.

Actually there is a natural homomorphism from a random group in the
triangular model to a random group in the density model, at the same
density. This goes as follows: Letm be the number of generators used in the
density model, let ` be a length which is a multiple of 3, and let W ′

m,`/3 be

the set of all reduced words of length `/3 in the symbols a±1
1 , . . . , a±1

m . Now
take n = 1

2#W ′
m,`/3 and define a map ϕ from the free group 〈b1, . . . , bn〉

to the free group 〈a1, . . . , am〉 by enumerating all the words in W ′
m,`/3 and

sending each bi to a distinct such word (and sending inverses to inverse
words). Note that if w ∈Wn,3 then ϕ(w) is a word of length ` in the a±1

i ’s.
Now if G3 = 〈 b1, . . . , bn | R3 〉 is a random group in the triangular model,

we can define a group G = 〈 a1, . . . , am | ϕ(R3) 〉, in which the relators
will have length `. If G3 is taken at density d, then by definition it con-
sists of (#Wn,3)

d ∼ (2n)3d relators, so that #ϕ(R3) = #R3 ∼ (2n)3d =

(#W ′
m,`/3)

3d ∼
(
(2m− 1)`/3

)3d
= (2m − 1)3d`, in accordance with the

density model. Note also that the image of the uniform law on Wn,3 is
(almost) the uniform law on the set of reduced words of length ` in the
a±1
i ’s. (The “almost” comes from the fact that if w = bi1bi2bi3 , then ϕ(w)

may not be reduced at the junction points of ϕ(bij ) with ϕ(bij+1
), but the

density model is robust to such a slight modification, see § I.2.c.).
So, up to this latter technicality, there is a natural homomorphism ϕ :

G3 → G from a random group in the triangular model to a random group
in the density model, at the same density. This means that the triangular
model is “less quotiented” than the density one.

It is possible to prove [Żuk03] quite the same hyperbolicity theorem as
for the density model:

Theorem 29 – If d < 1/2, then with overwhelming probability a random
group in the triangular model, at density d, is non-elementary hyperbolic.
If d > 1/2, it is trivial with overwhelming probability.
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But the fact that groups in the triangular model are“larger”than those in
the density model is especially clear when considering the following propo-
sition.

Proposition 30 – If d < 1/3, then with overwhelming probability, a
random group in the triangular model at density d is free.

Of course its rank is smaller than n. This results from the fact that at
density d < 1/3 in the triangular model, the dual graph of any van Kampen
diagram is a tree.

Żuk [Żuk03] wrote a proof that in the triangular model, the spectral
criterion for property (T ) is satisfied:

Theorem 31 – If d > 1/3, then with overwhelming probability, a random
group in the triangular model at density d has property (T ).

In the triangular model, density 1/3 corresponds to the number of re-
lators being equal to the number of generators. So typically at d > 1/3
every generator appears a large number of times in the relators, which is
not the case for d < 1/3. Consequently, the link of e in the Cayley graph
will be a random graph with a large number of edges per vertex. Such
graphs have a very large (close to 1) spectral gap and the spectral criterion
for property (T ) mentioned above applies.

Actually, as an intermediate step Żuk uses yet another variant of the tri-
angular model (based on random permutations, see section 7.1 in [Żuk03]),
which is rather artificial for random groups but arises very naturally in the
context of random graphs, a crucial tool of the proof. The transfer to the
standard triangular model involves use of the matching theorem.

Now property (T ) is stable under quotients. Using the morphism ϕ :
G3 → G above, Theorem 27 follows from Theorem 31 and from all the
details we’ve omitted (e.g. the necessary modifications to make in order
to get a surjective ϕ, or handling of the reduction problems). It seems
that actually neither these details nor Theorem 27 itself do appear in the
literature.

I.3.h. Testing the triangular model: Gromov vs. the computer.
There is an amusing story to be told about the triangular model. In 2001,
Richard Kenyon performed computer experiments to test Gromov’s state-
ment (Theorem 29). He used Derek Holt’s KBMAG package [Hol95] to
test triviality of random groups in the triangular model. The tests were
made up to n = 500 generators using about 2000 relations (which makes d
slightly above 1/3). The results suggested that triviality occurred as soon
as d > 1/3, in contradiction with Theorem 29. Kenyon subsequently re-
viewed Gromov’s proof of Theorem 11 given in [Gro93] and pointed out the
omission of van Kampen diagrams featuring the same relator several times
(see § V.).
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The author performed another series of experiments and analyzed the
results by hand. It turned out that each time the group was trivial at
1/3 < d < 1/2, this was due to some “exceptional event”whose asymptotic
probability should be very small; but the combinatorial factor counting
these events, although bounded, is quite large (a fact that may be related
to the huge constants appearing in the local-global principle, see discussion
in § V.); so the phenomenon should disappear when using larger n. On
the other hand, it was not difficult to correct Gromov’s argument (this
led to the proof of Theorem 11 given in [Oll04]). The observed change of
behavior of the algorithm at d > 1/3 might be related to Proposition 30: at
d < 1/3 the group is non-trivial (actually free) for trivial reasons, whereas
at 1/3 < d < 1/2 the reasons for non-triviality involve the full strength of
hyperbolic theory.

The triangular model has seemingly been less successful than the den-
sity model. Comparing Proposition 30 and Theorem 31, this model may
be quite specific to the study of property (T ) (but a one-step proof of The-
orem 27 using the spectral criterion applied to a generating set made of
words of length `/3 is feasible). Moreover the triangular model does not
generalize to a theory of random quotients of given groups (§ II.1., § II.2.).
On the contrary, in the usual model density controls the occurrence of sev-
eral combinatorial and geometric events; we now turn to the description of
some transformations happening at densities 1/6 and 1/5.

I.3.i. Cubical CAT(0)-ness and the Haagerup property. In view
of Theorem 27, one can wonder whether 1/3 is the optimal density value for
the occurrence of property (T ). It is not true that all random groups have
this property: indeed, random groups at d < 1/12 are C′(1/6) small cancel-
lation groups, and, following Wise [Wis04], those do not have property (T ).
This happens to be the case up to density at least 1/5 [OW-b]:

Theorem 32 – Let d < 1/5. Then with overwhelming probability, a
random group at density d has a codimension-1 subgroup. In particular, it
does not have property (T ).

The codimension-1 subgroup (the existence of which excludes property
(T ) by a result in [NR98]) is constructed through a technique developed by
Sageev [Sag95], extended among others by Wise [Wis04], related to actions
of the group on cube complexes. When d < 1/6, the construction of [Wis04]
fully applies and provides a complete geometrization theorem [OW-b]:

Theorem 33 – Let d < 1/6. Then with overwhelming probability, a
random group at density d acts freely and cocompactly on a CAT(0) cube
complex. Moreover it is a-T-menable (Haagerup property).

Like property (T ), with which it is incompatible, the Haagerup property
of a group has to do with its actions on the Hilbert space. It amounts to
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the existence of a proper isometric affine action on the Hilbert space, which
is a kind of flexibility excluding property (T ). We refer to [CCJJV01] for
a fact sheet on the Haagerup property. For discrete groups, a very nice
equivalent definition is the existence of a proper action on a space with
measured walls [CMV04].

The strategy is to construct walls [HP98] in the group. Natural candi-
dates to be walls are hypergraphs [Wis04], which are graphs built from the
Cayley complex as follows: the vertices of the hypergraphs are midpoints
of edges of the Cayley complex, and the edges of the hypergraphs connect
vertices corresponding to midpoints of diametrally opposite edges in faces
of the Cayley complex (assuming that all relators have even length).

Densities 1/5 and 1/6 come into play as follows. If the group presentation
satisfies the conclusion of Theorem 15 (kind of Greendlinger’s Lemma),
which happens up to 1/5, then the hypergraphs are trees embedded in the
Cayley complex and so are genuine walls. The stabilizers of these walls
provide codimension-1 subgroups, thus refuting property (T ) [NR98]. On
the contrary it happens that for d > 1/5, there is only one hypergraph,
which passes through every edge of the Cayley complex [OW-b]...

Following Sageev’s [Sag95] original ideas, there is a now standard [NR98,
Nic04, Wis04, CN, HW] correspondence between spaces with walls and cu-
bical complexes. In our case, below density 1/6 (but not above) the hyper-
graphs have some convexity properties and moreover two given hypergraphs
cannot intersect at more than one point (except for degenerate cases); this
allows to show that there are“enough”walls for the cube complex construc-
tion to work [HW], getting a free, cocompact action of the random group.
(It seems likely however that Theorem 33 holds up to density 1/5.)

The Haagerup property follows either from consideration of the cube
complex as in [NR98], or from general properties of groups acting on spaces
with walls ([CMV04], after a remark of Haglund, Paulin and Valette).

According to Proposition 10, random groups at d < 1/6 satisfy the C(6)
small cancellation condition. So an interpretation of Theorem 33 is that
“generic”C(6) groups have the Haagerup property. It is currently an open
question to know whether some C(6) groups can have property (T ).

This closes our journey through the influence of density on properties of
the group. Space was missing to draw the geometric pictures corresponding
to the events considered; but each time, density allows or forbids the exis-
tence of very concrete diagrams in the Cayley complex with certain metric
properties relevant to the question under study.

I.4. The space of marked groups

A group marked with m elements is a finitely generated group G, together
with an m-tuple of elements g1, . . . , gm ∈ G such that these elements gener-
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ateG; or, equivalently, a groupG together with a surjective homomorphism
Fm → G.

For fixed m, the space Gm of all groups marked with m elements has
a natural topology, apparently first introduced in Grigorchuk’s celebrated
paper [Gri84], part 6 (also compare the end of [Gro81]): two marked groups
(G, (gi)) and (G′, (g′i)) are close if the kernels of the two maps Fm → G,
Fm → G′ coincide in a large ball of Fm, or, equivalently, if some large balls
in the Cayley graphs of G and G′ w.r.t. the two given generating sets are
identified by the mapping gi 7→ g′i. This means that the two generating
m-tuples have the same algebraic relations up to some large size.

We refer to [Pau03, Ch00, Gri84] for basic properties of the space Gm. It
is compact, totally discontinuous. Every finite group is an isolated point.
The subspaces of Abelian groups, of torsion-free groups are closed. Finitely
presented groups are dense in Gm. Any finitely presented group has a
neighborhood consisting only of quotients of it. The Minkowski dimension
of Gm is infinite [Guy].

Isomorphism of groups defines a natural equivalence relation on Gm. It
happens that this relation is extremely irregular from a measurable point
of view, so that it is not possible to measurably classify finitely generated
groups by a real number [Ch91, Ch00]:

Theorem 34 – Let m > 2. There exists no Borel map Gm → R constant
on the isomorphism classes and separating these classes.

Actually this equivalence relation is as irregular as a countable equiv-
alence relation can be [TV99]. Let X and X ′ be Borel sets and let R,
R′ be Borel equivalence relations on X and X ′ respectively, with countable
classes. Say that R is reducible to R′ if there exists a Borel map f : X → X ′

such that xRy ⇔ f(x)R′ f(y). In other words, R′ is more complex than
R. The theorem reads [TV99]:

Theorem 35 – Any Borel equivalence relation with countable classes is
reducible to the isomorphism relation on G5.

A review of the results and uses of this space is beyond the scope of our
work. In fact, it happens that the closure of the isomorphism class of the
free group (the limit groups of Sela [Sel]) is already quite complex [Sel,
CG05]. We focus here on the aspects linked to the idea of typicality for
groups.

The usual notion of topological genericity (Gδ-dense sets à la Baire) is
not very interesting due to the totally discontinuous nature of the space;
e.g. the set of Abelian groups is open-closed, as is any finite marked group
alone, so that any Baire-generic property has to hold for these classes of
groups. For these reasons, so far this space has not be used to define an
alternate notion of a“typical”group competing with Gromov’s probabilistic
approach.
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Nevertheless, following Champetier we can use our prior knowledge of
genericity of torsion-free hyperbolic groups (Theorems 5 and 11) to restrict
ourselves to the closure in Gm of those groups, and try to identify generic
properties therein. Indeed this program happens to work very well [Ch91,
Ch00]:

Theorem 36 – Let Htf
m be the closure in Gm of the subspace of all non-

elementary, torsion-free hyperbolic groups. Then there is a Gδ-dense subset
X ⊂ Htf

m such that any group G ∈ X satisfies the following properties:

• Its isomorphism class is dense in Htf
m,

• It is torsion-free,
• It is of rank 2,
• It is of exponential growth, non-amenable,
• It contains no free subgroup of rank 2,
• It satisfies Kazhdan’s property (T ),
• It is perfect,
• It has no finite quotient but the trivial group.

So all these properties can be viewed as generic properties of an“infinitely
presented typical group”.

Note however that such properties do depend on the class of groups we
take the closure of. If, of Theorems 5 and 11, we had only retained the
fact that a random group is non-elementary hyperbolic (and forget it is
torsion-free), then we would naturally have considered the closure Hm in
Gm of the subspace of non-elementary hyperbolic groups, in which case we
get the following [Ch91, Ch00] (compare [Ols91c]):

Theorem 37 – There is a Gδ-dense subset of Hm consisting only of groups
which are infinite and all elements of which are of torsion.

Infinite torsion groups have long been sought for (Burnside problem dat-
ing back to 1902). They were constructed for the first time in 1964 by
Adyan and Novikov and have been the source of an abundant literature
since then (see e.g. [Iva98, Gup89] for reviews). Diagrammatic methods for
this problem were introduced by Ol’shanskĭı [Ols82, Ols83]. It seems that
hyperbolic groups are a natural way towards infinite torsion groups ([DG],
[IO96], [Iva94], [Ols93], [Ols91c], chapter 12 of [GhH90], section 4.5.C
of [Gro87]).

The strength of this topological approach compared to the probabilistic
one is that it gives access to infinitely presented groups. The drawback is
that it does not provide by itself a non-trivial notion of generic properties of
groups: one has to combine it with prior knowledge from the probabilistic
approach. Once properties known to hold with overwhelming probability
for finitely presented groups are selected (and the result may depend on
this choice), the closure of these groups in the space Gm provides a notion of
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genericity for infinitely presented groups. Of course the notions of gener-
icity for finitely and infinitely presented groups cannot but be mutually
incompatible.

Note however that the probabilistic approach does not provide a well-
defined notion of “random group” either since one has to consider a family
of probability measures indexed by the length ` of the relators; but at least
this defines a notion of a generic property of finitely presented groups when
`→ ∞.

The temperature model (§ IV.k.), if understood, would solve all these
problems, noticeably by providing a natural family of (quasi-invariant?)
probability measures on Gm. See also § IV.g. for questions arising in this
framework.
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II. Typical elements in a group

Quoting from [Gro87], 5.5F:“Everything boils down to showing that adding
‘sufficiently random’ relations to a non-elementary word hyperbolic group
gives us a word hyperbolic group again[...]” Considering random elements
in a given group is often a good way to embody the intuition of which
properties are true when “nothing particular happens” and when the ele-
ments are “unrelated”. The behavior of random elements is often the best
possible.

We illustrate this on two categories of examples: The first is that typical
elements in a (torsion-free) hyperbolic group can be killed without harming
the group too much (robustness of hyperbolicity), and the probabilistic
approach allows to quantify very precisely the number of elements that can
be killed. The second is a sharp counting of the number of one-relator
groups up to isomorphism, the idea being that a random relator is nicely
behaved, implying a rigidity property, and that by definition typical relators
are the most numerous so that it is enough to count only them.

For this review, typical elements in a group were considered only insofar
as they are put in some group presentation and provide new, randomly-
defined groups, hence the two topics selected. Random elements in a finite
or infinite group have plenty of interesting properties by themselves, which
are not covered here. See for example the nice [Dix02] for the case of finite
groups.

II.1. Killing random elements of a group

II.1.a. Random quotients by elements in a ball. Theorem 11
states that a random quotient of the free group is hyperbolic. One can
wonder whether a random quotient of an already hyperbolic group stays
hyperbolic, and this is the case. In other words, hyperbolicity is not only
generic but also robust. This is all the more reasonable as, from a geo-
metric point of view, the intuition is that (torsion-free) hyperbolic groups
supposedly behave like free groups.

The following is Theorem 3 of [Oll04] (up to the benign replacement
of spheres by balls, see § I.2.c.), which generalizes the phase transition of
Theorem 11 above. As usual “with overwhelming probability”means “with
probability tending to 1 as `→ ∞”.
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Theorem 38 – Let G0 be a non-elementary, torsion-free hyperbolic group
equipped with some finite generating set, and let B` be the set of elements
of G0 with norm at most ` w.r.t. this generating set.

Let 0 6 d 6 1. Let R ⊂ G0 be a set obtained by picking at random
(#B`)

d times an element in B`. Let G = G0/〈R〉 be the random quotient
obtained.

• If d < 1/2, then with overwhelming probabilityG is (non-elementary)
hyperbolic.

• If d > 1/2, then with overwhelming probability G = {e}.

The explanation of the 1/2 is of course exactly the same as for Theo-
rem 11, namely the probabilistic pigeon-hole principle, although the proof
for d < 1/2 is considerably more difficult. Note again that the number
(#B`)

d is rather large. This phenomenon seems to be quite robust and
general and might be generalized to other subsets in which the generators
are picked, and maybe other classes of groups (§ IV.f.).

The torsion-freeness assumption can be relaxed to a “harmless torsion”
one, but it cannot be completely removed, the obstruction being growth
of the centralizers of torsion elements (see Theorem 41 below, § IV.f. and
[Oll05b]).

We refer to § IV.f. for natural questions and open problems concerning
these random quotients.

From a constructive point of view, it might seem quite difficult to pick
random elements uniformly distributed in the ball of a group, compared
to the easy generation of random words as used in Theorems 11 and 40.
However, algorithmic properties of hyperbolic groups are very nice: equal-
ity of two elements is decidable in real time [Hol00], every element can be
efficiently [EH] put into a normal form, and there is an explicit finite au-
tomaton enumerating these normal forms (“Markov codings”: section 5.2
of [Gro87], [GhH90]).

According to Gromov’s quote above, the idea that unrelated elements
in a hyperbolic group can be killed is quite old. In a deterministic con-
text, this “relative small cancellation”, presented in section 5.5 of [Gro87]
(where Gromov refers to Ol’shanskĭı’s paper [Ols83]) was later formal-
ized by Ol’shanskĭı (section 4 of [Ols93]), Champetier [Ch94] and Delzant
[Del96a]. This theory generalizes the usual small cancellation C′(λ) to el-
ements chosen in a hyperbolic group. But, just as usual small cancellation
stops at density 1/12 for random groups, relative small cancellation is too
restrictive and does not make it up to the maximal number of elements one
can kill, hence the interest of the random point of view.

II.1.b. Growth of random quotients. A theorem stating that the
growth exponent does not change much under such a quotient, generalizing
Theorem 25, has been proven [Oll-b] (we refer to § I.3.e. for the definition
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of the growth exponent). Note that by the results in [AL02], this exponent
cannot stay unchanged.

Theorem 39 – Let G0 be a non-elementary, torsion-free hyperbolic group
generated by the finite set S. Let B` be the ball in G0 and g the growth
exponent of G0, both w.r.t. S. Let G be a random quotient of G0 by
elements of B` at density d as in Theorem 38, and suppose of course d <
1/2.

Then, for any ε > 0, with overwhelming probability the growth exponent
of G lies in the interval (g − ε; g).

It is likely [Oll-e] that the spectral radius of the random walk operator
on the group does not change much too (compare Theorem 42).

II.2. Killing random words, and iterated quo-

tients

II.2.a. Random quotients by words. Theorem 38 describes what
happens when quotienting a hyperbolic group by random elements in it.
Another possible generalization of Theorem 11 is to quotient by random
words in the generators. Though maybe not as intrinsic, this model has the
advantage that the notion of random quotient becomes independent of the
initial group (within the class of marked groups); in particular, it allows
to study successive random quotients of a group taken w.r.t. one and the
same generating set, as used notably in [Gro03].

Of course, the unavoidable consequence of the model being independent
on the initial group is that the critical density will depend on this group.
Actually the critical density is equal to the exponent of return to e of
the simple random walk w.r.t. the generating set a1, . . . , am considered:
basically, if this probability behaves like (2m)−αt for large times t, the
critical density will be α. The result reads ([Oll04], Theorem 4):

Theorem 40 – Let G0 be a torsion-free hyperbolic group generated by
the elements a1, . . . , am.

Let (wt)t∈N be the trajectory of a simple random walk in G0 w.r.t. the
generators a±1

i and let

dcrit = − lim
t→∞
t even

1

t
log2m Pr(wt =G0

e) = − log2m ρ(G0)

where ρ is the spectral radius of the random walk operator ([Kes59] or
§ I.3.f.). Note that dcrit > 0 unless G0 is elementary.

Let 0 6 d 6 1 and let W` be the set of all (2m)` words of length ` in
the a±1

i ’s. Let R be the random set obtained by picking (2m)d` times at
random a word in W`.
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Let G = G0/〈R〉 be the random quotient so obtained. Then with over-
whelming probability:

• If d < dcrit, then G is (non-elementary) hyperbolic.

• If d > dcrit, then G = {e}.

Once again the spirit of the density model is to kill a number of words
equal to some power d of the total number of words (2m)`. Note that
dcrit < 1/2, even when G0 is the free group (the difference with Theorem 11
being that we use plain words instead of reduced ones).

There is also a version of Theorem 40 using reduced words instead of
plain words (thus a formal generalization of Theorem 11). In this version
(Theorem 2 of [Oll04]), 2m is to be replaced with 2m− 1 everywhere and
a Z/2Z might appear for d > dcrit and even `. The critical density is
now equal to 1/2 for the free group, and to the exponent of return to e of
the reduced random walk in G0 (i.e. the random walk with no immediate
backtracks) for a non-free hyperbolic group G0, which is equal to 1 minus
the cogrowth exponent of G0 [Oll04].

Theorems 38 and 40 are of course not proven independently. Section 4
of [Oll04] extracts axioms under which quotients of a hyperbolic group by
elements taken under some probability measure yield a hyperbolic group
again. These axioms have to do with exponents of large deviations of the
measure.

Lots of open problems concerning random quotients of hyperbolic groups
are stated in § IV.f.

II.2.b. Harmful torsion. As briefly mentioned above, the torsion-
freeness assumption can be relaxed to a “harmless torsion” one demanding
that the centralizers of torsion elements are either finite, or virtually Z, or
the whole group [Oll04]. But in [Oll05b] we give an example of a hyperbolic
group with “harmful” torsion, for which Theorem 40 does not hold; more-
over its random quotients actually exhibit three genuinely different phases
instead of the usual two.

Theorem 41 – Let G0 = (F4 × Z/2Z) ? F4 equipped with its natural
generating set, where ? denotes a free product. Let dcrit be defined as
above. Then there exists a density 0 < d′

crit
< dcrit such that quotients

of G0 by random words at density d > d′
crit

are trivial with overwhelming
probability.

What happens is that above some density corresponding to the proba-
bility with which the random walk in G0 sees the factor F4 × Z/2Z, the
factor Z/2Z becomes central in the random quotient, so that above this
density random quotients of (F4 × Z/2Z) ? F4 actually behave like random
quotients of F8 × Z/2Z, which has a lower critical density.
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A more careful analysis reveals the presence of two genuinely different
phases for random quotients of (F4 × Z/2Z) ? F4 in addition to the triv-
ial phase, depending on whether or not the Z/2Z factor is central in the
quotient. Elaborating on this construction, hyperbolic groups with tor-
sion whose random quotients exhibit more than three different phases can
probably be built. We refer to [Oll05b] for the details.

II.2.c. Cogrowth of random quotients, and iterated quotients.
Since the critical density of the initial groupG0 is controlled by the spectral
radius of the random walk operator, one might wonder what is the new
value of this spectral radius for the random quotient (in particular, if it
stays small enough, then we can take a new random quotient at a larger
length). The answer from [Oll05a] (using results of [Ch93]), generalizing
Theorem 26, is that it stays almost unchanged:

Theorem 42 – Let G0 be a torsion-free hyperbolic group generated by
the elements a1, . . . , am. Let ρ(G0) be the spectral radius of the random
walk operator on G0 w.r.t. this generating set; let dcrit = − log2m ρ(G0)
and let G be a quotient of G0 by random words at density d < dcrit as in
Theorem 40.

Then, for any ε > 0, with overwhelming probability the spectral radius
ρ(G) of the random walk operator on G w.r.t. a1, . . . , am lies in the interval
(ρ(G0); ρ(G0) + ε).

The same theorem holds for quotients by random reduced words, and,
very likely [Oll-e], for quotients by random elements of the ball as in The-
orem 38.

As a corollary, we get that the critical density for the new group G is
arbitrarily close to that for G0. So we could take a new random quotient of
G, at least if we knew that G is torsion-free. This is not known (§ IV.f.), but
the results of [Oll04] imply that if G0 is of geometric dimension 2 then so
is G. So in particular, taking a free group for G0 and iterating Theorem 40
we get:

Proposition 43 – Let Fm be the free group on m generators a1, . . . , am.
Let (`i)i∈N be a sequence of integers. Let d < − log2m ρ(Fm) and, for each
i, let Ri be a set of random words of length `i at density d as in Theorem 40.

Let R =
⋃
Ri and let G = Fm/〈R〉 be the (infinitely presented) random

group so obtained.

Then, if the `i’s grow fast enough, with probability arbitrarily close to 1
the group G is a direct limit of non-elementary hyperbolic groups, and in
particular it is infinite.

It is not easy to follow the details of [Oll04, Oll05a, Ch93] closely enough
to obtain an explicit necessary rate of growth for the `i’s, although `i+1 >

Cst.`i is likely to work.
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The techniques used in [Gro03] to get iterated quotients are different
from those of [Oll05a] and of more geometric inspiration (see § III.2. or
[Gro01a, Oll-c]); in particular, therein property (T ) is used to gain uniform
control on the critical densities of all successive quotients. The drawback
is that these techniques only work for very small densities.

II.3. Counting one-relator groups

On a very different topic, consideration of generic-case rather than worst-
case behavior for algorithmic problems in group theory (most notably the
isomorphism problem) led I. Kapovich, Myasnikov, Schupp and Shpilrain,
in a series of closely related papers [KSS, KS, KS05, KMSS05, KMSS03], to
the conclusion that generic elements are often nicely behaved. The frontier
between properties of one-relator groups and properties of a typical word
in the free group is faint; for this review we selected an application where
the emphasis is really put on the group, namely, evaluation of the number
of distinct one-relator groups up to isomorphism.

The isomorphism problem for finite presentations is generally undecid-
able (see e.g. the very nice [Sti82] for an introduction to the word and iso-
morphism problem, or the end of chapter 12 of [Rot95]). It has been solved
for the class of torsion-free hyperbolic groups with finite outer automor-
phism group ([Sel95], see also [Pau91]), which contains generic one-relator
groups since their outer automorphism group is trivial [KSS]. However,
having an algorithm for the isomorphism problem does not provide an es-
timate of the number of isomorphism classes.

For one-relator groups, the basic idea is as follows: Since generic rela-
tors are by definition much more numerous than particular relators, if we
can show that one-relator groups with a generic enough relator are mutu-
ally non-isomorphic, then we will get a sharp estimate of the number of
isomorphism classes of one-relator groups.

Let I`(m) be the number of isomorphism classes of one-relator group
presentations 〈 a1, . . . , am | r 〉 with |r| 6 `. Of course I`(m) is less than the
number of cyclically reduced words of length at most `; this crude estimate
can be improved since taking a cyclic permutation of r does not change the
group. Now the number of cyclically reduced words of length 6 ` up to
cyclic permutation is about (2m−1)`/`. Moreover, some trivial symmetries
(such as exchanging the generators a1, . . . , am or taking inverses) decrease
this estimate by some explicit factor depending only on m. Actually the
estimate found this way is sharp [KS, KSS]:

Theorem 44 – The number I`(m) of isomorphism classes of one-relator
groups on m generators, with the relator of length at most `, satisfies

I`(m) ∼ 1

m! 2m+1

(2m− 1)`

`
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when `→ ∞.

Once Theorem 19 is known the result is relatively simple. Indeed, a
theorem of Magnus ([LS77], Prop. II.5.8) implies that if two elements of the
free group generate the same normal subgroups then they are the same up to
conjugation and inversion. If two generic one-relator groups are isomorphic,
then Theorem 19 implies that after applying some automorphism of the
free group, the two relators have the same normal closure, and thus are
essentially the same by Magnus’ Theorem. So the isomorphism problem
for generic one-relator groups reduces to the problem of knowing when an
element in the free group is the image of another under some automorphism
of the free group.

The orbits of the automorphism group of a free group are well studied
and generated by so-called Whitehead moves ([LS77], I.4): especially, if two
elements lie in the same orbit and are of minimal length within this orbit,
they can be transformed into each other by means of non-length-increasing
Whitehead moves. But for generic elements it can be easily shown that
the action of the Whitehead moves increases length except for some trivial
cases, so that generic elements do not lie in the same orbit.

In other words, a generic element cannot be “simplified” by action of
automorphisms of the free group. This same minimal representation idea
allowed to get an estimate [KS] of Delzant’s T -invariant for generic one-
relator group (this invariant, defined in [Del96b], attempts to measure the
minimal possible “complexity” of presentations of a given group).

The only (but crucial) place above where one-relatorness plays a role is
the use of the Magnus theorem, which has no known replacement for the
case of several relators (even generic ones). On the other hand, genericity
really lies at the core of the argument: the idea is that for counting matters,
particular annoying cases can be discarded and only the nicest, typical cases
can be treated.
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III. Applications: Random

ingredients in specific

constructions

What non-probabilists call “the probabilistic method” is the use of random
constructions to prove existence theorems and to build new objects and
(counter-)examples. Badly enough, this is often seen as the only possible
justification for the introduction of random tools in a classical field.

Random groups fit into this scheme. Up to now, the main application
of random groups is the construction by Gromov [Gro03] of a finitely pre-
sentable group whose Cayley graph (quasi-)contains an infinite family of
expanding graphs and which contradicts the Baum-Connes conjecture with
coefficients [HLS02]. We give the roadmap to this construction in § III.1.
and § III.2.

A second application (§ III.3.), using the same tools together with a con-
struction of Rips [Rip82], allowed in [OW-a] to construct Kazhdan groups
whose outer automorphism group contains an arbitrary countable group,
answering a question of Paulin (in the list of open problems in [HV89]). As
was noted by Cornulier [Cor-b], this implies in particular that any discrete
group with property (T ) is a quotient of a torsion-free hyperbolic group
with property (T ). The technique is flexible and provides other examples
of Kazhdan groups with prescribed properties.

Let us insist that groups constructed this way cannot pretend to “typi-
cality”: in each case the random constructions are twisted in ways specific
to the goal to achieve. The process of building a group containing a family
of expanders starts with the choice of such a family and uses it to define the
group; the expanders do not appear out of the blue in a plain random group
(compare the techniques in [AC04], though: it may be that Cayley graphs
of plain random groups contain lots of interesting families of graphs).

The common tool to both constructions above is Gromov’s powerful and
flexible generalization of small cancellation theory to group presentations
arising from labelled graphs. When everything goes well, the said graph
embeds in the Cayley graph of the group, thus allowing“shaping”of Cayley
graphs. Moreover, this extension of small cancellation is compatible with
property (T ), whereas usual small cancellation is not [Wis04], showing that
a really new class of groups is accessible this way.
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III.1. Shaping Cayley graphs: graphical pre-

sentations

Before we state the results, let us describe this graphical presentation tool.
It is discussed in the last paragraph, “Random presentations of groups”,
in [Gro00], and more thoroughly in sections 1 and 2 of [Gro03]. (The idea
of representing subgroups of the free group by labelled graphs goes back
to [Sta83], but therein the emphasis is on the subgroup and not on the
quotient group “presented” by the graph.)

III.1.a. Labelled graphs and group presentations. Let us state
some vocabulary geometrizing group presentations. Let a1, . . . , am be our
usual generators and let B be the following standard labelled graph: B
consists of one single vertex and m oriented loops, univocally labelled with
the generators a1, . . . am. Now a word in the a±1

i is simply a path in the
labelled graph B. A reduced word is an immersed path P # B.

A labelled graph is a graph Γ together with a graph map Γ → B, i.e.
a graph in which every edge bears a generator ai with an orientation. It
is said to be reduced if this map is an immersion; this amounts to not
having two distinct edges with identical labels originating (or ending) at
the same vertex (this is called “folded” in [Sta83], but this terminology
is less consistent with the case of reduced words, reduced van Kampen
diagrams, etc.).

Gromov’s idea is that to a labelled graph we can associate the group
presentation whose relators are all the words read on cycles of the graph.
More precisely, let Γ be a labelled graph and let x0 be any basepoint in
Γ. The labelling ϕ : Γ → B defines a map ϕ : π1(Γ, x0) → Fm, sending a
closed path to its label. The group presented by Γ is by definition the group

G = 〈 a1, . . . , am | Γ 〉 = Fm/〈ϕ(π1(Γ), x0)〉

(when Γ is not connected, this is defined as G = Fm/〈∪ϕ(π1(Γ, xi))〉 taking
a basepoint in each connected component). If π1(Γ) is generated by the
cycles (ci)i∈I then a cheaper presentation for G is

G = 〈 a1, . . . , am | ϕ(ci)i∈I 〉

and note that I can be taken finite if Γ is finite. Note also that changing
the basepoint amounts to taking some conjugate of the image ϕ(π1(Γ)), so
that the group defined by Γ is unchanged. We will call 〈 a1, . . . , am | Γ 〉 a
graphical presentation for G.

The group G is of course the fundamental group of the 2-complex ob-
tained by gluing a disk in B along each of the paths ϕ(ci) where the ci are
the simple cycles of Γ.
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Most importantly, when Γ consists of a disjoint union of circles, then we
get back the usual notion of group presentation. The relators are cyclically
reduced if and only if the labelling is reduced.

The Cayley graph Cay(G, (ai)) is itself a labelled graph. By definition
of G, the label of any cycle in Γ is a relation in G and so can be read on
some closed path in the Cayley graph. Consequently, if we fix a basepoint
xi in each connected component of Γ, and any basepoint y ∈ Cay(G, (ai)),
then there is a unique label-preserving map

ϕ : Γ → Cay(G, (ai))

sending each xi to y, which we denote (again!) by ϕ since it commutes
with the labelling maps to B.

Of course nothing guarantees that in general this map will be injective.
It could happen that G is trivial, for example. But if ϕ is injective, then we
have succeeded in embedding a graph in the Cayley graph of some group.
This is what Gromov did with Γ a family of expanders, as we will describe in
§ III.2. For the moment, we turn to the description of a small cancellation
condition ensuring this injectivity.

III.1.b. Graphical small cancellation. The central notion of small
cancellation is that of piece: a piece is a word that can be read twice in
the relators of a presentation. Here this notion generalizes as follows: Let

Γ
ϕ→ B be a labelled graph. A piece in Γ is a word P

ψ→ B which can be
read at two different places on Γ, that is, such that there are two distinct

immersions P
i1
# Γ

ϕ→ B and P
i2
# Γ

ϕ→ B (preserving the labels, of course,
i.e. ϕ ◦ i1 = ϕ ◦ i2 = ψ).

What matters for small cancellation is the size of pieces compared to the
size of the relators on which they appear. Here the role of relators is played
by cycles in the graph. So we define the relative length of a piece P to be
the maximum of the ratio |P | / |C| over all immersed cycles C # Γ such
that P appears on C i.e. there exists P # C # Γ.

Definition 45 – A labelled graph Γ satisfies the graphical small cancella-
tion condition Gr ′(α) if the relative length of any piece in Γ is less than α.

It should be clear that when Γ is a disjoint union of circles, this reduces to
the traditional C′(α) small cancellation condition. The well-known C′(1/6)
theory extends to the new framework. Similarly one could define the com-
binatorial Gr(p) condition asking for no cycle in Γ to be the union of fewer
than p pieces.

The following is a much simplified version of the statements in section 2.2
of [Gro03] (see § III.1.e. below for a more general setting). Gromov uses
general geometric arguments, but the version presented here is easy to prove
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using the usual combinatorial techniques of small cancellation (see [Oll-a]
or [Wis]).

Theorem 46 – Let Γ be a labelled graph which is spurless (i.e. with
no valency-1 vertex) and reduced. Suppose that Γ satisfies the Gr′(1/6)
graphical small cancellation condition.

Then the group G defined by the graphical presentation Γ enjoys the
following properties:

• If Γ is finite, G is hyperbolic; if Γ is infinite G is a direct limit of
hyperbolic groups.

• It is torsion-free, of geometric dimension 2, of Euler characteristic
1 −m+ b1(Γ). In particular if b1(Γ) > m it is infinite and not free.

• The natural map of labelled graphs from Γ to the Cayley graph of
G (for any basepoint choice) is an isometric embedding for the graph
distances; in particular it is injective.

• The length of the shortest cycle in the Cayley graph is equal to that
in Γ.

More properties of usual small cancellation still hold, such as aspheric-
ity of the “standard” presentation and a kind of Greendlinger lemma (see
details in [Oll-a]).

The reducedness assumption is necessary: otherwise we could add arbi-
trary long paths labelled by words which are trivial in the free group, thus
artificially decreasing the relative length of pieces by increasing the length
of cycles. Spurs do not change the group defined by the graph, but might
not embed isometrically, unless Gr ′(1/8) holds.

The idea of one of the possible proofs is to consider van Kampen di-
agrams all faces of which bear a word read on some cycle of the graph,
and are “minimal” in the sense that the word read on the boundary of the
union of two adjacent faces is not read on a cycle of the graph (otherwise we
merge the two faces). Such “minimal” diagrams (locally) satisfy the usual
C′(1/6) condition hence a linear isoperimetric inequality (w.r.t. to the set
of relators made of all words read on cycles of the graph), and hyperbolicity
follows by the remark that any cycle in the graph can be written as a con-
catenation of linearly many cycles of bounded sizes, so that we can replace
this infinite presentation by a finite one while keeping a linear isoperimetric
inequality. Asphericity, cohomological dimension and isometric embedding
of the graph into the Cayley graph require a little more work. Although
this basic idea is simple, there are some delicate topological details [Oll-a].

III.1.c. Random labellings are Gr′(1/6). One of the interests of the
Gr ′ condition is that random labellings of a graph satisfy it very probably.
A random labelling of a graph is simply the choice, for each edge of the
graph, of a generator ai together with an orientation, picked at random
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among the 2m such possible choices. Generally this does not result in a
reduced labelling, but we can reduce the graph by performing the necessary
edge identifications (the “folding” of [Sta83]).

Of course, if there are“too many”cycles in the graph, the group will tend
to be trivial. According to the spirit of the density model (Def. 7), this
“too many” has to be defined with respect to the length of the cycles: the
longer the cycles, the more of them we can tolerate. A way to achieve this
is to subdivide the graph, i.e. replace each edge with 100 (say) consecutive
edges. For a given unlabelled graph Γ, we will denote Γ/j its j-subdivision
(each edge is replaced with j edges). Another interpretation of this is
to use edge labels which are length-j words in the generators instead of
single generators. Subdividing amounts to decreasing the “density” of the
graph, which decreases the expected size of pieces (compare equation (∗)τ
in section 1.2 of [Gro03] with a density). The same effect could be achieved
by increasing the number m of generators.

We give here an oversimplified version of statements in paragraphs 1.1,
4.6 and 4.8 of [Gro03] (which deal, much more generally, with random
quotients of hyperbolic groups by graphical presentations, see § III.1.e.). A
proof of this particular case can be found in [OW-a]. We will need some
“bounded geometry” assumptions on the graph, bounding the valency of
vertices and the diameter/girth ratio. The girth of a graph is defined as
the length of the shortest non-trivial cycle in it. It plays the role of the
length of the relators in the density case.

Proposition 47 – For any α > 0, for any number of generators m > 2,
for any v ∈ N and C > 1/2 there exists an integer j0 such that for any
j > j0 the following holds:

For any graph Γ satisfying the following conditions:

• The valency of any vertex of Γ is at most v.

• The girth and diameter of Γ satisfy DiamΓ 6 C girth Γ <∞.

then a random labelling of the j-subdivision Γ/j , once reduced, satisfies the
Gr′(α) condition, with probability arbitrarily close to 1 if girthΓ is large
enough (depending on α, v, C).

In particular for α < 1/6 the conclusions of Theorem 46 hold.

Moreover, the metric distortion induced by the reduction step is con-
trolled (see the last section of [Oll-a], or [OW-a]).

III.1.d. Random labellings of expanders entail Kazhdan’s prop-
erty (T ). The group defined by a graphical presentation inherits some
spectral properties of the graph, at least when the labelling is random.
In particular, if the Laplacian on the graph has a large enough spectral
gap, then the group defined by a random labelling will have property (T ).
Section 1.2 of [Gro03] mentions (generalizations of) this, and the whole
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section 3 of [Gro03] is devoted to building a general framework encompass-
ing the usual spectral criteria for property (T ) mentioned above in I.3.g.
(see references there). We give only the following statement, a detailed
proof of which was written by Silberman ([Sil03], Corollary 2.19):

Theorem 48 – Given v ∈ N, λ0 > 0 and an integer j > 1 there exists an
explicit g0 such that if Γ is a graph with girth Γ > g0, λ1(Γ) > λ0 and every
vertex of which has valency between 3 and v, then a random labelling of
the j-subdivision Γ/j defines a group with Kazhdan’s property (T ), with
probability tending to 1 as the size of Γ tends to infinity.

The idea is as follows: Property (T ) is related to the way the random walk
operator acts on equivariant functions from the group to unitary represen-
tations of it. Now in the case of graphical presentations, by construction
any equivariant function on the group (which is determined by its value at
e) can be lifted to a “label-equivariant” function on the graph since cycles
in the graph are labelled by relations in the group. If moreover the la-
belling was taken at random, then a random walk in the graph “simulates”
a random walk in the group in the sense that the labels encountered by a
random walk in the graph are plain random words (at short times). So if
the graph has a large spectral gap, it is possible to transfer the spectral
inequality to the random walk operator on the group. The details can be
found in [Sil03].

Note that the first step (lifting equivariant functions) follows only from
the definition of graphical presentations, whereas the second one uses the
fact that the labelling was random (in some weak, statistically testable
sense).

III.1.e. Generalizations: relative graphical presentations, and
more. A labelled graph can also be used to define a quotient of an arbi-
trary marked group, by quotienting the group by the words read on cycles
of the graph. This is a key step used by Gromov in the wild group con-
struction described below (§ III.2.).

Just as ordinary small cancellation theory can be extended from quotients
of the free group to quotients of a given hyperbolic group by elements sat-
isfying a “relative small cancellation” condition ([Del96a], [Ch94], section 4
of [Ols93], section 5.5 of [Gro87]), an analogue to Theorem 46 holds when
the initial group is hyperbolic (maybe with some restriction on torsion)
instead of free.

In [Oll-c] an elementary version of Gromov’s statements is given, which
can be proven using the traditional van Kampen diagram approach of
[Oll04], combined with the combinatorial arguments specific to the graph-
ical case as in [Oll-a].

But Gromov proved this in a more general context using “rotation fam-
ilies of groups”, where purely geometrical arguments can be given. The
context is a group G acting properly and cocompactly by isometries on
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some hyperbolic space X ; we want to study the quotient of G by a normal
subgroup R.

In non-graphical small cancellation theory (relative to a hyperbolic group
G), R is generated by elements (ui) and all their conjugates; with each ui
is associated a geodesic Ui in X invariant under ui; a conjugate of ui will
be associated with the corresponding translate of Ui. Small cancellation
for the family (ui) (relative to G) is equivalent to the family of all Ui’s and
their translates not to travel close to each other for a “too long” time (the
time is measured w.r.t. the minimal displacement of the action of the ui’s
on X , namely, less than 1/6 of this displacement; closeness is measured
w.r.t. the hyperbolicity constant of X). For graphical small cancellation,
say we have a connected labelled graph Γ; lift its universal cover Γ̃ to G
and take the corresponding orbit U in X (this is a tree), together with all
its translates (the translates correspond to conjugate lifts of Γ̃ to G); if this
family of trees in X satisfies the same condition as above (not travelling
close to each other for a long time), then the quotient of G by the labelled
graph will be hyperbolic again. If Γ is not connected we get as many Ui’s
as there are connected components (plus their translates).

In section 2 of [Gro03], Gromov exposes a (difficult to read) general
terminology and conditions for these ideas to work. Elements of proof are
scattered in four papers (section 2 of [Gro03], sections 6–7 of [Gro01a],
sections 25–32 of [Gro01b], section 10 of [Gro01c]). This framework seems
to be quite powerful.

A simpler proof can be given in the case of very small cancellation (with
1/6 replaced by some tiny constant), using CAT(−1, ε) spaces. The idea of
the proof, very neatly described at the beginning of [DG] (see also [Del-b]
and Gromov’s papers just cited) and fully developed later in that paper,
is as follows: we have a group G = π1(X) acting properly cocompactly
by isometries on a hyperbolic space X̃ , and we want to quotient G by a
normal subgroup R; the quotient is, of course, the fundamental group of
the space X ′ obtained by gluing disks to X along loops in X corresponding
to generators of the normal subgroup R. The idea is to endow these disks
with a metric of constant negative curvature turning them into hyperbolic
cones. This allows to check that X ′ is locally a CAT(−1, ε) space, and the
Cartan-Hadamard theorem (or local-global principle for hyperbolic spaces)

then allows to conclude that the universal cover X̃ ′ is globally CAT(−1, ε),
hence hyperbolicity of G/R.

This idea of metrizing Cayley complexes, applied in [DG] to the Burnside
problem, looks very promising (see § IV.i.).

III.2. Cayley graphs with expanders

In [Gro03] (as announced in [Gro00]), Gromov constructs a finitely gen-
erated group whose Cayley graph “quasi-contains” a family of expanding
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graphs and which thus admits no uniform embedding into the Hilbert space.
The main idea is to use a graphical presentation arising from a random la-
belling of these expanders.

Recall (see e.g. [Lub94], [DSV03]) that a family of expanding graphs
(or expanders) is a sequence of graphs (Γi)i∈N of bounded valency, of size
tending to infinity, such that the first eigenvalue of the discrete Laplacian
on them is bounded away from 0 when i → ∞. A uniform embedding of
metric spaces is a map ϕ such that there exists a function f : R → R with
dist(ϕ(x), ϕ(y)) > f(dist(x, y)) and f(x) → ∞ when x→ ∞.

One of the reasons for the interest in this paper is that, as proven by Hig-
son, V. Lafforgue and Skandalis in [HLS02], this implies failure of the Baum-
Connes conjecture with coefficients for this group. The initial stronger
motivation was to refute the Novikov conjecture. Introducing these conjec-
tures is beyond the scope of this paper and the author’s field of competence.
We refer the reader to [KL05, Val02b, Ska99, Hig98]. Gromov’s group is a
direct limit of hyperbolic groups; for hyperbolic groups, the Novikov con-
jecture [CM88, CM90], existence of a uniform embedding into the Hilbert
space [Sel92] and the Baum-Connes conjecture [Laf02, MY02] hold. For
the link between those last two properties see [Yu00, STY02].

Theorem 49 – For any ε > 0 there exists a finitely generated, recursively
presented group G, a family of expanders (Γi)i∈N, constants A,B > 0 and
maps ϕi sending the vertices of Γi to vertices of Cay(G) such that

A (dist(x, y) − εDiamΓi) 6 dist(ϕi(x), ϕi(y)) 6 B dist(x, y)

for any i and x, y ∈ Γi, where the distance in Γi is the ordinary graph
distance and the distance in Cay(G) is w.r.t. some fixed finite generating
set.

Consequently there exists a finitely presented group admitting no uni-
form embedding into the Hilbert space.

All the ingredients of the proof can be found in [Gro03], though lots of
details are omitted. Gromov apologizes in the introduction that he chose
not to write“a few technical lemmas, with a straightforward half-page proof
each” but rather to “uncover the proper context rendering [...] the proofs
tautological”, and then adds “A reader may find it amusing to play the
game backwards by reducing the present paper to seven pages of formal
statements and proofs”. This is still waiting to be done, though some parts
of the job are written [DG, Oll-c, Oll-a, Sil03]. Full understanding and
exploitation of these “contexts” will doubtlessly be an important source of
new results and techniques.

The principle of the proof is as follows (and the technical conditions
needed for it to work are stated below in Definition 50 and Theorem 51,
extracted from [Oll-c]): Start with the free group F2 and any family of
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expanders Γi. Put a random labelling on some subdivision Γ
/j
1 of Γ1 and

let G1 be the group given by the graphical presentation Γ1. According to
Proposition 47 and Theorem 46, if j is large enough, G1 will be a non-trivial
hyperbolic group. As described in § III.1.a., there will be a natural graph

map Γ
/j
1 → Cay(G1), which is actually a quasi-isometric embedding.

Then consider a random labelling of a subdivision of Γ2 and let G2 be
the quotient of G1 by the graphical presentation Γ2. Applying the “rel-
ative” version of proposition 47, as described in § III.1.e., G2 will be a
non-trivial hyperbolic group, provided the girth of Γ2 is large compared to
the hyperbolicity constant of G1 (which is of the same order of magnitude
as DiamΓ1). Up to taking a subsequence of the family of expanders we can
always suppose that girthΓi � DiamΓi−1, which allows to define induc-
tively a hyperbolic group Gi obtained by quotienting Gi−1 by a random
labelling of (a subdivision of) Γi. The group Gi comes with a natural graph

map from Γ
/j
i to its Cayley graph.

The group G is then obtained as the direct limit of all Gi’s. It is not
finitely presented, but can be recursively presented by replacing randomness
by pseudo-randomness. Indeed, the graphical small cancellation property
used here is algorithmically checkable (even relatively to a given hyperbolic
group!), so that we can write a program enumerating all labellings of Γ1,
testing whether they are Gr ′(1/6), stopping at the first such labelling found
(which exists by the randomness argument), then outputting a presentation
for G1; enumerating all labellings of Γ2 and testing whether they are in
small cancellation relative to the explicit hyperbolic group G1, outputting
the first such labelling of Γ2, etc. Note that this requires to have a recursive
construction for the expanders Γi too.

This provides a recursive enumeration of the presentation of the limit
group G. Then applying Higman’s embedding theorem (Theorem 12.18
in [Rot95], Theorem IV.7.3 in [LS77]) provides a finitely presented group
H in which G embeds. Note that an embedding of a finitely presented
group is always a uniform embedding (since there are only finitely many
elements in balls of the image of the initial group), so that H does not
uniformly embed into the Hilbert space if G does not.

The subdivision step amounts to label each edge of Γi with a random
word of length j rather than with a single generator. This allows to reduce
“density” of the graphical presentation, by increasing the relator length
(measured by the girth) without changing the number of relators. It is
very important to use the same j for all the Γi’s: indeed we only get a

graph map from Γ
/j
i to the Cayley graph of G, which of course induces

a map from the vertices of Γi to Cay(G) with a j times larger Lipschitz
constant, so that if j goes uncontrolled then so do the metric properties
of the embedding. In other words, a bounded subdivision of a family of
expanders is still a family of expanders but this is false for unbounded
subdivisions.
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Another important point is that the “critical density” for non-triviality
of random quotients of the Gi’s could decrease to 0 when i → ∞, thus
resulting in groups that are more and more reluctant to adding new re-
lations (forcing to increase j). As results from Theorem 40, this critical
density is controlled by the spectral radius of the random walk on Gi. So
it is important to get a uniform control on this spectral radius for all Gi’s.
Actually property (T ) of a group entails such a uniform control of the spec-
tral radii of all of its quotients. So if G1 has property (T ) we are done,
and this results from Theorem 48. (Another way to proceed is to replace
the initial group F2 with a hyperbolic group having property (T ). Yet an-
other, maybe most natural way is to use Theorem 42 which states that the
spectral radius is almost unaffected by random quotients.)

The“density”of a graphical presentation is not only controlled by the size
of cycles in the graph but also of course by the number of cycles. Demanding
that these graphs have bounded geometry (valency, diameter/girth ratio)
ensures that density remains bounded.

So, putting all the constraints altogether, we get the following conditions
for the construction to work (see [Oll-c]). Note that having a family of
expanders is not required for the process of building the limit group, so
that it is possible to get Cayley graphs containing other interesting families
of graphs.

Definition 50 – A sequence (Γi)i∈N of finite connected graphs is good for
random quotients if there exists v > 1 and C,C′ > 1 such that for all i we
have:

• girth Γi → ∞;

• DiamΓi 6 C girthΓi;

• For any x ∈ Γi, r ∈ N, the ball B(x, r) of radius r in Γi satisfies
#B(x, r) 6 C′ vr.

Theorem 51 – Let (Γi)i∈N be a sequence of finite connected graphs which
is good for random quotients.

Then for any ε > 0 there exists a finitely generated group G∞, an in-
creasing sequence ik of integers, an integer j > 1 and a constant A > 0 such

that, for any k ∈ N, there exists a map of graphs ϕk : Γ
/j
ik

→ Cay(G∞) from
the j-subdivision of Γik to the Cayley graph ofG∞, which is quasi-isometric
in the following sense:

For any x, y ∈ Γ
/j
ik

we have

A
(
dist(x, y) − εDiamΓ

/j
ik

)
6 dist (ϕk(x), ϕk(y)) 6 dist(x, y)

where the distance in Γ
/j
ik

is the usual graph distance and the distance in
Cay(G∞) is that w.r.t. a fixed finite generating set.
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The group G∞ has some labelling of the union of the Γ
/j
ik

’s as a graphical
presentation. This presentation is aspherical (in the sense given in [Oll-a])
and turns G∞ into a direct limit of hyperbolic groups of geometric dimen-
sion 2.

Finally, if the family of graphs Γi is recursive, then this graphical pre-
sentation can be assumed to be recursive.

Note that the size of the fibers ϕ−1
k (x) is bounded by jvεDiam Γik , so that

if #Γik grows reasonably fast (as is the case for expanders), then the small
fiber condition appearing in [HLS02] is satisfied.

Theorem 49 now follows from the above and the existence of a recursive
family of expanders (e.g. Theorems 7.4.3 and 7.4.12 of [Lub94], or [DSV03]):

Theorem 52 – There exists a recursively enumerable family of graphs
(Γi)i∈N such that:

• #Γi → ∞;

• infi λ1(Γi) > 0 (the Γi are expanders);

• for all i, Γi is regular of valency v;

• there existC1, C2, C3 such that log #Γi 6 C1 Diam Γi 6 C2 girthΓi 6

C3 log #Γi for all i.

Besides [Gro03], more information on Gromov’s construction can be
found in [Ghy03, Pan03, Oll-c]. Useful elements of proof appear in [DG,
Oll-a, Del-b, Oll-c, Sil03] and of course in [Gro03, Gro01a, Gro01b, Gro01c].
The link with the Baum-Connes conjecture is proven in [HLS02].

III.3. Kazhdan small cancellation groups?

A more modest application of Gromov’s random graphical presentations is
that they allow a nice mixture of small cancellation properties and prop-
erty (T ), using Proposition 47 together with Theorem 48. This contrasts
with ordinary C′(1/6) groups, which do not have property (T ) (unless fi-
nite) by a result of Wise (Corollary 1.3 in [Wis04]).

This allows the construction of Kazhdan groups with somewhat unex-
pected properties, using the flexibility of small cancellation groups. The
main tool here is a short exact sequence coined by Rips [Rip82]. Namely,
for every countable group Q, Rips constructed an exact sequence 1 →
N → G → Q → 1 where G is a C′(1/6) group and the kernel N is
finitely generated. Pathologies of Q often lift to G in some way. Carefully
adding a random graphical presentation to G adorns N with property (T ),
namely [OW-a]:

Theorem 53 – For each countable groupQ, there is a short exact sequence
1 → N → G→ Q→ 1 such that G has a Gr ′(1/6) presentation and N has
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property (T ). Moreover, G is finitely generated if Q is, and G is finitely
presented (hence hyperbolic) if Q is.

As noted by Cornulier [Cor-b], this easily implies a kind of universal
property for hyperbolic Kazhdan groups:

Corollary 54 – Every countable group with property (T ) is a quotient of
a Gr ′(1/6) hyperbolic group with property (T ).

Indeed, in the exact sequence above, if bothQ andN have (T ) then G has
(T ) [HV89]. If Q is finitely presented, then so is G and thus G is hyperbolic.
If Q is not finitely presented, a theorem of Shalom (Theorem 6.7 in [Sha00])
provides a finitely presented Kazhdan group of which Q is a quotient.

Another consequence of Theorem 53 is the following. Paulin asked (open
problem 5 at the end of [HV89]) if a Kazhdan group can have an infinite
outer automorphism group (this is impossible for a hyperbolic group by a
result of [Pau91]). Actually this can happen and more precisely [OW-a]:

Theorem 55 – Every countable group embeds in the outer automorphism
group of some Kazhdan group.

Indeed in the exact sequence above, Q acts on N by conjugation and this
action happens not to be inner. In particular for finitely presented Q, the
group N appears as a subgroup of some hyperbolic group.

Very different examples of Kazhdan groups with infinite outer automor-
phism groups were independently constructed by Cornulier [Cor-a] (as lin-
ear groups) and later by Belegradek and Szczepański [BSz] using relatively
hyperbolic groups. Moreover Cornulier’s example is finitely presented, thus
answering positively a question in [OW-a].

Using the techniques in [BW05], it may be possible to show that actually
every countable group is isomorphic to the outer automorphism group of
some Kazhdan group. For finitely presented groups, this is shown in [BSz]
up to finite index.

The main interest of the combined Rips sequence/random graphical pre-
sentation method is its flexibility. Using standard techniques it is straight-
forward to construct new groups with prescribed properties. In [OW-a] two
easy examples are given. Recall a group G is called Hopfian if every surjec-
tive homomorphism G → G is injective, and co-Hopfian if every injective
homomorphism G→ G is surjective.

Theorem 56 – There exists a Kazhdan group which is not Hopfian, arising
as a finitely generated subgroup of a Gr ′(1/6) infinitely presented group.
There exists a Kazhdan group which is not co-Hopfian, arising as a finitely
generated subgroup of a Gr ′(1/6) hyperbolic group.

For comparison, for hyperbolic groups the situation is as follows: Sela
proved [Sel99] that every torsion-free hyperbolic group is Hopfian, and this
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was extended [Bum04] to any finitely generated subgroup of a torsion-free
hyperbolic group (showing that the infiniteness of the presentation in the
theorem above cannot be removed). Sela again (final theorem of [Sel97])
proved that a non-elementary torsion-free hyperbolic group is co-Hopfian
if and only if it is freely indecomposable; hence, every Kazhdan hyperbolic
group is co-Hopfian.

Once more, subsequent examples using different techniques are described
in [Cor-a] and [BSz]. Noticeably, Cornulier’s example of a Kazhdan non-
Hopfian group (arising from a p-arithmetic lattice) is finitely presented.

We have attempted to demonstrate that random groups already pro-
duced some interesting new examples of groups. The techniques involved
are flexible enough and hopefully more is to come.
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IV. Open problems and

perspectives

I feel, random groups altogether may grow up
as healthy as random graphs, for example.

M. Gromov, Spaces and questions

The problems presented hereafter are varied in style and difficulty. Some of
them amount to a cleaning of results implicit in the literature, others are
well-defined questions, whereas the worst of them are closer to babbling
on an emerging notion. Some are directly extracted from the excellent
exposition of Gromov in the final chapter of [Gro93], and still unsolved.

Only problems directly pertaining to random groups are presented here.
It must be stressed that Gromov’s paper [Gro03] contains a lot of new,
challenging ideas inspired by his random group construction but belonging
to neighboring fields, which unfortunately could not be discussed here.

Disclaimer. The list of problems is provided “as is”, without any war-
ranty, either express or implied, including, but not limited to, the warranty
of correctness, of interest, of fitness to any particular purpose (such as an
article or thesis), or of non-triviality. We wish the reader good luck.

IV.a. What happens at the critical density? The usual question
after a talk on random groups...

Asking whether a random group at density d = 1/2 is infinite or trivial
might not be the right way of looking at things. The most promising and
intriguing approach is to define a limit object for ` → ∞ and for definite
d < 1/2, and then let d → 1/2. The limit object would be as follows: by
Theorem 13 the Cayley graph of the random groupG is a tree up to distance
`(1 − 2d), and moreover the hyperbolicity constant is at most 4`/(1− 2d).
So it is natural to consider the metric space 1

`Cay(G) where 1
` means we

rescale the distance by this factor: this yields, for any `, a 4/(1 − 2d)-
hyperbolic space which is a tree up to distance 1− 2d. It seems likely that
for fixed d, for ` → ∞ this metric space converges à la Gromov-Paulin
to some (maybe deterministic in some sense) non-locally compact metric
space locally modeled on a real tree. This object would depend on d and
be 4/(1 − 2d)-hyperbolic. Letting then d → 1/2 might bring a non-trivial
object, maybe with some self-similarity or universality properties.
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Another approach consists in letting simultaneously `→ ∞ and d→ 1/2.
Indeed, Theorem 13 shows that the ball of radius `(1 − 2d) in the Cayley
graph is a tree. One is thus tempted to let d→ 1/2 and set ` = K/(1−2d)
so that the length of the smallest relation in the group is kept constant (but
the big problem is that this ` may be too small for Theorem 11 to hold).
It may happen that for large enough values of K, the group converges (in
law) to some non-trivial group with radius of injectivityK, maybe infinitely
presented. It may also happen that the group is trivial no matter how large
K is.

If one sticks to the question of what happens when we take exactly d =
1/2 in the definition of the density model, one should note the following. If
in the density model we take not (2m−1)d` but P (`)(2m−1)d` relators with
P a subexponential term, for d 6= 1/2 this does not change the theorem.
But for d = 1/2 triviality or infiniteness may depend on the subexponential
term P . It might depend moreover on the details of the model (such as
taking relators on the sphere or in the ball). Exact determination of these
parameters might not be very relevant. Anyway, as a short answer, for
d = 1/2 and P (`) = 1, it is easy to check (using the probabilistic pigeon-
hole principle as in the comments after Theorem 11) that the random group
has a positive probability (something like (1/e)2m) to be trivial.

Some expect, however, that “all classical groups lie at d = 1/2” (using
precise enough asymptotics for the P (`) above?). By the way, note that
property (T ) holds at d > 1/3 and in particular at d = 1/2.

IV.b. Different groups at different densities? Another question,
lying at the core of the density model, is to know whether density really
has an impact on the random group.

The question is not exactly to know whether two random groups are
mutually isomorphic or not: indeed two successive random samplings of
a group at the same length and density will likely be non-isomorphic (al-
though a proof of this would be very interesting and difficult, compare
§ II.3. for the one-relator case; see also [Gro93], p. 279). Rather one would
like to know if the probability measures for distinct values of d become
more and more different as `→ ∞. More precisely, one would like to know
if, for every density d0 and ε > 0, there exists a property of groups Pd0,ε
which occurs with probability tending to 1 at density d = d0, and with
probability tending to 0 at any density d 6∈ (d0 − ε, d0 + ε), as `→ ∞.

Since a random group at density d and length ` has Euler characteristic
1 −m+ (2m− 1)d`, for fixed m the number d` can be recovered from the
algebraic structure of the group. So it would be enough to recover any
other combination of d and ` to get the answer. It is clear that as marked
groups, with their standard generating set being known, random groups are
different: indeed, for example the optimal isoperimetry constant 1 − 2d is
provided by Theorem 13. But changing the generating set is a mess.
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A very interesting but apparently difficult approach is suggested by Gro-
mov in [Gro93] (p. 279). Let G = Fm/N be a finitely presented group and
define the density of this presentation as follows: there is an integer ` such
that the normal closure of N ∩ B` is N (where B` is the ball of radius `
in Fm); for 1 6 k 6 ` let the density dk = log #(N ∩ Bk)/ log #Bk (one
can use spheres instead of balls) and let d(Fm → G) = supk6` dk. Now let
d(G) be the infimum of these densities d(Fm → G) over all finite generating
sets of G. The question is whether for a random group at density d this
gives back d. Computation of densities of classical groups would also be
interesting.

Gromov gives several other approaches in [Gro93], 9.B.(i).

The nicest thing would be to find group invariants depending continu-
ously on density. The rank of the group is a discrete invariant varying with
density, but is far from well understood (see § IV.d.). Pansu suggested the
use of `p-cohomology, where the critical p might vary with d (see [Gro93],
9.B.(i) on `pH

1 6= {0}), or the conformal dimension of the boundary, but
this approach has not yet been developed. It is wise to keep in mind the
non-variation of the spectral gap (Theorem 26).

Note that this would not contradict Theorem 34 since, first, we do not
expect independently picked random groups at the same density to be
isomorphic, and second, random groups are not at all dense in Gm.

IV.c. To (T ) or not to (T ). Property (T ) for random groups is known
to hold at density > 1/3 (Theorem 27), and not to hold at density < 1/5
(Theorem 32). There necessarily exists a critical density for property (T ),
since this property is inherited by quotients (indeed: if at a density d0,
property (T ) occurs with positive probability, then at densities d > d0 we
can write the group presentation as a union of a large number of presen-
tations at density d0, and one of them is enough to bring property (T )).
Determination of this critical density is a frustrating question.

The gap between the Haagerup property at d < 1/6 (Theorem 33) and
failure of property (T ) at d < 1/5 is probably just a technical weakness
in [OW-b]. It would be very interesting to know whether, for random
groups, property (T ) starts just where the Haagerup property stops, so that
these two properties, though not opposite, would be “generically opposite”
(a possibility some people consider would be “sad”).

Another question is whether property (T ) holds at d > 1/3 for a random
quotient (this is already asked in [Gro87], 4.5.C). It is trivially the case for
quotients by random words, for any initial group (since property (T ) is in-
herited by quotients) but in this case the random quotient might already be
trivial at d = 1/3 (see Theorem 40) and so this statement could be empty.
But it is very reasonable to expect the same holds for random quotients
by elements in balls of hyperbolic groups as in Theorem 38: applying the
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criterion of [Żuk03] to the generating set made of all elements of length `/3
looks promising.

In the meantime, it is a good exercise to write a precise proof of the fact
that random groups at density d > 1/3 have property (T ) (in the density
model, not in the triangular model, see discussion in § I.3.g.).

IV.d. Rank and boundary. Even such a simple invariant of groups
as the rank (minimal number of elements in a generating set) is not known
for random groups (except of course for random quotients of F2). The rank
does vary with density: by Theorem 17, at density 0 (and likely at small
enough densities) it is equal to m, but it is easy to show that at density
d > 1 − log(2k − 1)/ log(2m− 1), the rank is at most k (this follows from
evaluating the probability that some relator can be written as a product of
one generator followed by ` − 1 generators chosen among k). This bound
is very crude and probably not optimal (one may expect, for example, the
rank to be 2 when d→ 1/2).

The rank would provide a non-continuous but nevertheless interesting
invariant to prove that different densities produce different groups.

A possible approach is to generalize the method of Arzhantseva and
Ol’shanskĭı at density 0, which uses representation of subgroups by graphs
and subsequent study of the exponential growth rate of the number of words
which are readable on the graph. Combination of this with large deviation
techniques for finite-state Markov chains may lead to a sharp estimate of
the various exponents (densities) at play.

These techniques may be useful for other questions related to the alge-
braic structure. For example, Gromov asks ([Gro93], 9.B.(i)) whether a
random group contains a non-free infinite subgroup of infinite index. Also,
one would like to extend Theorem 44 on the number of one-relator groups
to more relators (as asked by Gromov in [Gro93], p. 279), which, besides
the interest of counting groups, would have implications for the problems
discussed in § IV.b.

It is very likely that a random group is one-ended and in particular
does not split as a free product (this is true at small densities and at
d > 1/3, see § I.3.d.). Another question is unicity of the generating set
up to Nielsen moves (compare Theorem 19); e.g. for m = 2 it can be
shown that, for d > 0.301 . . . (an apparently transcendental value coming
from large deviation theory of the 4-state Markov chain describing reduced
words in two letters), the pair (a2

1, a2) generates the random group, but it
is not clear whether or not this pair is Nielsen-equivalent in the group to
the standard generating pair (a1, a2).

IV.e. More properties of random groups. Any question which is
meaningful for torsion-free hyperbolic groups may be asked for random
groups. Some may even be answered.
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Paragraph 1.9 of [Gro03] lists a few invariants “where a satisfactory an-
swer seems possible”: geometry of the boundary, Lp-cohomology, simpli-
cial norm on cohomology, existence/non-existence of free subgroups, non-
embeddability of random groups to each other, “something C∗-algebraic”.

Another frequently asked question is the existence of non-trivial finite
quotients of a random group and of residual finiteness. For any finite
group H fixed in advance, it is easy to show that a random group with
large enough defining relators will not map onto H . Exchanging the limits
would provide hyperbolic groups without finite quotients. (See also the
temperature model in § IV.k. below.)

IV.f. The world of random quotients. The theory of random quo-
tients of given groups, the basic idea of which is that typical elements in a
given group are the most nicely behaved, is at its very beginning. (Follow-
ing Erdős, this also plays an increasingly important role in the—especially
algorithmic—theory of finite groups, a subject we could not even skim over
in this survey, see e.g. [Dix02].)

Theorem 38 and 40 only deal, for the moment, with quotients of torsion-
free hyperbolic groups (which is nevertheless a generic class!). Of course
there is no hope to extend these theorems to any initial group, if only
because there exist infinite simple groups (but note that the “triviality”
parts of these theorems extend to any group of exponential growth).

Nevertheless, the critical density 1/2 as in Theorem 38 seems to be quite
a general phenomenon. Within a hyperbolic group, the density 1/2 prin-
ciple might apply to random quotients by elements chosen in much more
general subsets than the balls w.r.t. some generating set: more or less any
large subset X not resembling too much to a line should do, i.e. quotienting
by less than

√
#X elements randomly chosen in X should preserve hyper-

bolicity. The axioms defined in [Oll04] may help for this. This would have
the advantage of decreasing the role of the generating set.

Identifying families of non-hyperbolic groups for which density 1/2 is
critical would be very nice too.

The theory of random quotients works well for torsion-free hyperbolic
groups. In the case of “harmful” torsion more complex phenomena occur
(§ II.2.b., [Oll05b]). Identifying necessary and sufficient conditions on tor-
sion (probably having to do with growth/cogrowth of the centralizers of
torsion elements) for the random quotient theorems to hold, and identify-
ing the kind of new phenomena (such as more than two phases [Oll05b])
which can happen in the presence of harmful torsion, would be interesting.

Speaking of torsion, it is not even clear whether a random quotient of
a torsion-free hyperbolic group is still torsion-free. It is true however that
geometric dimension 2 (which implies torsion-freeness) is preserved—this
is what we use in every iterated quotient construction, as in Proposition 43
and Theorems 49 and 51 for the group with expanders. Using higher-
dimensional complexes instead of the Cayley 2-complex (such as the Rips
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complex) or the techniques in [Del-a], may help get the result.

Theorem 39 states that the growth exponent is preserved when quotient-
ing by random elements in a ball, and Theorem 42 states that the spectral
radius is preserved when quotienting by random words; but it is likely that
both are preserved whatever the model of random quotient. Elements to
prove this appear in [Oll-e].

The methods used in [Oll04] to prove the phase transition theorems for
random quotients of hyperbolic groups are partly geometric, partly combi-
natorial. On the other hand, those in [Gro03] and [DG] are almost purely
geometric, but they do not allow to make it to the critical density and only
work for “very” small cancellation [Del-b]. Even the basic density 1/2 the-
orem (Theorem 11) has a much more combinatorial than geometric proof.
Geometrizing these proofs is a good challenge.

IV.g. Dynamics on the space of marked groups. The bad behavior
of the isomorphism relation on the space of marked groups [Ch00] from the
measurable point of view suggests an ergodic approach (part 4 in [Ghy03],
9.B.(g) in [Gro93]). The dynamics here comes from the action of the Nielsen
moves on Gm (more precisely, the Nielsen moves on 2m-tuples generate the
isomorphism relation on Gm by a theorem of Tietze, see part 3 of [Ch00]). It
seems likely, but is not known, that there is no non-trivial Borel measure on
Gm invariant under this action. It would be nice, and perhaps important,
to have an at least quasi-invariant measure.

There is a quite natural (family of) probability measure(s) on the space
of all presentations of m-generated groups, coming from the temperature
model (see § IV.k. below), which depends on a continuous parameter. This
measure projects to a measure on Gm, the properties of which (especially
its behavior under Nielsen moves) must certainly be studied.

Besides, the study of continuity/measurability/average/whatever of the
usual invariants of groups or presentations on Gm is interesting, as suggested
in [Gro93], 9.B.(g).

Ghys noted that the complexity of Gm comes from lack of rigidity of the
free group, and suggests that studying the space of quotients of a given
marked hyperbolic group would keep all the nice properties of quotients of
the free group (small cancellation, random quotients...), while maybe pro-
viding enough rigidity to allow better topological and measurable behavior,
if the hyperbolic group has few automorphisms. This is of course related
to § IV.f. above.

IV.h. Isoperimetry and two would-be classes of groups. Two
natural properties related to isoperimetric inequalities of van Kampen di-
agrams arise naturally in random groups (including Gromov’s group with
expanders) and should be studied for themselves, independently of any
probabilistic context.
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The first one is stronger than mere hyperbolicity and generalizes small
cancellation. Random groups, just as small cancellation groups, have the
property that any (reduced) van Kampen diagram satisfies a linear isoperi-
metric inequality—whereas the definition of hyperbolicity asks that only
one van Kampen diagram per boundary word satisfies such an inequality.
This property implies, in particular, geometric dimension 2. But it is not
stable by quasi-isometry, since for example taking the Cartesian product
with a finite group introduces (a finite number of) spherical diagrams.

An interesting question is whether this property can be“geometrized”, i.e.
to modify this property so that it becomes invariant under quasi-isometry;
a way to do this may be to ask that all van Kampen diagrams, after some
local modifications, satisfy the isoperimetric inequality. This geometrized
property might be equivalent, for example, to having a boundary of dimen-
sion one.

This certainly has to do with the “unfolded hyperbolicity” of [Gro01c],
which is Gromov’s newly coined name for the “local hyperbolicity” of sec-
tion 6.8.U in [Gro87] (which asks that any “locally minimal” diagram sat-
isfies the isoperimetric inequality; a link is explained with non-existence of
conformal maps, and with any surface in the space having negative Euler
characteristic); these considerations probably deserve more attention.

Groups in this class may keep lots of interesting properties of small can-
cellation groups.

The second property is the “homogeneous isoperimetric inequality”. The
usual way to write the isoperimetric inequality for a van Kampen diagram
D is |∂D| > C |D| where |D| is the number of faces of D. But a more nat-
ural way is a linear isoperimetric inequality between the boundary length
of D and the sum of the lengths of the boundary paths of faces of D:

|∂D| > C
∑

f face of D

|∂f |

which is more homogeneous since it compares a length to a length, not
a length to a number. For a finite presentation the two formulations are
clearly equivalent (with a loss in the constant equal to the maximal length
of a relator in the presentation).

This inequality is especially useful when facing a group presentation with
relators of very different lengths, and is relevant also for infinite presenta-
tions. It naturally appears in C′(α) small cancellation theory (with the
constant C = 1 − 6α), in random groups (with C = 1 − 2d, see Theo-
rem 13), in the few-relator model of random groups with various lengths
(theta-condition of [Ols92]), in Champetier’s work on cogrowth [Ch93], in
computation of the hyperbolicity constant [Oll-b], in random quotients of
hyperbolic groups (section 6.2 of [Oll04]), in iterated quotients (it is sat-
isfied with C = 1 − 2d under the assumptions of Proposition 43) and,
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noticeably, it is satisfied by the infinitely presented groups containing ex-
panders constructed in [Gro03]. Maybe importantly, it allows a formulation
of the local-global principle without loss in the constants and so seems to
be the right assumption for it (Theorem 60 below, [Oll-f]).

So in lots of important contexts, even for finite presentations, this is the
right way to write the isoperimetric inequality.

The main question is whether this has some intrinsic and/or interesting
meaning for infinitely presented groups (“fractal hyperbolicity”? compare
[Gro03], 1.7). The behavior under a change of presentation is unclear:
for example the property is trivially satisfied (even for a finitely presented
group) if the presentation consists of all relations holding in the group.
One should probably restrict oneself to presentations with some minimal-
ity assumptions (e.g. the one which, given a set of generators, consists in
beginning with an empty set of relators, and successively adding all rela-
tions which are not consequences of already taken, shorter relations), and
study how the property is affected by elementary changes of the presenta-
tion.

IV.i. Metrizing Cayley graphs, generalized small cancellation
and“rotation families”. The generalized small cancellation theory used
in [Gro03] (briefly described in § III.1.e. above) is developed in several pa-
pers [Gro03, Gro01a, Gro01b] (see also [DG, Del-b]). A single consolidated
proof of the statements in section 2 of [Gro03] combined with a few ex-
amples (such as relative graphical small cancellation as stated in [Oll-c])
would be very useful. Compared to the traditional study of van Kampen
diagrams, here the emphasis is put on geometric objects (such as lines for
traditional small cancellation or trees for the graphical case) lying in a hy-
perbolic space acted upon by a group, and on conditions under which the
space can be quotiented along these objects.

The approach can be purely geometric (as in [DG]) or in great part
combinatorial (as in [Oll-a, Oll-c]). The geometric approach as written
in [DG] does not work up to the optimal cancellation coefficient 1/6 but
only for “very small” cancellation. But its strength is that, contrary to
relative small cancellation, it can deal with quotients of a hyperbolic group
by relators of length equal to the characteristic length of the group plus
some large constant, whereas relative small cancellation needs the relation
length to be a large constant times the characteristic length of the ambient
hyperbolic group. This is why this approach succeeds in the case of the
Burnside group.

The main idea is to put a non-trivial, negatively curved metric on the
faces of the Cayley complex. This might be a step just as important as
the jump from combinatorics of words to study of Cayley graphs and van
Kampen diagrams. It is advocated in [DG] that hyperbolic groups can be
made “much more hyperbolic” this way, in some intrinsic sense, than when
just using the edge metric on the Cayley graph (or the Euclidean metric
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on the Cayley 2-complex). This technique is very flexible and may find
many applications. At the very least it should provide a nice framework to
re-interpret some classical results of hyperbolic group theory in.

IV.j. Better Cayley graphs with expanders? The construction of a
Cayley graph with expanders may be simplified. The most direct way would
be to find an explicit Gr ′(1/6) labelling of the whole family of expanders;
this would provide both a shorter proof and an isometric embedding of the
expanders, instead of quasi-isometric. Getting an injective (on the vertices
of the expanders) quasi-isometric embedding would already be nice.

Another “flaw”of the construction is the final step using the Higman em-
bedding theorem in order to get a finitely presented group: this keeps non-
uniform embeddability into the Hilbert space, but the quasi-isometricity of
the embedding of the expanders into the Cayley graph is lost, as are geo-
metric dimension 2 and property (T ), so the question of expanders quasi-
isometrically contained in the Cayley graph of a finitely presented, maybe
also Kazhdan group of dimension 2 is still open.

IV.k. The temperature model and local-global principles. Cer-
tainly one of the most important theoretical problems related to random
groups.

All the random groups defined so far define a notion of asymptotically
typical properties of groups rather than an intrinsic notion of random
groups: (say in the density model) for each length ` we indeed define a
measure µ` on the set of group presentations, but this measure does not
converge as ` → ∞. Rather, for a given group property P , its probabil-
ity of occurrence under µ` converges. As discussed in § I.4., the space of
marked groups does not solve this problem because the notion of topological
genericity in it is uninteresting (there are very different-looking connected
components) and so an input from probability theory is required to know
where in this space to look.

The temperature model, or every-length density model (discussed at the
end of [Gro00], but already present in [Gro93], 9.B.(d)) attempts to solve
these problems by directly defining a probability measure on the set of all
(finite or infinite) group presentations, thus providing a well-defined notion
of a random group. Note that this measure will project on the space of
marked groups, and thus give access to the realm of infinitely presented
groups.

As usual, fix a set of m generators, and consider the set Fm of reduced
words. The principle is to construct a set of relators R by deciding at
random, for each r ∈ Fm, whether we put it in R or not. Since there are
much more long than short words, the probability to take r should decrease
with the length of r. A very natural choice is to set

p(r) = (2m− 1)(d−1)|r|
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where |r| is the length of the word r, and d 6 1 is a density parameter.
Now, for each r ∈ Fm, with probability p(r) we decide to put r as a relator
in R (independently of what is decided for other r’s). The random group
is given by the presentation G = 〈 a1, . . . , am | R 〉.

Note that a priori G is infinitely presented.

Let us interpret the parameter d. The expected number of words in R
with a given length ` is 2m(2m − 1)`−1(2m − 1)(d−1)` because there are
2m(2m − 1)`−1 reduced words of length `. Note that this behaves like
(2m − 1)d` (up to a benign constant (2m)/(2m − 1)), which is of course
very reminiscent of the density model.

In other words, if for each ` ∈ N
∗, R′

` is a random set of relators at
density d and at length `, then the union R′ =

⋃
`∈N∗ R′

` has essentially the
same probability law as R (up to replacement of an average number by a
fixed number of relators, which for number such as (2m− 1)` is negligible
by the law of large numbers).

This justifies the name “all-length density model”. The “temperature”
[Gro00] refers to the idea that a word w ∈ Fm has “energy” |w|, and so
if temperature is T the probability for a “random word” to be in “state”
r (compared to its probability to be in state r = e) is e−|r|/T , so that
T = 1/((1 − d) log(2m − 1)). The higher the temperature, the larger the
set of relators R, the smaller the group G. When T → 0, on the contrary,
the set R “freezes” to the empty set so that G = Fm. Note that negative
densities are meaningful in this model.

As an immediate consequence of the interpretation of d as a density, we
get that if d > 1/2 (i.e. T > 2/ log(2m − 1)) the group G is trivial with
probability 1.

In this model, for each d > −∞ there is a small but definite positive
probability to pick all the generators a1, . . . , am and put them as relators
in R, in which case the group is trivial. So here we do not expect a phase
transition between infinity and triviality of G with probabilities 0 and 1,
but rather, a phase transition between a positive probability to be infinite
and a zero probability to be infinite.

Up to this remark and the fact that the presentation is infinite at d > 0,
the conjecture [Gro00] is the exact analogue of Theorem 11:

Conjecture – If d < 1/2, the group G has a positive probability to be in-
finite, and more precisely to be a direct limit of infinite hyperbolic, torsion-
free groups of geometric dimension 2.

Another way to express d < 1/2 is that the function p(r) is in `2(Fm).

Not everything can happen with positive probability: for example at
d > 0 we put an exponential number of generators, so that by a simple ar-
gument, with probability 1 the abelianization of G is trivial, and so Abelian
groups never appear in this model (the support of the measure is not the
whole space Gm).
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At d < 0, by the Borel-Cantelli lemma, the presentation for G is finite
with probability 1, and the model is more or less related to the few-relator
model with various lengths, so that for negative densities the conjecture
follows from Theorem 5, and the group is even hyperbolic. But at d > 0
the presentation is infinite, and if the conjecture indeed holds the group
will admit no finite presentation.

As a sidepoint, Theorem 27 implies property (T ) for d > 1/3, with
probability 1. This property is likely to happen much earlier.

An easy but important feature [Gro00] of this model is that for any
d > 0, with probability 1 the group G has no finite quotient (compare the
discussion above in § IV.e.). Indeed, let π : G → H be a finite quotient of
G. The cosets π−1(h ∈ H) meet one element of Fm out of #H , and so for
d > 0 it is easy to see that R will contain one (actually infinitely many)
element of each coset with probability 1, thus proving that H = {e}. This
was for one single finite group H , but the union of countably many events
of probability zero has probability zero again.

The main difficulty when dealing with the temperature model is failure of
the local-global principle (see one possible statement in § V., Theorem 60,
and other references a few sentences below), a.k.a. the Gromov-Cartan-
Hadamard theorem, which allows to show hyperbolicity of a group by test-
ing only isoperimetry for van Kampen diagrams of bounded size. This
implies in particular that there exists an algorithm which, given a finite
group presentation, answers positively when the group is hyperbolic (but
may not stop if the group is not).

When the lengths in a group presentation are of very different orders
of magnitude, this principle fails (or at least no suitable version of it is
known). For a fixed density d, for any ` ∈ N let R`,d be a random set of
relators at density d and at length `. Using the axioms in [Oll04] one can
show that, for any constant A > 1, the group presented by

〈
a1, . . . , am |

⋃

`06`6A`0

R`,d

〉

is very probably hyperbolic, for large enough `0 depending on A. Then,
using the theory of random quotients and iterating like in Proposition 43,
for any A > 1 we can show that if `i+1 � A`i, the group presented by

〈
a1, . . . , am |

⋃

i∈N

⋃

`i6`6A`i

R`,d

〉

will very probably be infinite and a direct limit of hyperbolic groups. But
the techniques used to treat

⋃
`06`6A`0

R`,d are very different from those
used to treat the passage from `i to `i+1, so that this “lacunarity” is cur-
rently needed (see [Gro03]). Note however that this lacunarity does not (at
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least explicitly) appear in Ol’shanskĭı’s treatment [Ols92] of the few-relator
model with various lengths (thanks to the use of a homogeneous way to
write isoperimetry as discussed in § IV.h. above).

So probably the key to the temperature model is a much better under-
standing of the local-global principle when the relators have very different
lengths. The formulation given below (Theorem 60 in § V.) allows some
looseness for the ratio of the lengths, and a careful exploitation of it results
in replacing `0 6 ` 6 A`0 with `0 6 ` 6 `α0 in the above, for some exponent
α > 1. A first step would be to remove the dependency in `2/`1 in The-
orem 60 [Oll-f]. But this is not enough to tackle the temperature model.
The geometrizing of Cayley complexes as discussed in § IV.i. (after [Gro03],
[DG] etc.) will also certainly be a key ingredient.

We refer the reader to [Gro87] (2.3.F and 6.8.M) and to [Bow91, Ols91b,
Bow95, Pap96, DG, Oll-f] for more information on this important topic.
There is not even a single statement unifying the various versions of the
local-global principle written so far...

The same game can be played replacing Fm with any (especially hyper-
bolic!) initial group G0 and killing random elements of G0 according to the
temperature scheme, thus transposing in this model all the random quo-
tient questions of § IV.f., and endowing some neighborhood of each group
in Gm with a canonical probability measure depending on density.

IV.l. Random Lie algebras. Ask Étienne Ghys about this (see also
[Gro93], 9.B.(h)).

IV.m. Random Abelian groups, computer science and statisti-
cal physics. Phase transitions arose first in statistical physics and it is
natural to ask whether the phase transition of random groups does model
some physical phenomenon. The answer is presently unknown.

A fundamental problem of computer science is the 3-SAT problem, which
asks whether a given set of clauses on Boolean variables can be satisfied.
Each clause is of the form (¬)xi OR(¬)xj OR(¬)xk, where (¬) denotes
optional negations and where 1 6 i, j, k 6 n. A set of clauses is satisfiable
if each variable can be assigned the value true or false such that all clauses
become true Boolean formulae. Variants exist in which the length of the
clauses is not necessarily equal to 3. This problem is very important, and
in particular it is NP-complete.

A widely used approach consists in observing the behavior of this problem
for random choices of the clauses, for which methods from statistical physics
are very useful (see e.g. [BCM02, MMZ01] for an introduction). In this
context there is a phase transition depending on the ratio of the number
of clauses to the number of Boolean variables: when this ratio is below
a precise threshold the set of clauses is very probably satisfiable, whereas
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it is not above the threshold. Moreover, away from the threshold, naive
algorithms perform very well though the problem is NP-complete.

This immediately brings to mind the triangular model of random groups
(§ I.3.g.), which consists in taking relations of the form x±1

i x±1
j x±1

k = e at
random and asking whether the group presented by the elements x1, . . . , xn
subject to these relations is trivial or not. This triangular model looks
strikingly like a kind of “non-commutative” version of 3-SAT.

A commonly studied toy version of the 3-SAT problem is the XOR-SAT
problem, using exclusive OR’s instead of OR’s in the clauses. This one
has a polynomial-time solution (it reduces to a linear system modulo 2),
hence is considerably simpler theoretically, but nevertheless seems to keep
lots of interesting properties of 3-SAT. It can be interpreted as a random
quotient of the commutative group (Z/2Z)n (or sparse random matrices),
thus in line with the intuition that the triangular model is a somewhat
non-commutative random 3-SAT problem.

Random 3-SAT also exhibits phases: of course the satisfiability vs. non-
satisfiability phases parallel the hyperbolicity vs. triviality phases for group,
but moreover, the satisfiability phase breaks into two quite differently-
behaved subphases, one in which the set of admissible truth value assign-
ments to the variables is strongly connected and satisfiability is easy, and
one in which the set of admissible truth value assignments breaks into
many well-separated clusters. These two subphases evoke the freeness vs.
(T ) transition in the triangular model (Proposition 30 and Theorem 31):
below this frontier, the group is infinite for trivial reasons, whereas above
it, it is still infinite but not trivially so (compare performance of the group
algorithms discussed in I.3.h.). This suggests that isolation of clusters of
SAT solutions parallels isolation of the trivial representation among unitary
representations of the group (one possible definition of property (T )).

The many possible assignments of truth values to the variables suggest
to look not only at the random group given by a random presentation, but
at all groups generated by the same elements and satisfying the random
relations in the presentation (which are exactly the quotients of this group).
Maybe the connectedness vs. many-clustering of solutions of SAT translates
into some geometric property of the set of those groups, considered in the
space Gm of marked groups (§ I.4., § IV.g.).

This is quite speculative and there may also be no relation at all between
these fields. Nevertheless, methods from statistical physics and random-
oriented computer science are certainly interesting tools to study for ran-
dom group theorists.
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V. Proof of the density one half

theorem

V.a. Prolegomena. Recall from the Primer that, given a group pre-
sentation, a van Kampen diagram is basically a connected planar graph
each oriented edge of which bears a generator of the presentation or its in-
verse (with opposite edges bearing inverse generators), such that the word
labelling the boundary path of each face is (a cyclic permutation of) a
relator in the presentation or its inverse. The diagram is said to be re-
duced if moreover some kind of trivial construction is avoided. We refer
to [LS77, Ols91a, Rot95] for precise definitions. The set of reduced words
that are read on the external boundary path of some van Kampen diagram
coincides with the set of reduced words representing the trivial element in
the group.

It is known [Gro87, Sho91a] that a group G is hyperbolic if and only if
there exists a constant C such that any reduced word w representing the
trivial element of G appears on the boundary of some van Kampen diagram
with at most C |w| faces.

In particular, to establish hyperbolicity it is enough to prove that there
exists a constant α > 0 such that for any diagram D, we have |∂D| > α |D|
(where |D| is the number of faces of D and |∂D| the length of the boundary
path of D 1). This implies the above with C = 1/α. Note that since
reducing a van Kampen diagram preserves the boundary word, it is enough
to check |∂D| > α |D| for reduced diagrams (this would actually never hold
for all non-reduced diagrams).

We are going to show that for a random group at density d and at
length `, with overwhelming probability any reduced van Kampen diagram
satisfies |∂D| > (1 − 2d− ε)` |D| (i.e. we actually prove Theorem 13).

The idea is very nicely explained in [Gro93], 9.B. Remember the discus-
sion of Gromov’s density (§ I.2.): The probability that two random reduced
words share a common initial subword2 of length L is 1/(2m− 1)L. So at

1which is not exactly the number of edges of ∂D in case the interior of D is not
connected.

2Here and throughout the following we neglect the fact that for the first letter of a
reduced word, we have 2m choices instead of 2m − 1 as for all subsequent letters; when
dealing with cyclically reduced words, we also neglect the fact that for the last letter
there may be 2m − 1 or 2m − 2 choices.
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density d, the probability that, in a set R made of (2m− 1)d` random rela-
tors, there exist two words sharing a common initial subword of length L,
is at most (2m− 1)2d`(2m− 1)−L (this was Proposition 10).

The geometric way to think about it is to visualize a 2-face van Kampen
diagram in which two faces of boundary length ` share L common edges.
We have shown that the probability that two relators in R make such a
diagram is at most (2m− 1)2d`−L (up to an unimportant, subexponential
factor 4`2 accounting for the positioning and orientation of the relators in
the diagram).

Now consider a random presentation 〈 a1, . . . , am | R 〉 where R is made
of (2m−1)d` random reduced words of length `. Let D be any van Kampen
diagram made by the relators in R. Each internal edge of D (i.e. an edge
adjacent to two faces) forces an equality between two letters of the two
relators read on the two adjacent faces; for random reduced words this
equality has a probability 1/(2m − 1) to be fulfilled. So if L is the total
number of internal edges in D, the probability that |D| random reduced
words fulfill the L constraints imposed by D is at most 1/(2m − 1)L (if
the constraints are independent). So the probability that we can find |D|
relators in R fulfilling the constraints of D is at most (2m− 1)|D|d`(2m−
1)−L.

Choose any ε > 0. If L > (d + ε) |D| `, then the probability that D
appears as a van Kampen diagram of the presentation R is less than (2m−
1)−ε|D|` by the reasoning above, and so when ` → ∞, with overwhelming
probability D does not appear as a van Kampen diagram of the random
group. So we can assume L 6 (d+ ε) |D| `.

Now we have
|∂D| > |D| `− 2L

since D has |D| faces, each of length `, and each gluing between two faces
decreases the boundary length by 2. (Equality occurs when the interior of
D is connected; otherwise, “filaments” linking clusters of faces still increase
boundary length.) Consequently, using L 6 (d+ ε) |D| ` we get

|∂D| > |D| `(1 − 2d− 2ε)

as needed.

There are several obscure points in this proof. First, we did not justify
why the constraints imposed by a van Kampen diagrams on letters of the
presentation can be supposed to be independent (in fact, they are not as
soon as the diagram involves several times the same relator3), so we are a

3The proof given in [Żuk03] for the triangular model is partly incorrect too, but in
a more subtle way when a diagram involves several copies of a relator glued to itself.
Namely, on page 659 of [Żuk03]: “First put in the diagram n1 relators r1. If they have
some edges in common, denote by l1 the length of the longest common sequence, i.e.
0 6 l1 6 3” and then it is stated that, given the constraints of the diagram, the number
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priori not allowed to multiply all probabilities involved as we did. Second,
we should exclude simultaneously all diagrams violating the isoperimetric
inequality, and we only estimated the probability that one particular dia-
gram is excluded. Third, note that the trivial group, as well as any finite
group, is hyperbolic and thus satisfies the isoperimetric inequality, so we
have proven that the group is hyperbolic but not necessarily infinite.

The latter is treated by a cohomological dimension argument, see below.
The second problem is solved using the local-global principle of hyperbolic
geometry (or Gromov-Cartan-Hadamard theorem) which will be explained
later. The first point requires a more in-depth study of the probability for
random relators to fulfill a diagram, which we now turn to.

V.b. Probability to fulfill a diagram. First, we need a precise defi-
nition of what it means for random words to fulfill a van Kampen diagram.
We define an abstract diagram to be a van Kampen diagram in which we
forget the actual relators associated with the faces, but only remember the
geometry of the diagram, which faces bear the same relator as each other,
the orientation of the relator of each face, and where the relators begin.
Namely:

Definition 57 – An abstract diagram D is a connected planar graph with-
out valency-1 vertices, equipped with the following data:

• An integer 1 6 n 6 |D| called the number of distinct relators in D
(where |D| is the number of faces of D);

• A surjective map from the faces of D to the set {1, 2, . . . , n}; a face
with image i is said to bear relator i;

• For each face f , a distinguished edge on the boundary of f and an
orientation of the plane ±1; if p is the boundary path of f with
the distinguished edge as first edge and oriented according to the
orientation of f , we call the k-th edge of p the k-th edge of f .

An n-tuple (w1, . . . , wn) of cyclically4 reduced words is said to fulfill D
if the following holds: for each two faces f1 and f2 bearing relators i1 and

of choices for such a relator is at most (2m − 1)3−l1 .
Either l1 denotes the maximal length of the intersection of two faces bearing r1. In

this case it is not true that the total number L of internal edges of the diagram is at
most

∑
nili.

Or l1 denotes the maximal length of the intersection of a face with the union of all
other faces bearing r1. Then let D be a 3-face diagram bearing three copies of r1, the
second copy having reverse orientation, and with the second letter of the first copy glued
to the first letter of the second copy, and the second letter of the second copy glued to
the first letter of the third copy. In this case l1 = 2 but the number of choices for r1 is
(2m − 1)2.

4Here we work with cyclically reduced words to avoid the following technical annoy-
ance: the beginning and end of a reduced word may cancel, which forces to consider
van Kampen diagrams with “inward spurs” in some faces. Anyway the theorem holds
for any version, since the “probabilistic cost” of such a cancellation is identical to the
probabilistic cost of a cancellation between two relators. Note however that the same
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i2, such that the k1-th edge of f1 is equal to the k2-th edge of f2, then
the k1-th letter of wi1 and the k2-th letter of wi2 are inverse (when the
orientations of f1 and f2 agree) or equal (when the orientations disagree).
For a n′-tuple of words with n′ 6 n, define a partial fulfilling similarly.

An abstract diagram is said to be reduced if no edge is adjacent to two
faces bearing the same relator with opposite orientations such that the edge
is the k-th edge of both faces.

In other words, putting wi on the faces of D bearing relator i turns D
into a genuine van Kampen diagram.

It is clear that conversely, any van Kampen diagram defines an associated
abstract diagram (which is unique up to reordering the relators). A van
Kampen diagram is reduced if and only if its associated abstract diagram
is.

We can choose the order of enumeration of the relators and in particular
we can ask that the number of faces bearing relator i is non-increasing with
i (call relator 1 the most frequent relator, etc.).

Note that a face of a graph can be non-trivially adjacent to itself, in
which case we have f1 = f2 above (but then of course k1 6= k2).

Hereafter we limit ourselves to abstract diagrams each face of which has
boundary path of length `, in accordance with the density model of random
groups. Our goal is to prove the following:

Proposition 58 – Let R be a random set of relators at density d and at
length `. Let D be a reduced abstract diagram and let ε > 0.

Then either |∂D| > |D| `(1−2d−2ε), or the probability that there exists
a tuple of relators in R fulfilling D is less than (2m− 1)−ε`.

Note that in the “intuitive” proof above, we had a probability (2m −
1)−ε|D|` instead.

To prove this proposition we shall need some more definitions. Let n be
the number of distinct relators in D. For 1 6 i 6 n let mi be the number
of times relator i appears in D. As mentioned above, up to reordering the
relators we can suppose that m1 > m2 > . . . > mn.

For 1 6 i1, i2 6 n and 1 6 k1, k2 6 ` say that (i1, k1) > (i2, k2) if i1 > i2,
or if i1 = i2 and k1 > k2. Let e be an edge of D adjacent to faces f1 and
f2 bearing relators i1 and i2, which is the k1-th edge of f1 and the k2-th
edge of f2. Say edge e belongs to f1 if (i1, k1) > (i2, k2), and belongs to f2
if (i2, k2) > (i1, k1), so that an edge belongs to the second face it meets.

Note that since D is reduced, each internal edge belongs to some face:
indeed if (i1, k1) = (i2, k2) then either the two faces have opposite orien-
tations and then D is not reduced (by definition), or they have the same

theorem does not hold for plain (non-reduced) random words, since then the combina-
torics of possible cancellations is exponential, and the critical density is lower than 1/2,
as explaind in § II.2.a. and [Oll04].
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orientation and the diagram is never fulfillable since a letter would have to
be its own inverse.

Let δ(f) be the number of edges belonging to face f . For 1 6 i 6 n let

δi = max
f face bearing i

δ(f) (1)

which will intuitively measure the“log-probabilistic cost”of relator i (lemma
below).

Since each internal edge belongs to some face, we have

|∂D| > ` |D| − 2
∑

f face of D

δ(f) > ` |D| − 2
∑

16i6n

miδi (2)

Lemma 59 – For 1 6 i 6 n let pi be the probability that i randomly
chosen cyclically reduced words w1, . . . , wi partially fulfill D (and p0 = 1).
Then

pi/pi−1 6 (2m− 1)−δi (3)

The lemma is proven as follows: Suppose that i− 1 words w1, . . . , wi−1

partially fulfilling D are given. Then, successively choose the letters of the
word wi in a way to fulfill the diagram. Let f be a face of D bearing relator
i and realizing the maximum δi.

Let k 6 ` and suppose the first k − 1 letters of wi are chosen. If the
k-th edge of f belongs to f , then this means that the other face f ′ meeting
this edge either bears a relator i′ < i, or bears i too but the edge appears
as the k′ < k-th edge in f ′ (it may even happen that f ′ = f). In both
cases, in order to fulfill the diagram the k-th letter of wi is imposed by
the letter already present on the edge, so that choosing it at random has a
probability 1/(2m− 1) to be correct5. The lemma is proven.

Now for 1 6 i 6 n let Pi be the probability that there exists a i-tuple of
words partially fulfilling D in the random set of relators R. We trivially6

have

Pi 6 (#R)ipi = (2m− 1)id`pi (4)

and according to the density philosophy, id` + log2m−1 pi is to be seen as
the dimension of the i-tuples of relators partially fulfilling D (i.e. the log
of the expected number of such i-tuples). This explains the role played by
logs in the few next lines—beware these logs are negative!

5See footnote 4.
6Here it is even true that Pi/Pi−1 6 (#R)pi/pi−1, because pi/pi−1 is independent of

the value of the words w1, . . . , wi−1. But this is no longer true in more general contexts
such as random quotients of hyperbolic groups, where one has to condition by some
properties of w1, . . . , wi−1 (the “apparent lengths” in [Oll04]).
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Combining Equations (2) and (3) we get

|∂D| > ` |D| + 2
∑

mi

(
log2m−1 pi − log2m−1 pi−1

)
(5)

= ` |D| + 2
∑

(mi −mi+1) log2m−1 pi (6)

and Equation (4) yields (here we use mi > mi+1)

|∂D| > ` |D| + 2
∑

(mi −mi+1)(log2m−1 Pi − id`) (7)

and observe here that
∑

(mi −mi+1)id` = d`
∑
mi = d` |D|, hence

|∂D| > ` |D| (1 − 2d) + 2
∑

(mi −mi+1) log2m−1 Pi (8)

so that setting P = mini Pi (and using mi > mi+1 again) we get

|∂D| > ` |D| (1 − 2d) + 2(log2m−1 P )
∑

(mi −mi+1) (9)

= ` |D| (1 − 2d) + 2m1 log2m−1 P (10)

> |D|
(
`(1 − 2d) + 2 log2m−1 P

)
(11)

since m1 6 |D|.
Of course a diagram is fulfillable if and only if it is partially fulfillable

for any i 6 n and so

Pr (D is fulfillable by relators of R) 6 P 6 (2m− 1)
1
2
(|∂D|/|D|−`(1−2d))

(12)
which was to be proven.

V.c. The local-global principle, or Gromov-Cartan-Hadamard
theorem. The proof above applies only to one van Kampen diagram.
But a deep result of Gromov ([Gro87], 2.3.F, 6.8.M) states that hyper-
bolicity of a space can be tested on balls of finite radius. This somehow
generalizes the classical Cartan-Hadamard theorem stating that a simply
connected complete Riemannian manifold with non-positive sectional cur-
vature is homeomorphic to R

n.
This implies in particular that hyperbolicity is semi-testable in the sense

that there exists an algorithm which, given a presentation of a hyperbolic
group, outputs an upper bound for the hyperbolicity constant (but which
may not stop for non-hyperbolic presentations). Such an algorithm has
indeed been implemented [EH01, Hol95].

Following Gromov, the principle has been given various, effective or non-
effective formulations [Bow91, Ols91b, Bow95, Pap96, DG, Oll-f]. The vari-
ant best suited to our context is the following [Oll-f]:

Theorem 60 – Let G = 〈 a1, . . . , am | R 〉 be a finite group presentation
and let `1, `2 be the minimal and maximal lengths of a relator in R.
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For a van Kampen diagram D with respect to the presentation set

A(D) =
∑

f face of D

|∂f |

where |∂f | is the length of the boundary path of face f .
Let C > 0. Choose ε > 0. Suppose that for some K greater than

1050 (`2/`1)
3 ε−2C−3, any reduced7 van Kampen diagram D with A(D) 6

K`2 satisfies
|∂D| > CA(D)

Then any reduced van Kampen diagram D satisfies

|∂D| > (C − ε)A(D)

and in particular the group is hyperbolic.

Back to random groups. Here all relators in the presentation have the
same length `, so that A(D) = ` |D|. In particular, the assumption A(D) 6

K`2 in the theorem becomes |D| 6 K, i.e. we have to check diagrams with
at most K faces.

Choose any ε > 0. Set K = 1050 ε−2 (1 − 2d − 2ε)−3, which most im-
portantly does not depend on `. Let N(K, `) be the number of abstract
diagrams with K faces all of which have their boundary path of length `. It
can easily be checked (using the Euler formula) that for fixed K, N(K, `)
grows polynomially with ` (a rough estimate yields N(K, `) 6 `4KN(K)).

We know (Proposition 58) that for any reduced abstract diagram D
fixed in advance and violating the inequality |∂D| > (1− 2d− 2ε)` |D|, the
probability that it appears as a van Kampen diagram of the presentation
is at most (2m− 1)−ε`. So the probability that there exists a reduced van
Kampen diagram with at most K faces, violating the inequality |∂D| >

(1− 2d− 2ε)` |D|, is less than N(K, `)(2m− 1)−ε`. But, for fixed K and ε,
this tends to 0 when `→ ∞ since N(K, `) grows subexponentially with `.

So with overwhelming probability, all reduced diagrams of the presen-
tation with at most K faces satisfy the isoperimetric inequality |∂D| >

(1−2d−2ε)` |D|. Applying Theorem 60 (with our choice of K) yields that
all reduced van Kampen diagrams D satisfy |∂D| > (1 − 2d − 3ε)` |D| as
needed.

The size of the constant K and the large value of N(K, `) may explain
why computer experiments (§ I.3.h.) found the group to be trivial too
often...

V.d. Infiniteness. The isoperimetric inequality above is shown to hold
for any reduced van Kampen diagram (and not only for one van Kampen
diagram per boundary word, which is enough to be hyperbolic). This

7This constraint can be weakened.
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implies in particular that there is no spherical diagram (a spherical diagram
being a limit case of planar diagram of zero boundary length, thus violating
the isoperimetric inequality) and so the Cayley 2-complex is aspherical8,
hence the group has geometric (hence cohomological) dimension at most 2.
Any group with torsion has infinite cohomological dimension, and so the
random group is torsion-free (which rules out non-trivial finite groups).

The trivial group is excluded since, using asphericity of the Cayley com-
plex, the Euler characteristic of the group is equal to 1 − m + #R =
1−m+ (2m− 1)d`; for positive d this is > 1, whereas the trivial group has
Euler characteristic 1 (and excluding the trivial group for d > 0 excludes
it a fortiori for d = 0). The elementary hyperbolic group Z is excluded for
the same reason.

8For this to work one needs a careful definition of van Kampen diagrams, since there
are several non-equivalent notions of asphericity. See e.g. the discussion in [Oll-a].
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(2001), vol. 2, 371–399.

[Gro03] M. Gromov, Random walk in random groups, GAFA, Geom.
Funct. Anal. 13 (2003), n◦ 1, 73–146.

[Gup89] N. Gupta, On groups in which every element has finite order,
Amer. Math. Monthly 96 (1989), n◦ 4, 297–308.

[Guy] L. Guyot, Estimations de dimensions de Minkowski dans
l’espace des groupes marqués, preprint.

[Har00] P. de la Harpe, Topics in geometric group theory, Chicago Uni-
versity Press (2000).

[Hig98] N. Higson, The Baum-Connes conjecture, in Proceedings of
the International Congress of Mathematicians, Vol. II (Berlin,
1998), Doc. Math. 1998, Extra Vol. II, 637–646 (electronic).

[HLS02] N. Higson, V. Lafforgue, G. Skandalis, Counterexamples to
the Baum-Connes conjecture, GAFA, Geom. Funct. Anal. 12
(2002), n◦ 2, 330–354.



Bibliography 95

[Hol95] D. Holt, KBMAG—Knuth-Bendix in Monoids and Auto-
matic Groups, software package (1995), available at http:

//homepages.maths.warwick.ac.uk/~dfh/

[Hol00] D. Holt, Word-hyperbolic groups have real-time word problem,
Internat. J. Algebra Comput. 10 (2000), n◦ 2, 221–227.

[HP98] F. Haglund, F. Paulin, Simplicité de groupes d’automorphismes
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[KMSS03] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, Generic-
case complexity, decision problems in group theory, and random
walks, J. Algebra 264 (2003), n◦ 2, 665–694.

[KMSS05] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, Average-
case complexity and decision problems in group theory, Adv.
Math. 190 (2005), n◦ 2, 343–359.

[KS05] I. Kapovich, P. Schupp, Genericity, the Arzhantseva-
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