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Abstract

We give a combinatorial proof of a theorem of Gromov, which
extends the scope of small cancellation theory to group presentations
arising from labelled graphs.

In this paper we present a combinatorial proof of a small cancellation
theorem stated by M. Gromov in [Gro03], which strongly generalizes the
usual tool of small cancellation. Our aim is to complete the six-line-long proof
given in [Gro03] (which invokes geometric arguments).

Small cancellation theory is an easy-to-apply tool of combinatorial group
theory (see [Sch73] for an old but nicely written introduction, or [GH90]
and [LS77]). In one of its forms, it basically asserts that if we face a group
presentation in which no two relators share a common subword of length
greater than 1/6 of their length, then the group so defined is hyperbolic (in
the sense of [Gro87], see also [GH90] or [Sho91] for basic properties), and
infinite except for some trivial cases.

The theorem extends these conclusions to much more general situations.
Suppose that we are given a finite graph whose edges are labelled by generators
of the free group 𝐹𝑚 and their inverses (in a reduced way, see definition below).
If no word of length greater than 1/6 times the length of the smallest loop
of the graph appears twice on the graph, then the presentation obtained
by taking as relations all the words read on all loops of the graph defines
a hyperbolic group which (if the rank of the graph is at least 𝑚 + 1, to
avoid trivial cases) is infinite. Moreover, the given graph naturally embeds
isometrically into the Cayley graph of the group.

The new theorem reduces to the classical one when the graph is a disjoint
union of circles. Noticeably, this criterion is as easy to use as the standard
one.

For example, ordinary small cancellation theory cannot deal with such
simple group presentations as ⟨ 𝑆 | 𝑤1 = 𝑤2 = 𝑤3 ⟩ because the two relators
involved here, 𝑤1𝑤

−1
2 and 𝑤1𝑤

−1
3 , share a long common subword. The new

theorem can handle such situations: for “arbitrary enough” words 𝑤1, 𝑤2, 𝑤3,
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such presentations will define infinite, hyperbolic groups, although from the
classical point of view these presentations satisfy (e.g. if the 𝑤𝑖’s have the
same length) a priori only the 𝐶 ′(1/2) condition from which nothing could
be deduced.

The groups obtained by this process can in some cases be noticeably
different from ordinary small cancellation groups. For example, the graphs
used by Gromov in [Gro03] provide groups having Kazhdan’s property (𝑇 )
(see [Sil03]), whereas ordinary small cancellation groups cannot have property
(𝑇 ) (see [Wis04]).

Most importantly, this technique allows to (quasi-)embed prescribed gra-
phs into the Cayley graphs of hyperbolic groups. It is the basic construction
involved in the announcement of a counter-example to the Baum-Connes con-
jecture with coefficients (see [HLS02] which elaborates on [Gro03], or [Ghy03]
for a survey). Indeed, this counter-example is obtained by constructing a
finitely generated group (which is a limit of hyperbolic groups) whose Cayley
graph quasi-isometrically contains an infinite family of expanders.

Moreover, this technique will be used in [OW04] to construct new examples
of groups with property (𝑇 ).

1 Statement and discussion
Let 𝑆 be a finite set, in which an involution without fixed point, called being
inverse, is given. The elements of 𝑆 are called letters.

A word is a finite sequence of letters. The inverse of a word is the word
made of the inverse letters put in reverse order. A word is called reduced if it
does not contain a letter immediately followed by its inverse.

A labelled graph is an unoriented graph in which each unoriented edge is
considered as a couple of two oriented edges, and each oriented edge bears
a letter such that opposite edges bear inverse letters. We require maps of
labelled graphs to preserve the labels.

A labelled graph is said to be reduced if there is no pair of oriented edges
arising from the same vertex and bearing the same letter.

Note that a word can be seen as a (linear) labelled graph, which we will
implicitly do from now on. The word is reduced if and only if the labelled
graph is.

A piece of a labelled graph is a word which has two different immersions
in the labelled graph. (An immersion is a locally injective map of labelled
graphs. Two immersions are considered different if they are different as maps.)
This is analogue to the traditional piece of small cancellation theory.
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A standard family of cycles for a connected graph is a set of paths in the
graph, generating the fundamental group, such that there exists a maximal
subtree of the graph such that, when the subtree is contracted to a point (so
that the graph becomes a bouquet of circles), the set of generating cycles
is exactly the set of these circles. There always exists some. If the graph is
not connected, a standard family of cycles is one which is standard on each
component.

A generating family of cycles is a family of cycles generating the funda-
mental group of each connected component of the graph (maybe up to adding
initial and final segments joining these cycles to some basepoint).

A graph is non-filamenteous if every edge belongs to some immersed cycle.

We are now in a position to state the theorem.

Theorem 1 (M. Gromov, [Gro03]). Let Γ be a finite reduced non-
filamenteous labelled graph. Let 𝑅 be the set of words read on all cycles of Γ
(or on a generating family of cycles). Let 𝑔 be the girth of Γ and Λ be the
length of the longest piece of Γ.

If Λ < 𝑔/6 then the presentation ⟨ 𝑆 | 𝑅 ⟩ defines a group 𝐺 enjoying the
following properties.

1. It is hyperbolic, torsion-free.

2. Any presentation of 𝐺 by the words read on a standard family of cycles
of Γ is aspherical (in the sense of Definition 9), hence the cohomological
dimension of 𝐺 is at most 2.

3. The Euler characteristic of 𝐺 is 𝜒(𝐺) = 1 − |𝑆| /2 + 𝑏1(Γ). In particular,
if the rank of the fundamental group of Γ is greater than the number of
generators, 𝐺 is infinite and not quasi-isometric to Z.

4. The shortest relation in 𝐺 is of length 𝑔.

5. For any reduced word 𝑤 representing the identity in 𝐺, some cyclic
permutation of 𝑤 contains a subword of a word read on a circle immersed
in Γ, of length at least (1 − 3Λ/𝑔) (which is more than 1/2) times the
length of this cycle.

6. The natural maps from each connected component of the labelled graph
Γ into the Cayley graph of 𝐺 are isometric embeddings.

If Γ is a disjoint union of circles, this theorem almost reduces to ordinary
1/6 small cancellation theory. The “almost” accounts for the fact that the
length of a shared piece between two relators is supposed to be less than 1/6
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the length of the smallest of the two relators in ordinary small cancellation
theory, and less than 1/6 the length of the smallest of all relators in our case;
this is handled through the following remark (which we do not prove in order
not to have still heavier notation).

Remark 2. It is clear from the proof that the assumption in the theorem
can be replaced by the following slightly weaker one: for each piece, its length
is less than 1/6 times the length of any cycle of the graph on which the piece
appears.

With this latter assumption, the theorem reduces to ordinary small can-
cellation when the graph is a disjoint union of circles.

Remark 3. Non-filamenteousness is needed only to ensure isometric em-
bedding of the graph (filaments may not embed isometrically if Λ ⩾ 𝑔/8).

The group obtained is not always non-elementary: for example, if there
are three generators 𝑎, 𝑏, 𝑐 and the graph consists in two points joined by
three edges bearing 𝑎, 𝑏 and 𝑐 respectively, one obtains the presentation
⟨ 𝑎, 𝑏, 𝑐 | 𝑎 = 𝑏 = 𝑐 ⟩ which defines Z. However, since the cohomological di-
mension is at most 2, it is easy to check (computing the Euler characteristic)
that if the rank of the fundamental group of Γ is greater than the number of
generators, then 𝐺 is non-elementary.

This theorem is not stated explicitly in [Gro03] in the form we give but
using a much more abstract and more powerful formalism of “rotation families
of groups” ([Gro03], section 2). In the vocabulary thereof, the case presented
here is when this rotation family contains only one subgroup of the free group
(and its conjugates), namely the one generated by the words read on cycles
of the graph with some base point; the corresponding “invariant line” 𝑈 is
the universal cover of the labelled graph Γ (viewed embedded in the Cayley
graph of the free group). Reducedness of the labelling ensures convexity.

Elements for a proof of the theorem for very small values of Λ/𝑔 (instead
of Λ/𝑔 < 1/6) using geometric rather than combinatorial tools, can be found
in [Gro01] (see also [Gro03], p. 88).

In [Gro03], this theorem is applied to a random labelling (or rather a
variant, Theorem 18 below, in which reducedness is replaced with quasi-
geodesicity). It is not difficult, using for example the techniques described
in [Oll04], to check that a random labelling satisfies the small cancellation
and quasi-geodesicity assumptions.

Acknowledgements. I would like to thank Thomas Delzant for having
brought the problem to my attention and for very careful reading, Étienne
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Ghys, Pierre Pansu and Alain Valette for helpful discussions and comments
on the manuscript, and Mikhail Ostrovskii for pointing out an error in an
earlier version of the proof of the isometric embedding property.

2 Idea of proof
The line of the argument is as follows: Choose a presentation of 𝐺 by the
words read on a standard generating family of cycles of Γ. We will study the
isoperimetry of van Kampen diagrams with respect to this set of relations:
we will show that the number of faces in such diagrams is linearly bounded
by its boundary length.

Define a labelled complex Γ2 by attaching to Γ a disk for each cycle in
the family. Now each face of a van Kampen diagram for this presentation
can be lifted (in a unique way) to Γ2. For any edge between two faces of the
diagram, either these two faces are already adjacent along “the same” edge in
Γ2 or they are not.

Decompose the diagram into maximal parts all edges of which originate
from Γ2 in this sense. Now gluings between these parts do not originate
from Γ2 and thus constitute pieces. So these parts are in classical 1/6 small
cancellation with respect to each other, and so the boundary length of the
diagram is controlled in terms of the boundary lengths of these parts. We get
the other usual consequences of small cancellation theory as well (asphericity,
radius of injectivity...). Technicalities arise from the necessity to perform some
so-called “diamond moves” and from the maybe non-simple connectedness of
these parts.

To reach the conclusion it is then enough to work inside each part. Since
each part lifts to Γ2 its boundary word is the word read on some null-homotopic
cycle in Γ2. So this cycle is the product of elements our generating family
of cycles, and for isoperimetry we have to control the number of terms in
this product (the number of faces in the part) in function of the length of
the cycle (the boundary length of the part). This is achieved by decomposing
the considered cycle into a product of cycles shorter than three times the
diameter of the graph. As there are only finitely many such short cycles we
are done.

3 Proof (expanded version)
We now give some more definitions which are useful for the proof.

Definition 4. A labelled complex is a finite unoriented combinatorial
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2-complex the interior of every face of which is homeomorphic to an open
disk 𝐷𝑛+1 with 𝑛 ⩾ 0 holes (𝑛 depends on the face), such that its 1-skeleton
is equipped with a labelled graph structure.

A labelled complex is said to be reduced if its 1-skeleton is.

Each face of such a complex defines a set of contour words: If the interior
of the face is homeomorphic to an open disk 𝐷𝑛+1 with 𝑛 holes, the contour
words are the 𝑛 + 1 cyclic words read by moving around the 𝑛 + 1 boundary
components of 𝐷𝑛+1. The words in this set are considered as oriented cyclic
words, and counted with multiplicities.

We require a map of labelled complexes to preserve labels (but it may
change orientation of faces, sending a face to a face with inverse contour
labels — this amounts to considering maps between the corresponding oriented
complexes).

Definition 5. A tile is a planar labelled complex with only one face
(not necessarily simply connected) and each edge of which belongs to the
combinatorial boundary of the face with multiplicity one. We do not fix the
embedding in the plane.

It follows from the definition that the contour of a tile coincides with its
boundary.

By our definition of maps between labelled complexes, a tile is considered
equal to the tile bearing the inverse boundary words.

Convention: A tile may bear a word which is not simple (i.e. is a power of
a smaller word). In this case the tile would have a non-trivial automorphism.
To prevent this, say that on each boundary component of a tile we mark a
starting point and that a map between tiles has to preserve marked points.
This is useful for the study of asphericity and torsion (see Definition 9).

To any planar labelled complex with only one face we can associate a
tile in the following way: First, remove the edges that do not belong to the
adherence of the interior of the complex (the “filaments”). Then, the obtained
one-face complex immersed in the plane is the image of some one-face complex
embedded in the plane by a cellular map (this complex is constructed by
ungluing along the internal edges). This is an embedding in the plane of some
tile, which we call the tile associated to the one-face labelled complex.

Definition 6. A tile of a labelled complex is the tile associated to any of
its faces.

The length of a tile is the length of its boundary.
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Definition 7. A piece with respect to a set of tiles is a word which has
immersions in the boundary of two different tiles, or two distinct immersions
in the boundary of one tile.

Definition 8. A puzzle with respect to a set of tiles is a planar labelled
complex all tiles of which belong to this set of tiles (the same tile may appear
several times in a puzzle). The set of boundary words of a puzzle is the set of
words read on its boundary components (with multiplicities and orientations).

A spherical puzzle is the same drawn on a sphere instead of the plane,
that is, a labelled complex which is a combinatorial 2-sphere, all tiles of which
belong to this set of tiles.

A puzzle is said to be minimal if it has the minimal number of tiles among
all puzzles having the same set of boundary words.

A puzzle is said to be van Kampen-reduced if there is no pair of adjacent
faces such that the words read on the external contour of these two faces are
inverse and the position (with respect to the marked point) of the letter read
at a common edge of these faces is the same in the two copies of the contour
word of these faces.

So a puzzle is roughly speaking a van Kampen diagram in which we allow
non-simply connected faces. The last definition given corresponds to reduced
van Kampen diagrams (see [LS77]). (Incidentally, a reduced puzzle is van
Kampen-reduced, though the converse is not necessarily true.)

Definition 9. A presentation of a group is said to be aspherical if the set
of tiles whose boundary words are the relators of the presentation admits no
van Kampen-reduced spherical puzzle.

There are several notions of aspherical presentations in the literature (see
e.g. [CCH81] for five of them). Our definition of asphericity coincides with the
one in [Ger87], p. 31 (in which asphericity is termed “every spherical diagram
is diagrammatically reducible”). It is thus stronger than the one(s) in [LS77],
the main difference being that we mark a starting point on the boundary of
each tile (see the discussion in [Ger87]). In particular, with our (and [Ger87]’s,
contra [LS77]) convention, a presentation such as ⟨ 𝑆 | 𝑤𝑛 = 1 ⟩ (with 𝑛 ⩾ 2)
is not aspherical: no relator can be a proper power. With this convention,
asphericity of a presentation implies asphericity of the Cayley 2-complex
([Ger87], p. 32), hence (by Hurewicz’ Theorem) cohomological dimension at
most 2 and hence ([Bro82], p. 187) torsion-freeness.

Proof of the theorem.
Let Γ be a reduced labelled graph. The group under consideration is defined
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by the presentation ⟨ 𝑆 | 𝑅 ⟩ where 𝑅 is the set of all words read along cycles
of Γ. However, taking all words is not necessary: the group presented by
⟨ 𝑆 | 𝑅 ⟩ will be the same if we take not all cycles but only a generating set of
cycles.

The fundamental group of the graph Γ is a free group. Let 𝒞 be a finite
generating set of 𝜋1(Γ) (maybe not standard). Let 𝑅 be the set of words read
on the cycles in 𝒞.

Add 2-faces to Γ in the following way: for each cycle in 𝒞, glue a disk
bordering this cycle. Denote by Γ2 this 2-complex; it depends on the choice
of 𝒞, or equivalently on 𝑅.

As the cycles in 𝒞 generate all cycles, Γ2 is simply connected. Note that if
𝒞 happens to be taken standard, as will sometimes be the case below, then
Γ2 has no homotopy in degree 2.

By our definitions above (Definition 6), a tile of Γ2 is a topological disk
whose boundary is labelled by some word of 𝑅.

We are going to show that there exists a constant 𝐶 > 0 such that any
simply connected van Kampen-reduced puzzle 𝐷 with respect to the tiles
of Γ2 satisfies a linear isoperimetric inequality |𝜕𝐷| ⩾ 𝐶 |𝐷| where |𝜕𝐷| is
the boundary length of 𝐷 and |𝐷| is the number of faces of 𝐷. This implies
hyperbolicity (see for example [Sho91]).

We can safely assume that all edges of 𝐷 lie on the contour of some face
(roughly speaking, there are no “filaments”). Indeed, filaments only improve
isoperimetry. Generally speaking, in what follows we will never mention the
possible occurrence of filaments, their treatment being immediate.

Remark 10. The 1/6 assumption on pieces implies that no two distinct
cycles of Γ bear the same word.

Let 𝑒 be an internal1 edge of 𝐷, adjacent2 to faces 𝑓1 and 𝑓2. As 𝐷 is a
puzzle over the tiles of Γ2, there are faces 𝑓 ′

1 and 𝑓 ′
2 of Γ2 bearing the same

contour words as 𝑓1 and 𝑓2 respectively (maybe up to inversion). These faces
are unique by Remark 10.

The edge 𝑒 belongs to the contour of both 𝑓1 and 𝑓2 and thus can be lifted
in Γ2 either in 𝑓 ′

1 or in 𝑓 ′
2. Say 𝑒 is an edge originating from Γ2 if these two

lifts coincide, so that in Γ2, the two faces at play are adjacent along the same
edge as they are in 𝐷.

1i.e. not on the boundary
2We say that two faces 𝑓1, 𝑓2 of a 2-complex are adjacent along edge 𝑒 (or simply

adjacent if the mention of 𝑒 is unnecessary) if either 𝑓1 ̸= 𝑓2 and 𝑒 belongs to the contour
of both 𝑓1 and 𝑓2, or 𝑓1 = 𝑓2 and 𝑒 is included twice in the contour of 𝑓1.
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Any labelled complex with respect to the tiles of Γ2, all internal edges of
which originate from Γ2, can thus be lifted to Γ2 by lifting each of its edges.
This lifting is unique by Remark 10.

Note that 𝐷 is van Kampen-reduced if and only if there is no edge 𝑒
originating from Γ2 and adjacent to faces 𝑓1, 𝑓2 such that 𝑓 ′

1 = 𝑓 ′
2.

We work by first proving the isoperimetric inequality for puzzles having
all edges originating from Γ2. Second, we will decompose the puzzle 𝐷 into
“parts” having all their edges originating from Γ2 and show that these parts
are in 1/6 small cancellation with each other. Then we will use ordinary small
cancellation theory to conclude.

We begin by proving what we want for some particular choice of 𝑅.

Lemma 11. Let Δ = diam(Γ). Suppose that 𝒞 was chosen to be the set
of closed paths embedded (or immersed) in Γ of length at most 3Δ. Then,
for any closed path in Γ labelling a reduced word 𝑤, there exists a simply
connected puzzle with boundary word 𝑤, with tiles having their boundary
words in 𝑅, all edges of which originate from Γ2, and with at most 3 |𝑤| /𝑔
tiles.

Proof of Lemma 11.
If |𝑤| ⩽ 2Δ then by definition of 𝑅 there exists a one-tile puzzle spanning
𝑤, and as |𝑤| ⩾ 𝑔 the conclusion holds. Show by induction on 𝑛 that if
|𝑤| ⩽ 𝑛Δ there exists a simply connected puzzle 𝐷 spanning 𝑤 with at most
𝑛 tiles. This is true for 𝑛 = 2. Suppose this is true up to 𝑛Δ and suppose
that 2Δ ⩽ |𝑤| ⩽ (𝑛 + 1)Δ.

Let 𝑤 = 𝑤′𝑤′′ where |𝑤′| = 2Δ. As the diameter of Γ is Δ, there exists
a path in Γ labelling a word 𝑥 joining the endpoints of 𝑤′, with |𝑥| ⩽ Δ.
So 𝑤′𝑥−1 is read on a cycle of Γ of length at most 3Δ, hence (its reduction)
belongs to 𝑅. Now 𝑥𝑤′′ is a word read on a cycle of Γ, of length at most
|𝑤|−Δ ⩽ 𝑛Δ. So there is a puzzle with at most 𝑛 tiles spanning 𝑥𝑤′′. Gluing
this puzzle with the tile spanning 𝑤′𝑥−1 along the 𝑥-sides provides the desired
puzzle. (Note that this gluing occurs in Γ2, so that edges of the resulting
puzzle originate from Γ2.)

So for any 𝑤 we can find a puzzle spanning it with at most 1 + |𝑤| /Δ tiles.
As Δ ⩾ 𝑔/2 and as |𝑤| ⩾ 𝑔, we have 1 + |𝑤| /Δ ⩽ 1 + 2 |𝑤| /𝑔 ⩽ 3 |𝑤| /𝑔.

Corollary 12. For any choice of 𝒞, there exists a constant 𝛼 > 0 such
that any minimal simply connected puzzle 𝐷 with respect to the tiles of Γ2 all
internal edges of which originate from Γ2 satisfies the isoperimetric inequality
|𝜕𝐷| ⩾ 𝛼 |𝐷|.
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Proof of Corollary 12.
Indeed, the existence of an isoperimetric constant for minimal diagrams does
not depend on the finite presentation, hence the result when 𝒞 is finite. This
also holds for infinite 𝒞 since any infinite family of cycles in the finite graph
Γ contains a finite generating subfamily.

These last affirmations only express in terms of diagrams the fact that the
fundamental group of Γ, which is free hence hyperbolic, is generated by the
cycles of Γ of length at most 3Δ (w.r.t. some basepoint).

The next lemma is just ordinary small cancellation theory (see for example
the appendix of [GH90], or [LS77]), stated in the form we need. Note that
usually, the definition of small cancellation involves pieces of relative size
less than 𝜆 with 𝜆 ⩽ 1/6. Here we use pieces of relative size at most 𝜆 with
𝜆 < 1/6. This is less well-suited for treatment of infinite presentations (which
we do not consider) but allows lighter notation for the isoperimetric constant
1 − 6𝜆 > 0 and the Greendlinger constant 1 − 3𝜆 > 1/2.

Lemma 13. Let 𝑅 be a set of simply connected reduced tiles. Suppose that
any piece with respect to two tiles 𝑡, 𝑡′ ∈ 𝑅 is a word of length at most 𝜆
times the smallest boundary length of 𝑡 and 𝑡′, for some constant 𝜆 < 1/6.

Then any simply connected van Kampen-reduced puzzle 𝐷 with respect
to the tiles of 𝑅 satisfies the following properties.

1. If 𝐷 has at least two faces, the reduction 𝑤 of the boundary word of 𝐷
contains two disjoint subwords 𝑤1, 𝑤2, with 𝑤1 (resp. 𝑤2) subword of
the boundary word of some tile 𝑡1 (resp. 𝑡2) of 𝐷, with length at least
(1 − 3𝜆) > 1

2 times the boundary length of 𝑡1 (resp. 𝑡2).

2. The word 𝑤 is not a proper subword of the boundary word of some tile.

3. The boundary length |𝜕𝐷| is at least 1−6𝜆 times the sum of the lengths
of the faces of 𝐷, and at least the boundary length of the largest tile it
contains.

Moreover, there is no spherical van Kampen-reduced puzzle with respect
to these tiles.

Corollary 14. Let 𝑅 be a set of (not necessarily simply connected)
reduced tiles. Suppose that any piece with respect to two tiles 𝑡, 𝑡′ ∈ 𝑅 is a
word of length at most 𝜆 times the smallest length of the boundary component
of 𝑡 and 𝑡′ it immerses in, for some constant 𝜆 < 1/6.

Then, any simply connected puzzle with respect to this set of tiles contains
only simply connected tiles.
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Proof of the corollary.

Let 𝐷 be a simply connected puzzle with respect to 𝑅. Let 𝑡 be a non-
simply connected tile in 𝐷. We can suppose that 𝑡 is deepest, that is, that
the bounded components of the complement of 𝑡 contain no other non-simply
connected tile.

The interior of 𝑡 is embedded in the plane and is homeomorphic to a disk
with some finite number 𝑛 of holes. Since 𝐷 is simply connected any such
hole is filled with a subpuzzle. So let 𝐷′

1, . . . , 𝐷′
𝑛 be the subpuzzles filling

the bounded connected components of the complement of the interior of 𝑡.
Each 𝐷′

𝑖 is simply connected, since the bounded connected components of
the complement of a connected set in the plane are simply connected. Let us
work with 𝐷′

1. In case 𝐷′
1 is not van Kampen-reduced we replace it by its

van Kampen-reduction (which does not change its boundary word, so it can
still be glued to one of the holes of 𝑡).

The boundary of 𝐷′
1 may not be embedded in the plane. However, it is

immersed, since the word read on it is the word read on one of the interior
boundaries of 𝑡, and this word is reduced.

The component 𝐷′
1 is a connected simply connected puzzle. Its image in

the plane is the union of closed sets 𝐷′′
1 , . . . , 𝐷′′

𝑞 such that each 𝐷′′
𝑖 is either a

topological closed disk or a topological closed segment (“filament”), and the
𝐷′′

𝑖 ’s intersect at a finite number of points. By construction, each 𝐷′′
𝑖 which

is a disk is a puzzle.

t

Suppose that 𝐷′′
𝑖 is a segment. Then each of its endpoints belongs to some

𝐷′′
𝑗 with 𝑗 ̸= 𝑖. Indeed, otherwise the boundary of 𝐷′

1 would not be immersed.
Construct a graph 𝑇 embedded in the plane in the following way. For

each 𝐷′′
𝑖 which is a disk, define a family of segments 𝑇𝑖 as follows: Choose a

point 𝑝0 in the interior of 𝐷′′
𝑖 . There are a finite number of points 𝑝1, . . . , 𝑝𝑟

on the boundary of 𝐷′′
𝑖 such that 𝑝𝑗 belongs to some 𝐷′′

𝑘 for 𝑘 ≠ 𝑖. Now define
𝑇𝑖 to be made of the union of segments 𝑝0𝑝𝑗 ⊂ 𝐷′′

𝑖 for 1 ⩽ 𝑗 ⩽ 𝑟. Now define
𝑇 to be the union of all 𝐷′′

𝑖 for those 1 ⩽ 𝑖 ⩽ 𝑞 for which 𝐷′′
𝑖 is a segment,

plus the union of all 𝑇𝑖’s for those 1 ⩽ 𝑖 ⩽ 𝑞 for which 𝐷′′
𝑖 is a disk.

By construction, 𝑇 is connected since 𝐷′
1 is.

For each 𝑖 such that 𝐷′′
𝑖 is a disk, 𝐷′′

𝑖 retracts onto 𝑇𝑖 preserving the points
𝑝1, . . . , 𝑝𝑟. So 𝐷′

1 retracts onto 𝑇 , and in particular 𝑇 is simply connected
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since 𝐷′
1 is. So 𝑇 is a tree. It is non-empty since 𝐷′

1 is (but maybe reduced
to a point if 𝐷′

1 is a topological disk).
Now consider some leaf of 𝑇 . Since any endpoint of any 𝐷′′

𝑖 which is a
segment belongs to some 𝐷′′

𝑗 with 𝑗 ̸= 𝑖 (since 𝜕𝐷′
1 is immersed as we saw

above), a leaf of 𝑇 cannot belong to a 𝐷′′
𝑖 which is a segment. So a leaf of 𝑇

belongs to some 𝑇𝑖 constructed from some 𝐷′′
𝑖 which is a disk. By definition

of 𝑇𝑖, this means that 𝐷′′
𝑖 intersects with at most one other 𝐷′′

𝑗 with 𝑗 ̸= 𝑖.
Now 𝐷′′

𝑖 is a puzzle which is a topological disk. As we supposed that 𝑡 was
taken a deepest non-simply connected tile, 𝐷′′

𝑖 contains only simply connected
tiles. So we can apply Lemma 13: there exist two tiles 𝑡′, 𝑡′′ in 𝐷′′

𝑖 and two
subwords 𝑤′, 𝑤′′ of the boundary word of 𝐷′′

𝑖 such that 𝑤′ (resp. 𝑤′′) is a
subword of the boundary word of 𝑡′ (resp. 𝑡′′) of length at least one half the
boundary length of 𝑡′ (resp. 𝑡′′). As 𝐷′′

𝑖 has at most one point of intersection
with the other 𝐷′′

𝑗 for 𝑗 ̸= 𝑖, at least one of 𝑤′ and 𝑤′′ is a subword of the
boundary of 𝐷′

1. But a boundary word of 𝐷′
1 is a boundary word of the tile 𝑡,

and so 𝑡 shares with 𝑡′ or 𝑡′′ a word of length at least one half the boundary
length of 𝑡′ or 𝑡′′, which contradicts the small cancellation assumption.

Back to our simply connected van Kampen-reduced minimal puzzle 𝐷
with tiles in Γ2. A puzzle is built by taking the disjoint union of all its tiles
and gluing them along the internal edges.

First, define a disjoint union of puzzles 𝐷′ by taking the disjoint union of
all tiles of 𝐷 and gluing them along the internal edges of 𝐷 originating from
Γ2. All internal edges of 𝐷′ originate from Γ2.

As 𝐷 is van Kampen-reduced, 𝐷′ is as well.
Let 𝐷𝑖, 𝑖 = 1, . . . , 𝑛 be the connected components of 𝐷′. They form a

partition of 𝐷. The puzzle 𝐷 is obtained by gluing these components along
the internal edges of 𝐷 not originating from Γ2.

It may be the case that the boundary word of some 𝐷𝑖 is not reduced.
This means that there is a vertex on the boundary of 𝐷𝑖 which is the origin
of two (oriented) edges bearing the same vertex. We will modify 𝐷 in order
to avoid this. Suppose some 𝐷𝑖 has non-reduced boundary word and consider
two edges 𝑒1, 𝑒2 of 𝐷 responsible for this: 𝑒1 and 𝑒2 are two consecutive edges
with inverse labels. These edges are either boundary edges of 𝐷 or internal
edges. In the latter case this means that 𝐷𝑖 is to be glued to some 𝐷𝑗. We
treat only this latter case as the other one is even simpler.

Make the following transformation of 𝐷: do not glue any more edge 𝑒1 of
𝐷𝑖 with edge 𝑒1 of 𝐷𝑗, neither edge 𝑒2 of 𝐷𝑖 with edge 𝑒2 of 𝐷𝑗, but rather
glue edges 𝑒1 and 𝑒2 of 𝐷𝑖, as well as edges 𝑒1 and 𝑒2 of 𝐷𝑗 , as in the following
picture. This is possible since by definition 𝑒1 and 𝑒2 bear inverse labels.
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This kind of operation has been studied and termed diamond move in
[CH82]. The case when the central point has valency greater than 2 (i.e. when
more than two 𝐷𝑖’s meet at this point) is treated similarly.

Since Γ2 is reduced, the lifts to Γ2 of the edges 𝑒1 and 𝑒2 of 𝐷𝑖 are the
same edge of Γ2. This shows that the transformation above preserves the fact
that all edges of 𝐷𝑖 and of 𝐷𝑗 originate from Γ2.

The resulting puzzle (denoted 𝐷 again) has the same number of faces
as before, and no more boundary edges. Thus, proving isoperimetry for the
modified puzzle will imply isoperimetry for the original one as well. So we
can safely assume that the boundary words of the 𝐷𝑖’s are reduced.

Now consider 𝐷 as a puzzle with the 𝐷𝑖’s as tiles. (More precisely, if we
erase from 𝐷 all internal edges originating from Γ2 then we obtain a puzzle
each tile of which is the tile associated to the one-face complex obtained
from some 𝐷𝑖 by erasing all internal edges originating from Γ2.) This is a
van Kampen-reduced puzzle, since if 𝐷𝑖 and 𝐷𝑗 are in reduction position
this means that they lift to the same subcomplex of Γ2 and share an edge
originating from Γ2, which contradicts their definition. Note that these tiles
are not necessarily simply connected.

These tiles satisfy the condition of Corollary 14. Indeed, suppose that two
tiles 𝐷𝑖, 𝐷𝑗 (with maybe 𝑖 = 𝑗 in which case two parts of the boundary of
the same tile are glued) are to be glued along a common (reduced!) word 𝑤.
By definition of the 𝐷𝑖’s, the edges making up 𝑤 do not originate from Γ2.

As the edges of 𝐷𝑖 originate from Γ2, there is a lift 𝜙𝑖 : 𝐷𝑖 → Γ2 (as noted
above). Consider the two lifts 𝜙𝑖(𝑤) and 𝜙𝑗(𝑤). As the edges making up 𝑤
do not originate from Γ2, these two lifts are different. As 𝑤 is reduced these
lifts are immersions. So 𝑤 is a piece. By assumption the length of 𝑤 is at
most Λ < 𝑔/6.

Now as 𝐷𝑖 lifts to Γ2, any boundary component of 𝐷𝑖 goes to a closed
path in Γ. This proves that the length of any boundary component of 𝐷𝑖 is
at least 𝑔.

So the tiles 𝐷𝑖 satisfy the small cancellation condition with 𝜆 = Λ/𝑔 < 1/6.
As they are tiles of a simply connected puzzle, by Corollary 14 they are simply
connected.

Then by Lemma 13, the boundary of 𝐷 is at least 1 − 6𝜆 times the sum
of the boundary lengths of the 𝐷𝑖’s (considered as tiles). Since 𝐷 is minimal,
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each 𝐷𝑖 is as well, and as 𝐷𝑖 is simply connected, by Corollary 12 it satisfies
the isoperimetric inequality |𝜕𝐷𝑖| ⩾ 𝛼 |𝐷𝑖|. So

|𝜕𝐷| ⩾ (1 − 6𝜆)
∑︁

|𝜕𝐷𝑖| ⩾ 𝛼(1 − 6𝜆)
∑︁

|𝐷𝑖| = 𝛼(1 − 6𝜆) |𝐷|

which shows the isoperimetric inequality for 𝐷, hence hyperbolicity.

For asphericity and the cohomological dimension (hence torsion-freeness),
suppose that 𝒞 is standard (so that Γ2 is contractible) and that there exists a
van Kampen-reduced spherical puzzle 𝐷, which we can assume to be inclusion-
minimal in the sense that it contains no spherical subpuzzle. Define the 𝐷𝑖’s
as above. Either some 𝐷𝑖 is spherical, in which case 𝐷 = 𝐷𝑖 by inclusion-
minimality of 𝐷, or all 𝐷𝑖’s have non-empty boundary words. The former is
ruled out by the following lemma:

Lemma 15. Suppose that the set of paths read along faces of Γ2 is standard.
Let 𝐷 be a non-empty spherical puzzle all edges of which originate from Γ2.
Then 𝐷 is not van-Kampen reduced.

Proof of the lemma.
Let 𝑇 be a maximal tree of Γ witnessing for standardness of the family of
cycles. Homotope 𝑇 to a point. This turns Γ2 into a bouquet of circles with a
face in each circle. Similarly, homotope to a point any edge of 𝐷 coming from
a suppressed edge of Γ. This way we turn 𝐷 into a spherical van Kampen
diagram with respect to the presentation of the fundamental group of Γ2
(i.e. the trivial group) by ⟨ 𝑐1, . . . , 𝑐𝑛 | 𝑐1 = 𝑒, . . . , 𝑐𝑛 = 𝑒 ⟩. But there is no
reduced spherical van Kampen diagram with respect to this presentation, as
can immediately be checked.

Since by definition each 𝐷𝑖 lifts to Γ2 and since 𝐷 (hence each 𝐷𝑖) is van
Kampen-reduced, the lemma implies that no 𝐷𝑖 is spherical. Hence the 𝐷𝑖’s
have non-trivial boundary words. So 𝐷 can be viewed as a spherical puzzle
with the boundary words of the 𝐷𝑖’s as tiles. But we saw above that the 𝐷𝑖’s
(viewed as tiles) satisfy the small cancellation condition. So by Lemma 13
there is no spherical van Kampen-reduced puzzle w.r.t. these tiles.

The computation of the Euler characteristic immediately follows, using
that the cohomological dimension is at most 2.

The last assertions of the theorem follow easily from the assertions of
Lemma 13. The smallest relation in the group presented by ⟨ 𝑆 | 𝑅 ⟩ is the
boundary length of the smallest non-trivial puzzle, which by Lemma 13 is
at least the smallest boundary length of the 𝐷𝑖’s, which is at least the girth
𝑔. Similarly, any reduced word representing the trivial element in the group
is read on the boundary of a van-Kampen reduced simply connected puzzle,

14



thus contains as a subword at least one half of the boundary word of some
𝐷𝑖.

(Note: The version of this text published in Bull. Belg. Math. Soc. contains a mistake
in this part of the argument, as it used that 𝑥′ was geodesic. This was pointed to me by
Mikhail Ostrovskii. Below is a corrected version.)

For the isometric embedding of Γ in the Cayley graph of the group, suppose
that some geodesic path 𝑝 in the graph (or in Γ2) labelling a word 𝑥 is equal
to a shorter word 𝑦 in the quotient. This means that there exists a van
Kampen-reduced puzzle 𝐷 with boundary word 𝑥𝑦−1, made up of tiles with
cycles of Γ as boundary words.

Now 𝑥 is the word read on a path 𝑝1 in the boundary word of 𝐷, which
lifts to the geodesic path 𝑝 in Γ2 labelling 𝑥 as well. Let 𝑓 be a face of 𝐷
which intersects 𝑝1 along at least one edge. We say that 𝑓 originates from Γ2
together with 𝑥 if the lift from 𝑓 to Γ2 coincides with the lift 𝑝1 → 𝑝 on the
intersection of 𝑓 with 𝑝1.

We are going to recursively remove all faces of 𝐷 which originate from
Γ2 together with 𝑥, as follows. Let 𝑓 be such a face of 𝐷, and assume it
shares an edge 𝑒 along with 𝑥, so that 𝑥 = 𝑥1𝑒𝑥2 and the boundary of 𝐷 is
𝑒𝑤. Define the path 𝑥′ = 𝑥1𝑤

−1𝑥2 in the diagram 𝐷, and remove face 𝑓 from
the diagram 𝐷. This defines a new diagram 𝐷′ with boundary 𝑥′𝑦−1. Note
that 𝑥′ may not be reduced.

By construction, 𝑥′ lifts to Γ2 together with 𝑥, and their lifts to Γ2 have
the same endpoints. In particular, |𝑥′| ⩾ |𝑥| since 𝑥 is geodesic in Γ.

Repeat this process until there are no faces of 𝐷 that originate from Γ2
together with 𝑥′. At the end of this process, we still have that 𝑥′ lifts to Γ2
together with 𝑥, and |𝑥′| ⩾ |𝑥|. In the following picture in which black cells
represent tiles originating from Γ2 together with 𝑥.

y

x x’

y

At this point, if 𝑥′ = 𝑦 (there are no faces left in the diagram), we are
done, because |𝑦| = |𝑥′| ⩾ |𝑥| as needed.

If some faces are left, we have a (possibly non-reduced) puzzle with
boundary 𝑥′𝑦−1. By construction, no faces of 𝐷′ lift to Γ2 together with 𝑥′.
This means that the intersection of 𝑥′ with any face of 𝐷′ is a piece in Γ.
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By assumption, 𝑦 was reduced, but there may be cancellations within 𝑥′ or
between 𝑥′ and 𝑦. Reduce 𝐷′, first by removing any filaments in 𝑥′, then by
“folding in” any inverse consecutive edges of 𝑥′𝑦−1 as in the “diamond moves”
above. Let 𝑤1 and 𝑤2 be the common initial and final segments between 𝑥′

and 𝑦 (if any); after reduction, we are left with a puzzle 𝐷′′ with boundary
word 𝑥′′(𝑦′)−1, where 𝑥′ = 𝑤1𝑥

′′𝑤2, 𝑦 = 𝑤1𝑦
′𝑤2, and 𝑥′′(𝑦′)−1 is cyclically

reduced.
Now (if Γ contains no filaments) 𝑥′′ is part of some cycle of Γ labelled by

𝑥′′𝑧. As Γ2 is simply connected, there is a van Kampen-reduced puzzle 𝐷2
with boundary word 𝑥′′𝑧 and which globally lifts to Γ2 (all its edges originate
from Γ2).

Define a new puzzle 𝐷′′′ by gluing 𝐷2 and 𝐷′′ along the word 𝑥′′. This
is a puzzle bordering 𝑧𝑦′. It is van Kampen-reduced since 𝐷2 and 𝐷′′ are
van Kampen-reduced and since there is no cancellation between 𝐷2 and 𝐷′′

(otherwise there would be a tile of 𝐷′′ originating from Γ2 together with 𝑥′′).
Now consider, as above, the partition 𝐷′′′ = ∪𝐷′′′

𝑖 where the 𝐷′′′
𝑖 are

maximal parts lifting to Γ2. Since no tile of 𝐷′′ adjacent to 𝑥′′ originates from
Γ2 together with 𝑥′′, 𝐷2 is exactly one of the 𝐷′′′

𝑖 .
By Lemma 13, the boundary length |𝑧|+|𝑦′| of 𝐷′′′ is at least the boundary

length of any 𝐷′′′
𝑖 . In particular, it is at least the boundary length of 𝐷2,

which is |𝑧| + |𝑥′′|. This proves that |𝑧| + |𝑦′| ⩾ |𝑧| + |𝑥′′|, and therefore,
|𝑦′| ⩾ |𝑥′′| so that |𝑦| ⩾ |𝑥′| ⩾ |𝑥|, as needed.

This proves the theorem.

4 Further remarks
Remark 16. The proof above gives an explicit isoperimetric constant when
the set of relators taken is the set of all words read on cycles of the graph of
length at most three times the diameter: in this case, any minimal simply
connected puzzle satisfies the isoperimetric inequality

|𝜕𝐷| ⩾ 𝑔(1 − 6Λ/𝑔) |𝐷| /3

This explicit isoperimetric constant growing linearly with 𝑔 (i.e. “homo-
geneous”) can be very useful if one wants to apply such theorems as the
local-global hyperbolic principle, which requires the isoperimetric constant to
grow linearly with the sizes of the relators.

Remark 17. The assumption that Γ is reduced can be relaxed a little bit,
provided that some quasi-geodesicity assumption is granted, and that the
definition of a piece is emended.
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Redefine a piece to be a couple of words (𝑤1, 𝑤2) such that both immerse
in Γ and such that 𝑤1 = 𝑤2 in the free group. The length of a piece (𝑤1, 𝑤2)
is the maximal length of 𝑤1 and 𝑤2.

There are trivial pieces, for example if 𝑤1 = 𝑤2 and both have the same
immersion. However, forbidding this is not enough: for example, if a word of
the form 𝑎𝑎−1𝑤 immerses in the graph, then (𝑎𝑎−1𝑤, 𝑤) will be a piece.

A trivial piece is a piece (𝑤1, 𝑤2) such that there exists a path 𝑝 in Γ joining
the beginning of the immersion of 𝑤1 to the beginning of the immersion of
𝑤2 such that 𝑝 is labelled with a word equal to 𝑒 in the free group.

The new theorem is as follows.

Theorem 18 (M. Gromov). Let Γ be a finite non-filamenteous labelled
graph. Let 𝑅 be the set of words read on all cycles of Γ (or on a generating
family of cycles). Let 𝑔 be the girth of Γ and Λ be the length of the longest
non-trivial piece of Γ.

Suppose that 𝜆 = Λ/𝑔 is less than 1/6.
Suppose that there exist a constant 𝐴 > 0 such that any word 𝑤 immersed

in Γ of length at least 𝐿 satisfies ‖𝑤‖ ⩾ 𝐴(|𝑤| − 𝐿) for some 𝐿 < (1 − 6𝜆)𝑔/2.
Then the presentation ⟨ 𝑆 | 𝑅 ⟩ defines a hyperbolic, infinite, torsion-free

group 𝐺, and (if 𝑅 arises from a standard family of cycles) this presentation is
aspherical (hence the cohomological dimension of 𝐺 is at most 2). Moreover,
the natural map of labelled graphs from Γ to the Cayley graph of 𝐺 is a
(1/𝐴, 𝐴𝐿)-quasi-isometry. The shortest relation of 𝐺 is of length at least
𝐴𝑔/2, and any reduced word equal to 𝑒 in 𝐺 contains as a subword the
reduction of at least one half of a word read on a cycle of Γ.

(Here ‖𝑤‖ is the length of the reduction of 𝑤; besides, in accordance
with [GH90], by a (𝜆, 𝑐)-quasi-isometry we wean a map 𝑓 such that 𝑑(𝑥, 𝑦)/𝜆−
𝑐 ⩽ 𝑑(𝑓(𝑥), 𝑓(𝑦)) ⩽ 𝜆𝑑(𝑥, 𝑦) + 𝑐.)

Remark 19. The same kind of theorem holds if we use the 𝐶(7) condition
instead of the 𝐶 ′(1/6) condition, but in this case there is no control on the
radius of injectivity (shortest relation length).

Remark 20. Using the techniques in [Del96] or [Oll04], the same kind of
theorem should hold starting with any torsion-free hyperbolic group instead
of the free group, provided that the girth of the graph is large enough w.r.t.
the hyperbolicity constant, and that the labelling is quasi-geodesic. See [Oll].

Remark 21. Theorem 1 can be extended when the graph is infinite, in
which case we get a direct limit of torsion-free, dimension-2 hyperbolic groups
(but generally not hyperbolic), in which the conclusions of small cancellation
theory still hold but with the isoperimetric constant for van Kampen diagrams
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tending to 0. In this case the small cancellation assumption reads: any piece
has length less than 1/6 times the minimal length of a cycle on which it
appears.
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