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Abstract

In [GrH97], Grigorchuk and de la Harpe ask for conditions under which
some group presentations have growth rate close to that of the free group
with the same number of generators. We prove that this property holds for
a generic group (in the density model of random groups). Namely, for every
positive ε, the property of having growth exponent at least 1 − ε (in base
2m − 1 where m is the number of generators) is generic in this model. In
particular this extends a theorem of Shukhov [Shu99].

More generally, we prove that the growth exponent does not change much
through a random quotient of a torsion-free hyperbolic group.

Introduction

The growth exponent is a very natural quantity associated to a group presentation,
measuring the rate of growth of the balls in the group with respect to some given
set of generators. Namely, let G = 〈 a1, . . . , am | R 〉 be a finitely generated group.
For ℓ > 0 let Bℓ ⊂ G be the set of elements of norm at most ℓ with respect to this
generating set. The growth exponent of G (sometimes called entropy) with respect
to this set of generators is

g = lim
ℓ→∞

1

ℓ
log2m−1 |Bℓ|

The maximal value of g is 1, which is achieved if and only if G is the free
group Fm on the m generators a1, . . . , am. The limit in the definition exists thanks
to the submultiplicativity property |Bℓ+ℓ′ | 6 |Bℓ| |Bℓ′ |. By standard properties
of subadditive (or submultiplicative) sequences, this implies in particular that for
any ℓ we have |Bℓ| > (2m− 1)gℓ.

Growth exponents of groups, first introduced by Milnor, are related to many
other properties, for example in Riemannian geometry, dynamical systems and of
course combinatorial group theory. We refer to [GrH97], [Har00] (chapters VI and
VII), or [Ver00] for some surveys and applications.

The authors of [GrH97] ask for conditions under which some families of groups
(namely one-relators groups) have growth exponents getting arbitrarily close to
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the maximal value 1. Shukhov gave an example of such a condition in [Shu99]:
it is proven therein that if a group presentation has long relators satisfying the
C ′(1/6) small cancellation condition, and if there are “not too many” relators (in
a precise sense), then the growth exponent of the group so presented is arbitrarily
close to 1.

We prove that having growth exponent at least 1 − ε is a generic property in
the density model of random groups.

For a general discussion and extensive bibliography on random groups and the
various models we refer to [Oll-b] or [Gh03]. The density model was introduced by
Gromov in [Gro93]. We recall the precise definition in Section 1.1 below; basically,
depending on a density parameter d > 0, it consists in taking a group presentation
with m fixed generators and (2m−1)dℓ relators taken at random among all reduced
words of length ℓ in the generators, and letting ℓ → ∞. The intuition is that at
density d, any reduced word of length dℓ will appear as a subword of some relator
in the presentation.

This model allows a precise control of the quantity of relations put in the ran-
dom group, which is examplified by the phase transition theorem proven in [Gro93]:
below density 1/2, random groups are very probably infinite and hyperbolic, and
very probably trivial above density 1/2 (see Theorem 5 below).

Keeping this in mind, our theorem reads:

Theorem 1 – Let d < 1/2 be a density parameter and let G be a random group
on m > 2 generators at density d and at length ℓ.

Then, for any ε > 0, the probability that the growth exponent of G is at least
1− ε tends to 1 as ℓ → ∞.

When d < 1/12 this is a consequence of Shukhov’s theorem: indeed for densities
at most 1/12, random groups satisfy the C ′(1/6) small cancellation condition. But
for larger densities they do not any more, and so the theorem really provides a
large class of new groups with large growth exponent.

Random groups at length ℓ look like free groups at scales lower than ℓ (more
precisely, the length of the shortest relation in a random group is ℓ if d < 1/4
and ℓ(2− 4d− ε) if d > 1/4), and so the cardinality of balls of course grows with
exponent 1 at the beginning. However, growth is an asymptotic invariant, and the
geometry of random groups at scale ℓ is highly non-trivial, so the theorem cannot
be interpreted by simply saying that random groups look like free groups at small
scales.

More generally, we show that for torsion-free hyperbolic groups, the growth
exponent is stable in the following sense: if we randomly pick elements in the
group and quotient by the normal subgroup they generate (the so-called quotient
by random elements as opposed to the quotient by randomly picked words in the
generators; see details below), then the growth exponent stays almost unchanged,
unless we killed too many elements and get the trivial group. Note however that
this exponent cannot stay exactly the same, as Arzhantseva and Lysenok proved
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in [AL02] that quotienting a hyperbolic group by an infinite normal subgroup
decreases the growth exponent.

The study of random quotients of hyperbolic groups arises naturally from the
knowledge that a random group (a random quotient of the free group) is hyperbolic:
one can wonder whether a random quotient of a hyperbolic group stays hyperbolic.
The answer from [Oll04] is yes (see Section 1.1 below for details) up to some critical
density equal to g/2 where g is the growth exponent of the initial group; above
this critical density the random quotient collapses. In this framework our second
theorem reads:

Theorem 2 – Let G0 be a non-elementary torsion-free hyperbolic group of
growth exponent g. Let d < g/2. Let G be a quotient of G0 by random ele-
ments at density d and at length ℓ.

Then, for any ε > 0, with probability tending to 1 as ℓ → ∞, the growth
exponent of G lies between g − ε and g.

Of course, Theorem 1 is just Theorem 2 applied to a free group.

Remark 3 – The proof of Theorem 2 only uses the two following facts: that
the random quotient axioms of [Oll04] are satisfied, and that there is a local-to-
global principle for growth in the random quotient. So in particular the result
holds under slightly weaker conditions than torsion-freeness of G0, as described
in [Oll04] (“harmless torsion”).

Locality of growth in hyperbolic groups. As one of our tools we use a result
about locality of growth in hyperbolic groups (see the Appendix). Growth is an
asymptotic invariant, and large relations in a group can change it noticeably. But
in hyperbolic groups, if the hyperbolicity constant is known, it is only necessary
to evaluate growth in some ball in the group to get that the growth of the group
is not too far from this evaluation (see Proposition 17 in the Appendix).

In the case of random quotients by relators of length ℓ, this principle shows
that it is necessary to check growth up to words of length at most Aℓ for some
large constant A (which depends on density and actually tends to infinity when
d is close to the critical density), so that geometry of the quotient matters up to
scale ℓ (including the non-trivial geometry of the random quotient at this scale)
but not at higher scales.

This result may have independent interest.

About the proofs, and about cogrowth. The proofs presented here make
heavy use of the terminology and results from [Oll04]. We have included a reminder
(Section 2.2) so that this paper is self-contained.

This paper comes along with a “twin” paper about cogrowth of random groups
([Oll05]). Let us insist that, although the inspiration for these two papers is some-
what the same (use some locality principle and count van Kampen diagrams), the
details do differ, except for the reminder from [Oll04] which is identical. Especially,
the proof of the locality principle for growth and cogrowth is not at all the same.
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The counting of van Kampen diagrams begins similarly but soon diverges as we
are not evaluating the same things eventually. And we do not work in the same
variant of the density model: for growth we use the element variant, whereas for
cogrowth we use the word variant (happily these two variants coincide in the case
of a free group, that is, for “plain” random groups).

The result of [Oll05] already implies some lower bound for the growth expo-
nent of a random group, thanks to the formula (2m − 1)g/2 > (2m)1−θ where
by definition (2m)θ−1 is the spectral radius of the simple random walk operator
(see [GrH97]). However this bound is not sharp: for a random group it reads
(2m− 1)g > m2/(2m− 1)− ε whereas we prove here that (2m− 1)g > 2m− 1− ε.

Acknowledgments. I would like to thank Étienne Ghys, Pierre de la Harpe
and Pierre Pansu for helpful discussions and many comments on the text. Lots of
the ideas presented here emerged during my very nice stay at the École normale
supérieure de Lyon in Spring 2003, at the invitation of Damien Gaboriau and
Étienne Ghys.

1 Definitions and notations

1.1 Random groups and density

The interest of random groups is twofold: first, to study which properties of groups
are generic, i.e. shared by a large proportion of groups; second, to provide examples
of new groups with given properties. This article falls under both approaches.

A random group is given by a random presentation, that is, the quotient of a
free group Fm = 〈a1, . . . , am〉 by (the normal closure of) a randomly chosen set
R ⊂ Fm. Defining a random group is giving a law for the random set R.

More generally, a random quotient of a group G0 is the quotient of G0 by (the
normal closure of) a randomly chosen subset R ⊂ G0.

The philosophy of random groups was introduced by Gromov in [Gro87] through
a statement that “almost every group is hyperbolic”, the proof of which was later
given by Ol’shanskĭı ([Ols92]) and independently by Champetier ([Ch91, Ch95]).
Gromov later defined the density model in [Gro93], in order to precisely control
the quantity of relators put in a random group.

Since then random groups have gained broad interest and are connected to
lots of topics in geometric or combinatorial group theory (such as the isomor-
phism problem, property T, Haagerup property, small cancellation, spectral gaps,
the Baum-Connes conjecture...), especially since Gromov used them ([Gro03]) to
build a counter-example to the Baum-Connes conjecture with coefficients (see
also [HLS02]). We refer to [Oll-b] or [Gh03] for a general discussion on random
groups and an extensive bibliography.

We now define the density model of random groups. In this model the random
set of relations R depends on a density parameter d: the larger d, the larger R. This
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model exhibits a phase transition between infiniteness and triviality depending on
the value of d; moreover, in the infinite phase some properties of the resulting group
(such as the rank, property T or the Haagerup property) do differ depending on
d, hence the interest of this model.

Definition 4 (Density model of quotient by random elements) –
Let G0 be a group generated by the elements a±1

1 , . . . , a±1
m (m > 2). Let Bℓ ⊂ G0

be the ball of radius ℓ in G0 with respect to this generating set.
Let d > 0 be a density parameter.
Let R be a set of (2m − 1)dℓ randomly chosen elements of Bℓ, uniformly and

independently picked in Bℓ.
We call the group G = G0/〈R〉 a quotient of G0 by random elements, at density

d and at length ℓ.
In case G0 is the free group Fm we simply call G a random group at density d

and at length ℓ.

We sometimes also refer to this model as the geodesic model of random quo-
tients.

In this definition, we can also replace Bℓ by the sphere Sℓ of elements of norm
exactly ℓ, or by the annulus of elements of norm between ℓ and ℓ + C for some
constant C: this does not affect our theorems. Compare Theorem 3 in [Oll04].

Another variant (the word variant) of random quotients consists in taking for
R a set of reduced (or plain) random words in the generators a±1

i , which leads to a
different probability distribution. Fortunately in the case of the free group, there
is no difference between taking at random elements in Bℓ or reduced words, so that
the notions of random group and of a generic property of groups are well-defined
anyway.

Quotienting by elements rather than words seems better suited to control the
growth of the quotient (one works with elements of the group all the way long).
However, the author believes that the same kind of proof would also work in the
word model of random quotients, with a slightly more difficult argument.

The interest of the density model was established by the following theorem of
Gromov, which shows a sharp phase transition between infinity and triviality of
random groups.

Theorem 5 (M. Gromov, [Gro93]) – Let d < 1/2. Then with proba-
bility tending to 1 as ℓ tends to infinity, random groups at density d are infinite
hyperbolic.

Let d > 1/2. Then with probability tending to 1 as ℓ tends to infinity, random
groups at density d are either {e} or Z/2Z.

(The occurrence of Z/2Z is of course due to the case when ℓ is even and we
take elements in the sphere Sℓ; this disappears if one takes elements in Bℓ, or of
length between ℓ and ℓ+ C with C > 1.)

Basically, dℓ is to be interpreted as the “dimension” of the random set R (see
the discussion in [Gro93]). As an illustration, if L < 2dℓ then very probably there
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will be two relators in R sharing a common subword of length L. Indeed, the
dimension of the pairs of relators in R is 2dℓ, whereas sharing a common subword
of length L amounts to L “equations”, so the dimension of those pairs sharing a
subword is 2dℓ − L, which is positive if L < 2dℓ. This “shows” in particular that
at density d, the small cancellation condition C ′(2d) is satisfied.

Since a random quotient of a free group is hyperbolic, one can wonder if a
random quotient of a hyperbolic group is still hyperbolic. The answer is basically
yes, and for the random elements variant, the critical density is in this case linked
to the growth exponent of the initial group.

Theorem 6 (Y. Ollivier, [Oll04], Theorem 3) – Let G0 be a non-
elementary, torsion-free hyperbolic group, generated by the elements a±1

1 , . . . , a±1
m ,

with growth exponent g. Let 0 6 d 6 g be a density parameter.
If d < g/2, then a random quotient of G0 by random elements at density d is

infinite hyperbolic, with probability tending to 1 as ℓ tends to infinity.
If d > g/2, then a random quotient of G0 by random elements at density d is

either {e} or Z/2Z, with probability tending to 1 as ℓ tends to infinity.

This is the context in which Theorem 2 is to be understood.

1.2 Hyperbolic groups and isoperimetry of van Kampen di-

agrams

Let G be a group given by the finite presentation 〈 a1, . . . , am | R 〉. Let w be a
word in the a±1

i ’s. We denote by |w| the number of letters of w, and by ‖w‖ the
distance from e to w in the Cayley graph of the presentation, that is, the minimal
length of a word representing the same element of G as w.

Let λ be the maximal length of a relation in R.
We refer to [LS77] for the definition and basic properties of van Kampen dia-

grams. If D is a van Kampen diagram, we denote its number of faces by |D| and
its boundary length by |∂D|.

It is well-known (see for example [Sho91]) that G is hyperbolic if and only if
there exists a constant C1 > 0 such that for any word w representing the neutral
element of G, there exists a van Kampen diagram with boundary word w satisfying
the isoperimetric inequality

|∂D| > C1 |D|

We are going to use a slightly different way to write this inequality. Let D be
a van Kampen diagram w.r.t. the presentation and define the area of D to be

A(D) =
∑

f face of D

|∂f |

which is also the number of external edges (not couting “filaments”) plus twice the
number of internal ones. Say a diagram is minimal if it has minimal area for a
given boundary word.
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It is immediate to see that if D satisfies |∂D| > C1 |D|, then we have |∂D| >
C1A(D)/λ (recall λ is the maximal length of a relation in the presentation). Con-
versely, if |∂D| > C2A(D), then |∂D| > C2 |D|. So G is hyperbolic if and only
if there exists a constant C > 0 such that every minimal van Kampen diagram
satisfies the isoperimetric inequality

|∂D| > C A(D)

(where necessarily C 6 1 unless G is free).
This inequality naturally arises in C ′(α) small cancellation theory (with C =

1 − 6α), in random groups at density d (with C = 1
2
− d, see [Oll-a]), in the

assumptions of Champetier in [Ch93], in random quotients of hyperbolic groups
(cf. [Oll04]) and in the (infinitely presented) limit groups constructed by Gromov
in [Gro03]. Moreover there is a nice inequality between C and the hyperbolicity
constant δ (Proposition 7 below).

The key feature of this formulation is that both A(D) and |∂D| scale the same
way when the lengths of the relators change. This homogeneity property is crucial
in our applications. So we think this is the right way to write the isoperimetric
inequality when the lengths of the relators are very different.

Proposition 7 – Suppose that a hyperbolic group G given by some finite
presentation satisfies the isoperimetric inequality

|∂D| > C A(D)

for all minimal van Kampen diagrams D, for some constant C > 0.
Let λ be the maximal length of a relation in the presentation. Then the hy-

perbolicity constant δ of G satisfies

δ 6 12λ/C2

Proof – This is just a careful rewriting of classical proofs. Actually the proof
of this is strictly included in [Sho91] (Theorem 2.5). Indeed, what the authors
of [Sho91] prove is always of the form “the number of edges in D is at least some-
thing, so the number of faces of D is at most this thing divided by ρ” (in their
notation ρ is the maximal length of a relation). Reasoning directly with the number
of edges instead of the number of faces |D| simplifies their arguments. But A(D)
is simply twice the number of internal edges of D plus the number of boundary
edges of D, so it is greater than the number of edges of D.

So simply by removing the seventh sentence in their proof of Lemma 2.6 (where
the number of 2-cells of a diagram is evaluated by dividing the number of 1-cells
by the maximal length of a relator ρ), we get a new Lemma 2.6 which reads (we
stick to their notation in the framework of their proving Theorem 2.5)

Lemma 2.6 of [Sho91] – If ε > ρ, then there is a constant C1 depending solely
on ε, such that the number of 1-cells in N(θ) is at least ℓ(θ)ε/ρ− C1. Namely we
can set C1 = ε(ε+ ρ)/ρ.
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Similarly, removing the last sentence of their proof of Lemma 2.7 we get a new
version of it:

Lemma 2.7 of [Sho91] – If ε > ρ, there is a constant C2 depending solely on
ε such that

A(D) > (α + β + γ)ε/ρ− C2 + 2r

where A(D) is the area of the diagram D. Namely we can set C2 = 3C1 +4ε+2.

We insist that those modified lemmas are obtained by removing some sentences
in their proofs, and that there really is nothing to modify.

We still have to re-write the conclusion. In their notation α, β and γ are (up to
4ε) the lengths of the sides of some triangle which, by contradiction, is supposed
not to be r-thin (we want to show that if r is large enough, then every triangle is
r-thin).

The assumption |∂D| > CA(D) reads

A(D) 6 (α + β + γ)/C + 12ε/C

Combining this inequality and the result of Lemma 2.7, we have

(α + β + γ)ε/ρ− C2 + 2r 6 (α + β + γ)/C + 12ε/C

Now set ε = ρ/C. We thus obtain

2r 6 12ρ/C2 + C2

where we recall that C2 = 3C1+4ε+2 = 3ε(ε+ρ)/ρ+4ε+2 = ρ(3/C2+7/C)+2
with our choice of ε. Since ρ > 1 (unless G is free in which case there is nothing to
prove) and necessarily C 6 1 we have 7/C 6 7/C2 and 2 6 2ρ/C2 and so finally

2r 6 12ρ/C2 + 12ρ/C2

hence the conclusion, recalling that our δ and λ are [Sho91]’s r and ρ respectively.
�

2 Growth of random quotients

We now turn to the main point of this paper, namely, evaluation of the growth
exponent of a random quotient of a group.

2.1 Framework of the argument

Convention – Let G0 be a non-elementary torsion-free hyperbolic group given
by the finite presentation G0 = 〈 a1, . . . , am | Q 〉. Let g > 0 be the growth expo-
nent of G0 with respect to this generating set. Let Bℓ be the set of elements of
norm at most ℓ. Let λ be the maximal length of a relation in Q.

8



Let also R be a randomly chosen set of (2m−1)dℓ elements of the ball Bℓ ⊂ G0,
in accordance with the model of random quotients we retained (Definition 4). Set
G = G0/〈R〉, the random quotient we are interested in. We will call the relators
in R “new relators” and those in Q “old relators”.

In the sequel, the phrase “with overwhelming probability” will mean “with prob-
ability exponentially tending to 1 as ℓ → ∞ (depending on everything)”.

Fix some ε > 0. We want to show that the growth exponent of G is at least
g(1− ε), with overwhelming probability.

We can suppose that the length ℓ is taken large enough so that, for L > ℓ, we
have (2m− 1)gL 6 |BL| 6 (2m− 1)g(1+ε)L.

Let BL be the ball of radius L in G. We trivially have |BL| 6 |BL|.
We will prove a lower bound for the cardinality of BL for some well chosen L,

and then use Proposition 17. In order to apply this proposition, we first need an
estimate of the hyperbolicity constant of G.

Proposition 8 – With overwhelming probability, minimal van Kampen dia-
grams of G satisfy the isoperimetric inequality

|∂D| > C A(D)

where C > 0 is a constant depending on G0 and the density d but not on ℓ. In
particular, the hyperbolicity constant δ of G is at most 12ℓ/C2.

Proof – This is a rephrasing of Proposition 32 (p. 640) of [Oll04]: With over-
whelming probability, minimal van Kampen diagrams D of the random quotient
G satisfy the isoperimetric inequality

|∂D| > α1ℓ |D
′′|+ α2 |D

′|

where α1, α2 are positive constants depending on G0 and the density parameter d
(but not on ℓ), and |D′′|, |D′| are respectively the number of faces of D bearing
new relators (from R) and old relators (from Q). Since new relators have length
at most ℓ and old relators have length at most λ, by definition we have A(D) 6
ℓ |D′′|+ λ |D′| and so setting C = min(α1, α2/λ) yields

|∂D| > C A(D)

The estimate of the hyperbolicity constant follows by Proposition 7. �

In particular, in order to apply Proposition 17 it is necessary to control the
cardinality of balls of radius roughly ℓ/C2 + 1/g. More precisely, let A > 500 be
such that 40/A 6 ε/2. Set L0 = 24ℓ/C2 + 4/g and L = AL0. We already trivially
know that |BL0

| 6 (2m − 1)g(1+ε)L0 . We will now show that, with overwhelming
probability, we have |BL| > (2m − 1)g(1−ε/2)L. Once this is done we can conclude
by Proposition 17.

The strategy to evaluate the growth of the quotient G of G0 will be the fol-
lowing: There are at least (2m − 1)gL elements in BL. Some of these elements
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are identified in G. Let N be the number of equalities of the form x = y, for
x, y ∈ BL, which hold in G but did not hold in G0. Each such equality decreases
the number of elements of BL by at most 1. Hence, the number of elements of
norm at most L in G is at least (2m − 1)gL − N . So if we can show for example
that N 6 1

2
(2m− 1)gL, we will have a lower bound for the size of balls in G.

So we now turn to counting the number of equalities x = y holding in G but
not in G0, with x, y ∈ BL. Each such equality defines a (minimal) van Kampen
diagram with boundary word xy−1, of boundary length at most 2L. We will need
the properties of van Kampen diagrams of G proven in [Oll04].

So, for the ε and A fixed above, let A′ = 2L/ℓ and let D be a minimal van
Kampen diagram of G, of boundary length at most A′ℓ. By the isoperimetric
inequality |∂D| > CA(D), we know that the number |D′′| of faces of D bearing a
new relator of R is at most A′/C. So for all the sequel set

K = A′/C

which is the maximal number of new relators in the diagrams we have to consider
(which will also have area at most Kℓ). Most importantly, this K does not depend
on ℓ.

2.2 A review of [Oll04]

In this context, it is proven in [Oll04] that the van Kampen diagram D can be
seen as a “van Kampen diagram at scale ℓ with respect to the new relators, with
equalities modulo G0”. More precisely, this can be stated as follows: (we refer
to [Oll04] for the definition of “strongly reduced” diagrams; the only thing to know
here is that for any word equal to e in G, there exists a strongly reduced van
Kampen diagram with this word as its boundary word).

Proposition 9 ([Oll04], Section 6.6) – Let G0 = 〈S | Q 〉 be a non-
elementary hyperbolic group, let R be a set of words of length ℓ, and consider the
group G = G0/〈R〉 = 〈S | Q ∪R 〉.

Let K > 1 be an arbitrarily large integer and let ε1, ε2 > 0 be arbitrarily small
numbers. Take ℓ large enough depending on G0, K, ε1, ε2.

Let D be a van Kampen diagram with respect to the presentation 〈S | Q ∪R 〉,
which is strongly reduced, of area at most Kℓ. Let also D′ be the subdiagram of D
which is the union of the 1-skeleton of D and of those faces of D bearing relators
in Q (so D′ is a possibly non-simply connected van Kampen diagram with respect
to G0), and suppose that D′ is minimal.

We will call worth-considering such a van Kampen diagram.
Let w1, . . . , wp be the boundary (cyclic) words of D′, so that each wi is either

the boundary word of D or a relator in R.

Then there exists an integer k 6 3K/ε2 and words x2, . . . , x2k+1 such that:

• Each xi is a subword of some cyclic word wj;
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• As subwords of the wj’s, the xi’s are disjoint and their union exhausts a
proportion at least 1− ε1 of the total length of the wj’s.

• For each i 6 k, there exists words δ1, δ2 of length at most ε2(|x2i| + |x2i+1|)
such that x2iδ1x2i+1δ2 = e in G0.

• If two words x2i, x2i+1 are subwords of the boundary words of two faces of D
bearing the same relator r±1 ∈ R, then, as subwords of r, x2i and x2i+1 are
either disjoint or equal with opposite orientations (so that the above equality
reads xδ1x

−1δ2 = e).

The pairs (x2i, x2i+1) are called translators. Translators are called internal,
internal-boundary or boundary-boundary according to whether x2i and x2i+1 is a
subword of some wj which is a relator in R or the boundary word of D.

(There are slight differences between the presentation here and that in [Oll04].
Therein, boundary-boundary translators did not have to be considered: they were
eliminated earlier in the process, before Section 6.6, because they have a positive
contribution to boundary length, hence always improve isoperimetry and do not
deserve consideration in order to prove hyperbolicity. Moreover, in [Oll04] we
further distinguished “commutation translators” for the kind of internal translator
with x2i = x−1

2i+1, which we need not do here.)
Translators appear as dark strips on the following figure:

Remark 10 – Since there are at most 3K/ε2 translators, the total length of the
translators (x2i, x2i+1) for which |x2i| + |x2i+1| 6 ε3ℓ is at most 3Kℓε3/ε2, which
makes a proportion at most 3ε3/ε2 of the total length. So, setting ε3 = ε1ε2/3 and
replacing ε1 with ε1/2, we can suppose that the union of the translators exhausts
a proportion at least 1 − ε1 of the total length of the diagram, and that each
translator (x2i, x2i+1) satisfies |x2i|+ |x2i+1| > ε1ε2ℓ/6.

Remark 11 – The number of ways to partition the words wi into translators
is at most (2Kℓ)12K/ε2 , because each wi can be determined by its starting- and
endpoint, which can be given as numbers between 1 and 2Kℓ which is an upper
bound for the cumulated length of the wi’s (since the area of D is at most Kℓ).
For fixed K and ε2 this grows subexponentially in ℓ.

Remark 12 – Knowing the words xi, the number of possibilities for the bound-
ary word of the diagram is at most (6K/ε2)! (choose which subwords xi make the
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boundary word of the diagram, in which order), which does not depend on ℓ for
fixed K and ε2.

We need another notion from [Oll04], namely, that of apparent length of an
element in G0. Apparent length is defined in [Oll04] in a more general setting,
with respect to a family of measures on the group depending on the precise model
of random quotient at play. Here these are simply the uniform measures on the
balls Bℓ. So we only give here what the definition amounts to in our context. In
fact we will not use here the full strength of this notion, but we still need to define
it in order to state results from [Oll04].

Recall that in the geodesic model of random quotients, the axioms of [Oll04]
are satisfied with β = g/2 and κ2 = 1, by Proposition 20 of [Oll04].

Definition 13 ([Oll04], p. 652) – Let x ∈ G0. Let ε2 > 0. Let L be an
integer. Let pL(xuyv = e) be the probability that, for a random element y ∈ BL,
there exist elements u, v ∈ G0 of norm at most ε2(‖x‖+L) such that xuyv = e in
G0.

The apparent length of x at test-length L is

LL(x) = −
2

g
log2m−1 pL(xuyv = e)− L

The apparent length of x is

L(x) = min

(

‖x‖ , min
06L6Kℓ

LL(x)

)

where we recall ℓ is the length of the relators in a random presentation.

We further need the notion of a decorated abstract van Kampen diagram (which
was implicitly present in the free case when we mentioned the probability that some
diagram “is fulfilled by random relators”), which is inspired by Proposition 9: it
carries the combinatorial information about how the relators and boundary word
of a diagram were cut into subwords in order to make the translators.

Definition 14 (Decorated abstract van Kampen diagram) – Let
K > 1 be an arbitrarily large integer and let ε1, ε2 > 0 be arbitrarily small numbers.
Let Iℓ be the cyclically ordered set of ℓ elements.

A decorated abstract van Kampen diagram D is the following data:

• An integer |D| 6 K called its number of faces.

• An integer |∂D| 6 Kℓ called its boundary length.

• An integer n 6 |D| called its number of distinct relators.

• An application rD from {1, . . . , |D|} to {1, . . . , n}; if rD(i) = rD(j) we will
say that faces i and j bear the same relator.

12



• An integer k 6 3K/ε2 called the number of translators of D.

• For each integer 2 6 i 6 2k + 1, a set of the form {ji} × I ′i where either ji
is an integer between 1 and |D| and I ′i is an oriented cyclic subinterval of
Iℓ, or ji = |D|+ 1 and I ′i is a subinterval of I|∂D|; this is called an (internal)
subword of the ji-th face in the first case, or a boundary subword in the
second case.

• For each integer 1 6 i 6 k such that j2i 6 |D|, an integer between 0 and 4ℓ
called the apparent length of the 2i-th subword.

such that

• The sets {ji} × I ′i are all disjoint and the cardinal of their union is at least
(1− ε1) (|D| ℓ+ |∂D|).

• For all 1 6 i 6 k we have j2i 6 j2i+1 (this can be ensured by maybe swapping
them).

• If two faces j2i and j2i+1 bear the same relator, then either I ′2i and I ′2i+1 are
disjoint or are equal with opposite orientations.

This way, Proposition 9 ensures that any worth-considering van Kampen dia-
gram D with respect to G0/〈R〉 defines a decorated abstract van Kampen diagram
D in the way suggested by terminology (up to rounding the apparent lengths to
the nearest integer; we neglect this problem). We will say that D is associated to

D. Remark 11 tells that the number of decorated abstract van Kampen diagrams
grows subexponentially with ℓ (for fixed K).

Given a decorated abstract van Kampen diagram D and n given relators
r1, . . . , rn, we say that these relators fulfill D if there exists a worth-considering
van Kampen diagram D with respect to G0/〈r1, . . . , rn〉, such that the associated
decorated abstract van Kampen diagram is D. Intuitively speaking, the relators
r1, . . . , rn can be “glued modulo G0 in the way described by D”.

So we want to study which diagrams can probably be fulfilled by random
relators in R. The main conclusion from [Oll04] is that these are those with large
boundary length, hence hyperbolicity of the quotient G0/〈R〉. Here for growth we
are rather interested in the number of different elements of G0 that can appear
as boundary words of fulfillable a abstract diagrams with given boundary length
(recall that our goal is to evaluate the number of equalities x = y holding in G but
not in G0, with x and y elements of norm at most L).

2.3 Evaluation of growth

We now turn back to random quotients: R is a set of (2m− 1)dℓ randomly chosen
elements of Bℓ. Recall we set L = A′ℓ/2 for some value of A′ ensuring that if we
know that |BL| > (2m − 1)g(1−ε/2)L then we know that the growth exponent of
G = G0/〈R〉 is at least g(1− ε).

13



We want to get an upper bound for the number N of pairs x, y ∈ BL such
that x = y in G but x 6= y in G0. For any such pair there is a worth-considering
van Kampen diagram D with boundary word xy−1, of boundary length at most
A′ℓ, with at most K = A′/C new relators, and at least one new relator (otherwise
the equality x = y would already occur in G0). Let D be the decorated abstract
van Kampen diagram associated to D. Note that we have to count the number of
different pairs x, y ∈ BL and not the number of different boundary words of van
Kampen diagrams: since each x and y may have numerous different representations
as a word, the latter is higher than the former.

We will show that, with overwhelming probability, we have N 6 1
2
(2m− 1)gL.

The up to now free parameters ε1 and ε2 (in the definitions of decorated abstract
van Kampen diagrams and of apparent length) will be fixed in the course of the
proof, depending on G0, g and d but not on ℓ. The length ℓ upon which our
argument works will be set depending on everything including ε1 and ε2.

Further notations. Let n be the number of distinct relators in D. We only
have to consider van Kampen diagrams in G which were not already van Kampen
diagrams in G0, so that there is at least one new relator i.e. n > 1. For 1 6 a 6 n,
let ma be the number of times the a-th relator appears in D. Up to reordering,
we can suppose that the ma ’s are non-increasing. Also to avoid trivialities take n
minimal so that mn > 1.

Let also Pa be the probability that, if a words r1, . . . , ra of length ℓ are picked
at random, there exist n − a words ra+1, . . . , rn of lengt ℓ such that the relators
r1, . . . , rn fulfill D. The Pa ’s are of course a non-increasing sequence of probabili-
ties. In particular, Pn is the probability that a random n-tuple of relators fulfills
D.

Back to our set R of (2m − 1)dℓ randomly chosen relators. Let P a be the
probability that there exist a relators r1, . . . , ra in R, such that there exist words
ra+1, . . . , rn of length ℓ such that the relators r1, . . . , rn fulfill D. Again the P a ’s
are a non-increasing sequence of probabilities and of course we have

P a
6 (2m− 1)adℓPa

since the (2m− 1)adℓ factor accounts for the choice of the a-tuple of relators in R.
The probability that there exists a van Kampen diagram D with respect to

the random presentation R, such that D is associated to D, is by definition less
than P a for any a. In particular, if for some D we have P a 6 (2m − 1)−ε′ℓ, then
with overwhelming probability, D is not associated to any van Kampen diagram of
the random presentation. Since, by Remark 11, the number of possibilities for D
grows subexponentially with ℓ, we can sum this over D and conclude that for any
ε′ > 0, with overwhelming probability (depending on ε′), all decorated abstract
van Kampen diagrams D associated to some van Kampen diagram of the random
presentation satisfy P a > (2m− 1)−ε′ℓ and in particular

Pa > (2m− 1)−adℓ−ε′ℓ
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which we assume from now on.

We need to define one further quantity. Keep the notations of Definition 14.
Let 1 6 a 6 n and let 1 6 i 6 k where k is the number of translators of D. Say
that the i-th translator is half finished at time a if rD(j2i) 6 a and rD(j2i+1) > a,
that is, if one side of the translator is a subword of a relator ra′ with a′ 6 a and
the other of ra′′ with a′′ > a. Now let Aa be the sum of the apparent lengths of all
translators which are half finished at time a. In particular, An is the sum of the
apparent lengths of all subwords 2i such that 2i is an internal subword and 2i+ 1
is a boundary subword of D.

Proof of Theorem 2. We first give some intermediate results.

Proposition 15 – With overwhelming probability, we can suppose that any
decorated abstract van Kampen diagram D satisfies

An(D) > ℓα/g +
2

g
(d′n(D) + ndℓ)

where α = g/2− d > 0 and d′a(D) = log2m−1 Pa(D).

Proof – In our context, equation (⋆) (p. 659) of [Oll04] reads

Aa − Aa−1 > ma

(

ℓ(1− ε′′) +
log2m−1 Pa − log2m−1 Pa−1

β

)

where ε′′ tends to 0 when our free parameters ε1, ε2 tend to 0 (and ε′′ also absorbs
the o(ℓ) term in [Oll04]). Also recall that in the model of random quotient by
random elements of balls we have

β = g/2

by Proposition 20 (p. 628) of [Oll04].
Summing over a we get, using

∑

ma = |D|, that

An >

(

∑

ma

)

ℓ (1− ε′′) +
2

g

∑

ma(d
′
a − d′a−1)

= |D| ℓ(1− ε′′) +
2

g

∑

d′a(ma −ma+1)

Now recall we saw above that for any ε′ > 0, taking ℓ large enough we can
suppose that Pa > (2m− 1)−adℓ−ε′ℓ, that is, d′a + adℓ+ ε′ℓ > 0. Hence

An > |D| ℓ(1− ε′′) +
2

g

∑

(d′a + adℓ+ ε′ℓ)(ma −ma+1)

−
2

g

∑

(adℓ+ ε′ℓ)(ma −ma+1)

= |D| ℓ(1− ε′′) +
2

g

∑

(d′a + adℓ+ ε′ℓ)(ma −ma+1)−
dℓ

g/2

∑

ma −
ε′ℓ

g/2
m1

> |D| ℓ(1− ε′′) +
d′n + ndℓ+ ε′ℓ

g/2
mn −

dℓ+ ε′ℓ

g/2

∑

ma
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where the last inequality follows from the fact that we chose the order of the
relators so that ma −ma+1 > 0.

So using mn > 1 we finally get

An > |D| ℓ

(

1− ε′′ −
d+ ε′

g/2

)

+
d′n + ndℓ

g/2

Set α = g/2− d > 0 so that this rewrites

An >
2

g
(|D| ℓ (α− ε′ − ε′′g/2) + d′n + ndℓ)

Suppose the free parameters ε1, ε2 and ε′ are chosen small enough so that
ε′ + ε′′g/2 6 α/2 (recall that ε′′ is a function of ε1, ε2 and K, tending to 0 when
ε1 and ε2 tend to 0). Since |D| > 1 (because we are counting diagrams expressing
equalities not holding in G0) we get An > ℓα/g + 2

g
(d′n + ndℓ). �

Let us translate back this inequality into a control on the numbers of n-tuples
of relators fulfilling D.

Proposition 16 – With overwhelming probability, we can suppose that for any
decorated abstract van Kampen diagram D, the number of n-tuples of relators in
R fulfilling D is at most

(2m− 1)−αℓ/2+gAn(D)/2+ε′ℓ

Proof – Recall that, by definition, d′n is the log-probability that n random rela-
tors r1, . . . , rn fulfill D. As there are (2m − 1)ndℓ n-tuples of random relators in
R (by definition of the density model), by linearity of expectation the expected
number of n-tuples of relators in R fulfilling D is (2m− 1)ndℓ+d′n .

By the Markov inequality, for given D the probability to pick a random set
R such that the number of n-tuples of relators of R fulfilling D is greater than
(2m − 1)ndℓ+d′n+ε′ℓ, is less than (2m − 1)−ε′ℓ. Using Proposition 15, the result
then follows for fixed D. But by Remark 11 the number of possibilities for D is
subexponential in ℓ, hence the conclusion. �

Let us now turn back to the evaluation of the number of elements x, y in
BL ⊂ G0 forming a van Kampen diagram D with boundary word xy−1. For each
such pair x, y fix some geodesic writing of x and y as words. We will first suppose
that the abstract diagram D associated to D is fixed and evaluate the number
of possible pairs x, y in function of D, and then, sum over the possible abstract
diagrams D.

So suppose D is fixed. Recall Proposition 9: the boundary word of D is deter-
mined by giving two words for each boundary-boundary translator, and one word
for each internal-boundary translator, this last one being subject to the apparent
length condition imposed in the definition of D. By Remark 12, the number of
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ways to combine these subwords into a boundary word for D is controlled by K
and ε2 (independently of ℓ).

In all the sequel, in order to avoid heavy notations, the notation ε⋆ will denote
some function of ε′, ε1 and ε2, varying from time to time, and increasing when
needed. The important point is that ε⋆ tends to 0 when ε′, ε1, ε2 do.

Let (x2i, x2i+1) be a translator in D. The definition of translators implies
that there exist short words δ1, δ2, of length at most ε2(|x2i| + |x2i+1|), such that
x2iδ1x2i+1δ2 = e in G0. The words x2i and x2i+1 are either subwords of the geodesic
words x and y making the boundary of D, or subwords of relators in R; by definition
of the geodesic model of random quotients, the relators are geodesic as well. So in
either case x2i and x2i+1 are geodesic1. Thus, the equality x2iδ1x2i+1δ2 = e implies
that ‖x2i+1‖ 6 ‖x2i‖ (1 + ε⋆) and conversely. Also, by Remark 10, we can suppose
that ‖x2i‖+ ‖x2i+1‖ > ℓε1ε2/6, hence ‖x2i‖ > ℓε1ε2(1− ε⋆)/12.

By definition of the growth exponent, there is some length ℓ0 depending only on
G0 such that if ℓ′0 > ℓ0, then the cardinal of Bℓ′

0
is at most (2m−1)g(1+ε′)ℓ′

0 . So, if ℓ is
large enough (depending on G0, ε1, ε2 and ε′) to ensure that ℓε1ε2(1−ε⋆)/12 > ℓ0,
we can apply such an estimate to any x2i.

To determine the number of possible pairs x, y, we have to determine the num-
ber of possibilites for each boundary-boundary or internal-boundary translator
(x2i, x2i+1) (since by definition internal translators do not contribute to the bound-
ary).

First suppose that (x2i, x2i+1) is a boundary-boundary translator. Knowing
the constraint x2iδ1x2i+1δ2 = e, if x2i and δ1,2 are given then x2i+1 is deter-
mined (as an element of G0). The number of possibilities for δ1 and δ2 is at
most (2m − 1)2ε2(‖x2i‖+‖x2i+1‖). The number of possibilities for x2i is at most
(2m − 1)g(1+ε′)‖x2i‖ which, since ‖x2i‖ 6 1

2
(‖x2i‖+ ‖x2i+1‖) (1 + ε⋆), is at most

(2m − 1)
g

2
(‖x2i‖+‖x2i+1‖)(1+ε⋆). So the total number of possibilities for a boundary-

boundary translator (x2i, x2i+1) is at most

(2m− 1)
g

2
(‖x2i‖+‖x2i+1‖)(1+ε⋆)

where of course the feature to remember is that the exponent is basically g/2 times
the total length ‖x2i‖+ ‖x2i+1‖ of the translator.

Now suppose that (x2i, x2i+1) is an internal-boundary translator. The word x2i

is by definition a subword of some relator ri ∈ R. So if a set of relators fulfilling D
is fixed then x2i is determined (we will multiply later by the number of possibilities
for the relators, using Proposition 16). As above, the number of possibilities for
δ1 and δ2 is at most (2m − 1)ε

⋆‖x2i‖. Once x2i, δ1 and δ2 are given, then x2i+1 is
determined (as an element of G0). So, if a set of relators fulfilling D is fixed, then
the number of possibilities for x2i+1 is at most (2m−1)ε

⋆‖x2i‖, which reflects the fact
that the set of relators essentially determines the internal-boundary translators.

1Except maybe in the case when the translator straddles the end of x and the beginning of y

or conversely, or when it straddles the beginning and end of a relator; these cases can be treated

immediately by further subdividing the translator, so we ignore this problem.
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Let A′
n be the sum of ‖x2i+1‖ for all internal-boundary translators (x2i, x2i+1).

Let B be the sum of ‖x2i‖ + ‖x2i+1‖ for all boundary-boundary translators. By
definition we have |∂D| = A′

n + B maybe up to ε1Kℓ.
So if a set of relators fulfilling D is fixed, then the total number of possibilities

for the boundary of D is at most

(2m− 1)
g

2
B (1+ε⋆)+ε⋆A′

n

which, since both B and A′
n are at most Kℓ, is at most

(2m− 1)gB/2+Kℓε⋆

(note that A′
n does not come into play, since once the relators fulfilling D are given,

the internal-boundary translators are essentially determined).
The number of possibilities for an n-tuple of relators fulfilling D is given by

Proposition 16: it is at most (2m− 1)−αℓ/2+gAn/2+ε⋆ℓ (recall α = g/2− d), so that
the total number of possibilities for the boundary of D is at most

(2m− 1)−αℓ/2+(B+An)g/2+Kℓε⋆

Recall that An is the sum of L(x2i) for all internal-boundary translators (x2i, x2i+1).
By definition of apparent length we have L(x2i) 6 ‖x2i‖. Since in an internal-
boundary translator (x2i, x2i+1) we have ‖x2i‖ 6 ‖x2i+1‖ (1 + ε⋆), we get, after
summing on all internal-boundary translators, that An 6 A′

n +Kℓε⋆. In particu-
lar, the above is at most

(2m− 1)−αℓ/2+(B+A′

n)g/2+Kℓε⋆

Now recall that by definition we have |∂D| = B + A′
n maybe up to ε1Kℓ so

that the above is in turn at most

(2m− 1)−αℓ/2+|∂D|g/2+Kε⋆ℓ

This was for one decorated abstract van Kampen diagram D. But by Re-
mark 11, the number of such diagrams is subexponential in ℓ (for fixed K and ε2),
and so, up to increasing ε⋆, this estimate holds for all diagrams simultaneously.

2.4 Conclusion

Remember the discussion in the beginning of Section 2. We wanted to show that
the cardinal |BL| of the ball of radius L in G was at least (2m − 1)gL(1−ε/2) for
some ε chosen at the beginning of our work.

We just proved that the number N of pairs of elements x, y in BL such that
there exists a van Kampen diagram expressing the equality x = y in G, but such
that x 6= y in G0 (which was expressed in the above argument by using that D
had at least one new relator) is at most

(2m− 1)−αℓ/2+(‖x‖+‖y‖)g/2+Kε⋆ℓ
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where α = g/2− d > 0.
Now fix the free parameters ε′, ε1, ε2 so that Kε⋆ 6 α/4 (this depends on K

and G0 but not on ℓ; K itself depends only on G0). Choose ℓ large enough so that
all the estimates used above (implying every other variable) hold. Also choose ℓ
large enough (depending on d) so that (2m− 1)−αℓ/4 6 1/2. We get

N 6
1

2
(2m− 1)(‖x‖+‖y‖)g/2

6
1

2
(2m− 1)gL

since by assumption ‖x‖ and ‖y‖ are at most L. But on the other hand we have
|BL| > (2m− 1)gL and so

|BL| > |BL| −N >
1

2
(2m− 1)gL > (2m− 1)gL(1−ε/2)

as soon as ℓ is large enough (since L grows like ℓ), which ends the proof.

Appendix: Locality of growth in hyperbolic groups

The goal of this section is to show that, in a hyperbolic group, if we know an
estimate of the growth exponent in some finite ball of the group, then this provides
an estimate of the growth exponent of the group (whose quality depends on the
radius of the given finite ball).

Let G = 〈 a1, . . . , am | R 〉 be a δ-hyperbolic group generated by the elements
a±1
i , with m > 2. For x ∈ G let ‖x‖ be the norm of x with respect to this

generating set. Let Bℓ be the set of elements of norm at most ℓ.

Proposition 17 –
Suppose that for some g > 0, for some ℓ0 > 2δ + 4/g and ℓ1 > Aℓ0, with

A > 500, we have
|Bℓ0 | 6 (2m− 1)1.1gℓ0

and
|Bℓ1 | > (2m− 1)gℓ1

Then the growth exponent of G is at least g(1− 40/A).

Note that the occurrence of 1/g in the scale upon which the proposition is true
is natural: indeed, an assumption such as |Bℓ| > (2m−1)gℓ for ℓ < 1/g is not very
strong... The growth g can be thought of as the inverse of a length, so this result
is homogeneous.

Corollary 18 – The growth exponent of a presentation of a hyperbolic group
is computable. That is, there exists an algorithm which, for any input made of a
finite presentation of a hyperbolic group and an ε > 0, outputs a number g together
with a proof that the growth exponent of the given presentation lies between g− ε
and g + ε.
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This corollary was already known: indeed, once δ is known one can compute
(see [GhH90]) a finite automaton accepting some normal geodesic form of all el-
ements in the group, and this in turn implies that the growth series is a rational
function with explicitly computable coefficients; now the growth exponent is linked
to the radius of convergence of this series, which is computable in the case of a
rational function. Whereas in this approach, the exact value of the growth ex-
ponent is determined very indirectly by the full algebraic structure of some finite
ball, our approach directly relates an approximate value of the growth exponent
to that observed in this finite ball.
Proof – Indeed, recall from [Pap96] (after [Gro87]) that the hyperbolicity con-
stant δ of a presentation of a hyperbolic group is computable. Thanks to the
isoperimetric inequality, the word problem in a hyperbolic group is solvable, so
that for any ℓ an exact computation of the cardinal of Bℓ is possible. Setting
gℓ = 1

ℓ
log2m−1 |Bℓ|, we know that gℓ will converge to some (unknown) positive

value, so that gℓ and gAℓ will become arbitrarily close, and since gℓ is bounded
from below sooner or later we will have ℓ > 2δ+4/gAℓ, in which case we can apply
the proposition to ℓ and Aℓ. �

Proof of the proposition –
Let (, ) denote the Gromov product in G, with origin at e, that is

(x, y) =
1

2
(‖x‖+ ‖y‖ − ‖x− y‖)

for x, y ∈ G, where, following [GhH90], we write ‖x− y‖ for ‖x−1y‖ = ‖y−1x‖.
Since triangles are δ-thin, we have ([GhH90], Proposition 2.21) for any three points
x,y, z in G

(x, z) > min ((x, y), (y, z))− 2δ

Let Sℓ denote the set of elements of norm ℓ in the hyperbolic group G. Consider
also, for homogeneity reasons, the annulus Sℓ,a = Bℓ \Bℓ−a.

Proposition 19 – Let g ∈ Bℓ and let a > 0. The number of elements g′ in Sℓ

or Bℓ such that (g, g′) > a is at most |Bℓ−a+2δ|.

Proof – Suppose that (g, g′) > a. Let x be the point at distance a from e on
some geodesic joining e to g. By construction we have (g, x) = a. But

(g′, x) > min ((g′, g), (g, x))− 2δ > a− 2δ

and unwinding the definition of (g′, x) yields

‖g′ − x‖ 6 ‖g′‖+ ‖x‖ − 2a+ 2δ 6 ℓ− a+ 2δ

So g′ lies at distance at most ℓ−a+2δ from x, hence the number of possibilities
for g′ is at most |Bℓ−a+2δ|. (This is most clear on a picture.) �

We know show that, if we multiply two elements of the sphere Sℓ then we often
get an element of norm close to 2ℓ.
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Corollary 20 – Let g ∈ Sℓ,a. The number of elements g′ in Sℓ,a such that
‖gg′‖ > 2ℓ− 4a is at least |Sℓ,a| − |Bℓ−a+2δ|.

Proof – We have ‖gg′‖ = ‖g‖+ ‖g′‖− 2(g−1, g′). So if ‖g‖ > ℓ− a, ‖g′‖ > ℓ− a
and (g−1, g′) 6 a, then ‖gg′‖ > 2ℓ− 4a.

But by the last proposition, the number of “bad” elements g′ such that (g−1, g′) >
a is at most |Bℓ−a+2δ|. �

So multiplying long elements often gives twice as long elements. We now show
that this procedure does not build too often the same new element.

Proposition 21 – Let x ∈ S2ℓ,4a. The number of pairs (g, g′) in Sℓ,a×Sℓ,a such
that x = gg′ is at most |B6a+2δ|.

Proof – Choose a geodesic decomposition x = hh′ with ‖h‖ = ‖h′‖ = ‖x‖ /2. It
is easy to see that if x = gg′ as above, then g is 6a+ 2δ-close to h (and then g′ is
determined). �

Combining the last two results yields the following “almost supermultiplicative”
estimate for the cardinals of balls (compare the trivial converse inequality |B2ℓ| 6
|Bℓ|

2).

Corollary 22 –

|B2ℓ| >
1

|B6a+2δ|
(|Bℓ| − 2 |Bℓ−a+2δ|)

2

Proof – Indeed, the last two results imply that

|S2ℓ,4a| >
1

|B6a+2δ|
|Sℓ,a| (|Sℓ,a| − |Bℓ−a+2δ|)

which implies the above by the trivial estimates |B2ℓ| > |S2ℓ,4a| and |Sℓ,a| >

|Bℓ| − |Bℓ−a+2δ|. �

In order to apply this, we need to know both that |Bℓ| is large and that |Bℓ−a| is
not too large compared to |Bℓ|. Asymptotically one would expect |Bℓ−a| ≈ (2m−
1)−ga |Bℓ|. The next lemma states that, under the assumptions of Proposition 17,
we can almost realize this, up to changing ℓ by some controlled factor.

Lemma 23 – Suppose that for some g, for some ℓ0 and ℓ1 > 100ℓ0 we have
|Bℓ0 | 6 (2m− 1)1.2gℓ0 and |Bℓ1 | > (2m− 1)gℓ1 . Let a 6 ℓ0. There exists 0.65ℓ1 6
ℓ 6 ℓ1 such that

|Bℓ| > (2m− 1)gℓ

and
|Bℓ| > (2m− 1)ga/2 |Bℓ−a|

Proof of the lemma – First, note that by subadditivity, the inequality
|Bℓ0 | 6 (2m−1)1.2gℓ0 implies that for any ℓ, writing ℓ = kℓ0−r (k ∈ N, 0 6 r < ℓ0)
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we have |Bℓ| 6 (2m − 1)1.2kgℓ0 . Especially for ℓ > 50ℓ0 we have 1 6 kℓ0/ℓ 6

51/50 and so in particular, if ℓ1 > 100ℓ0 then |B0.65ℓ1 | 6 (2m − 1)0.8gℓ1 (indeed
0.65× 1.2× 51/50 6 0.8).

Suppose that for all 0.65ℓ1 6 ℓ 6 ℓ1 with ℓ = ℓ1 − ka (k ∈ N) we have
|Bℓ| < (2m − 1)ga/2 |Bℓ−a|. Write ℓ1 − 0.65ℓ1 = qa − r with q ∈ N, 0 6 r < a.
Then we get

|Bℓ1 | < (2m− 1)ga/2 |Bℓ1−a| < (2m− 1)ga |Bℓ1−2a| < · · ·

< (2m− 1)gqa/2 |B0.65ℓ1−r| 6 (2m− 1)g(ℓ1−0.65ℓ1)/2+ga/2 |B0.65ℓ1 |

6 (2m− 1)g(0.35ℓ1)/2+gℓ1/200+0.8gℓ1 < (2m− 1)0.98gℓ1

contradicting the assumption.
So we can safely take the largest ℓ 6 ℓ1 satisfying |Bℓ| > (2m − 1)ga/2 |Bℓ−a|

and such that ℓ1 − ℓ is a multiple of a.
Since ℓ is largest, for ℓ 6 ℓ′ 6 ℓ1 we have |Bℓ′ | 6 (2m − 1)ga/2 |Bℓ′−a|. We

get, a-step by a-step, that |Bℓ1 | 6 (2m − 1)g(ℓ1−ℓ)/2 |Bℓ|. Using the assumption
|Bℓ1 | > (2m−1)gℓ1 we now get |Bℓ| > (2m−1)gℓ1−g(ℓ1−ℓ)/2 > (2m−1)gℓ as needed.
�

Now equipped with the lemma, we can apply Corollary 22 to show that if we
know that Bℓ is large for some ℓ, then we get a larger ℓ′ such that Bℓ′ is large as
well. We will then conclude by induction.

Lemma 24 – Suppose that for some g, for some ℓ0 > 2δ+4/g and ℓ1 > Aℓ0 (with
A > 100) we have |Bℓ0 | 6 (2m−1)1.2gℓ0 and |Bℓ1 | > (2m−1)gℓ1 . Then there exists
ℓ2 > 1.3ℓ1 such that

|Bℓ2 | > (2m− 1)gℓ2(1−9/A)

Proof of the lemma – Consider the ℓ provided by Lemma 23 where we
take a = ℓ0. This provides an ℓ > 0.65ℓ0 such that |Bℓ| > (2m − 1)gℓ and
|Bℓ| > (2m− 1)ga/2 |Bℓ−a|.

So by Corollary 22 (applied to 2a instead of a) we have

|B2ℓ| >
1

|B12a+2δ|
|Bℓ|

2 (1− 2 |Bℓ−2a+2δ| / |Bℓ|)
2

Since a = ℓ0 > 2δ we have ℓ− 2a+ 2δ 6 ℓ− ℓ0 and so

|B2ℓ| >
1

|B12ℓ0+2δ|
|Bℓ|

2 (1− 2(2m− 1)−gℓ0/2
)2

If ℓ0 > 4/g, since 2m− 1 > 2 we have
(

1− 2(2m− 1)−gℓ0/2
)2

> 1/4 and so

|B2ℓ| >
1

4 |B12ℓ0+2δ|
|Bℓ|

2
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We have |B12ℓ0+2δ| 6 |B13ℓ0 | 6 |Bℓ0 |
13 by subadditivity. So by the assumptions

|B2ℓ| >
1

4 |Bℓ0 |
13 |Bℓ|

2
> (2m− 1)2gℓ−16gℓ0−2 = (2m− 1)2gℓ(1−8ℓ0/ℓ−1/gℓ)

which is at least (2m − 1)2gℓ(1−9/A) since 8ℓ0/ℓ 6 8/A and 1/gℓ 6 1/gAℓ0 6 1/A
since ℓ0 > 4/g.

So we can take ℓ2 = 2ℓ, which is at least 1.3ℓ1. �

Now the proposition is clear: start from ℓ1 and construct by induction a se-
quence ℓi with ℓi+1 > 1.3ℓi using the lemma applied to ℓ0 and ℓi; thus

|Bℓi | > (2m− 1)gℓi
∏i−2

k=0
(1−9/(A·1.3k))

and note that the infinite product converges to a value greater than 1−40/A. The
only thing to check is that, in order to be allowed to apply the previous lemma
to ℓ0 and ℓi at each step, we must ensure that 1.1/(1 − 40/A) 6 1.2, which is
guaranteed as soon as A > 500. �
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