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Abstract. We prove that random groups at density less than 1

6
act

freely and cocompactly on CAT(0) cube complexes, and that random
groups at density less than 1

5
have codimension-1 subgroups. In partic-

ular, Property (T ) fails to hold at density less than 1

5
.

Résumé. Nous prouvons que les groupes aléatoires en densité stricte-
ment inférieure à 1

6
agissent librement et cocompactement sur un com-

plexe cubique CAT(0). De plus en densité strictement inférieure à 1

5
, ils

ont un sous-groupe de codimension 1 ; en particulier, la propriété (T )
n’est pas vérifiée.

Introduction

Gromov introduced in [Gro93] the notion of a random finitely presented
group on m > 2 generators at density d ∈ (0; 1). The idea is to fix a set
{g1, . . . , gm} of generators and to consider presentations with (2m− 1)dℓ re-
lations each of which is a random reduced word of length ℓ (Definition 1.1).
The density d is a measure of the size of the number of relations as compared
to the total number of available relations. See Section 1 for precise defini-
tions and basic properties, and [Oll05b, Gro93, Ghy04, Oll04] for a general
discussion on random groups and the density model.

One of the striking facts Gromov proved is that a random finitely pre-
sented group is infinite, hyperbolic at density < 1

2 , and is trivial or {±1} at
density > 1

2 , with probability tending to 1 as ℓ → ∞.
Żuk obtained Property (T ) for a related class of presentations at density

> 1
3 (see [Żuk03] and the discussion in [Oll05b]). On the other hand, Gromov

observed that at density < d, a random presentation satisfies the C ′(2d)
small cancellation condition. Consequently, at density < 1

12 , the groups will
not have Property (T ) since C ′(1

6) groups act properly discontinuously on
CAT(0) cube complexes [Wis04].
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As above, the statements about the behavior of a group at a certain density
are only correct with probability tending to 1 as ℓ → ∞. Throughout the
paper, we will say that a given property holds with overwhelming probability
if its probability tends exponentially to 1 as ℓ → ∞.

The goals of this paper are a complete geometrization theorem at d < 1
6 ,

implying the Haagerup property, and existence of a codimension-1 subgroup
at d < 1

5 , implying [NR98] failure of Property (T ):

Theorem 10.4. With overwhelming probability, random groups at den-
sity d < 1

6 act freely and cocompactly on a CAT(0) cube complex.

Corollary 9.2. With overwhelming probability, random groups at den-
sity d < 1

6 are a-T-menable (Haagerup property).

Theorem 7.4. With overwhelming probability, random groups G at density
d < 1

5 have a subgroup H which is free, quasiconvex and such that the relative
number of ends e(G, H) is at least 2.

Corollary 7.5. With overwhelming probability, random groups at den-
sity d < 1

5 do not have Property (T ).

CAT(0) cube complexes are a higher dimensional generalization of trees,
which arise naturally in the splitting theory of groups with codimension-
1 subgroups [Sag95, Sag97]. A group is a-T-menable or has the Haagerup
property [CCJ+01] if it admits a proper isometric action on a Hilbert space.
This property is, in a certain sense, an opposite to Kazhdan’s Property (T )
[dlHV89, BdlHV08] which (for second countable, locally compact groups) is
characterized by the requirement that every isometric action on an affine
Hilbert space has a fixed point. There is also a definition of the Haagerup
property in terms of a proper action on a space with measured walls [CMV04,
CDH], which is a natural framework for some of our results.

The relative number of ends e(G, H) of the subgroup H of the finitely
generated group G is the number of ends of the Schreier coset graph H\G
(see [Hou74, Sco78]). Note that e(G, H) is independent of the choice of a
finite generating set. We say H is a codimension-1 subgroup of G if H coarsely
disconnects the Cayley graph Γ of G, in the sense that the complement
Γ−Nk(H) of some neighborhood of H contains at least two components that
are not contained in any finite neighborhood Nj(H) of H. The above two
notions are very closely related and are sometimes confused in the literature:
If e(G, H) > 1 then H is a codimension-1 subgroup of G, and the converse
holds when there is more than one H-orbit of an “infinitely deep” component
in Γ − Nk(H).

Let us present the structure of the argument. In [Sag95], Sageev gave
a fundamental construction which, from a codimension-1 subgroup H of G,
produces an “essential” action of G on a CAT(0) cube complex. From [NR97]
or [NR98] we know, in turn, that groups acting essentially/properly on a
CAT(0) cube complex, act essentially/properly on a Hilbert space and cannot
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have Property (T ) (their proof is a generalization of a proof in [BJS88] that
infinite Coxeter groups are a-T-menable, which in turn, was a generalization
of Serre’s argument that an essential action on a tree determines an essential
action on a Hilbert space [Ser80]).

In our situation the codimension-1 subgroups will arise as stabilizers of
some codimension-1 subspaces, called hypergraphs, in the Cayley 2-complex
X̃ of the random group G. These hypergraphs are the same as those in
[Wis04] and are defined in Section 2. The basic idea is, from the midpoint of
each 1-cell in a 2-cell c, to draw a line to the midpoint of the opposite 1-edge
in c (assuming all 2-cells have even boundary length). These lines draw a
graph in the 2-complex, whose connected components are the hypergraphs.
Hypergraphs are natural candidates to be walls [HP98].

In Section 4 we show that at density d < 1
5 , with overwhelming probability,

the hypergraphs embed (quasi-isometrically) in the Cayley 2-complex. The
main idea is that if a hypergraph self-intersects, it will circle around a disc
in the Cayley 2-complex, thus producing a collared diagram (Section 3). But
at d < 1

5 , the Dehn algorithm holds for a random group presentation [Oll07],
so that in each van Kampen diagram some 2-cell has more than half its
length on the boundary, which is impossible if a hypergraph runs around the
boundary 2-cells of the diagram.

A consequence of this embedding property is that each hypergraph is a
tree dividing X̃ into two connected components, thus turning X̃ into a space
with walls [HP98].

We then show that these walls can be used to define (free quasiconvex)
codimension-1 subgroups (Section 7). For this we need the complex X̃ to
go “infinitely far away” on the two sides of a given wall. This is guaranteed
by exhibiting a pair of infinite hypergraphs intersecting at only one point.
At d < 1

6 , hypergraphs intersect at at most one point except for a degen-
erate case (Section 5). This is not true in general for d < 1

5 ; however, one
can still prove that through a “typical” 2-cell that a hypergraph Λ1 passes
through, there passes a second hypergraph Λ2 transverse to Λ1, which is
enough (Section 6).

To prove the Haagerup property, we show that at d < 1
6 , the number

of hypergraphs separating given points p, q ∈ X̃ is at least distX̃(p, q)/K
for some constant K. Consequently the wall metric is quasi-isometric to
the Cayley graph metric, which implies that the group has the Haagerup
property. Key objects here are hypergraph carriers (the set of 2-cells through
which a hypergraph travels): at d < 1

6 these carriers are convex subcomplexes
of X̃, but this is not the case at d > 1

6 . We were unable to prove that points
are separated by a linear number of hypergraphs at 1

6 6 d < 1
5 , where the

failure of convexity substantially complicates matters, though we conjecture
such a statement still holds.

Finally, Theorem 10.4 is proven by combining the various properties es-
tablished at d < 1

6 (including, most importantly, the separation of points by
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a linear number of hypergraphs) to see that the cubulation criteria in [HW04]
are satisfied; these criteria guarantee that the action of G on the CAT(0)
cube complex associated with a codimension-1 subgroup arising from hyper-
graphs is indeed free and cocompact.

At density d > 1
5 , our approachs completely fails: with overwhelming

probability, there is only one hypergraph Λ, which passes through every 1-cell
of the Cayley complex (Section 11). Its stabilizer is the entire group, and it is
thus certainly not codimension-1. We do not know if there are codimension-1
subgroups at density 1

5 < d < 1
3 . But, as mentioned above, the transition

at d = 1
5 in the behavior of hypergraphs is related to another one, namely

failure of the Dehn algorithm for d > 1
5 [Oll07], and our intuition is that

something of both combinatorial and geometric relevance really happens at
d = 1

5 .

Acknowledgments. We would like to thank the anonymous referee for
helpful suggestions and careful reading of our paper.

1. Preliminaries and facts regarding Gromov’s density

The density model of random groups was introduced by Gromov in [Gro93],
Chapter 9 as a way to study properties of “typical” groups depending on the
quantity of relators in a presentation of the group. We refer to [Oll05b,
Gro93, Ghy04, Oll04] for general discussions on random groups and the den-
sity model.

Definition 1.1 (Density model of random groups). Let m > 2 be an integer
and consider the free group Fm generated by a±1

1 , . . . , a±1
m .

Let 0 6 d 6 1 be a density parameter. Let ℓ be a (large) length. Choose
(2m−1)dℓ times (rounded to the nearest integer) at random a reduced word
of length ℓ in the letters a±1

1 , . . . , a±1
m , uniformly among all such words. Let

R be the set of words so obtained.
A random group at density d and length ℓ is the group G = Fm/〈R〉, whose

presentation is 〈 a1, . . . , am | R 〉.
A property is said to occur with overwhelming probability in this model,

if its probability of occurrence tends exponentially to 1 as ℓ → ∞.

Note that a priori, repetitions are allowed in the choice of the random
words (so that the choices are independent); but actually when d < 1/2,
with overwhelming probability there are no repetitions.

The basic intuition is that at density d, subwords of length (d− ε)ℓ of the
relators in the presentation will exhaust all reduced words of length (d− ε)ℓ.

The interest of the model is established through the following sharp phase
transition theorem, proven by Gromov [Gro93] (see also [Oll04]):

Theorem 1.2 (M. Gromov). Let d < 1/2. Then with overwhelming proba-
bility, a random group at density d is infinite, hyperbolic, torsion-free.

Let d > 1/2. Then with overwhelming probability, a random group at
density d is either {1} or {1,−1}.
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One of the motivations for the results in this paper is the following ([Żuk03],
see also the discussion in [Oll05b]):

Theorem 1.3 (A. Żuk). Let d > 1/3. Then with overwhelming probability,
a random group at density d has Property (T ).

It is not known whether 1/3 is optimal in this theorem. Our results imply
that 1/5 is a lower bound.

Remark 1.4. According to the definition above, all relators in a random
group have exactly the same length. However, the results stay the same if
we take relators of length between ℓ and ℓ + C where C is any constant
independent of ℓ.

Some results on random groups, including Theorem 1.2 and Theorem 1.3,
also extend to the case when relators are taken of length between ℓ and Cℓ
for some C > 1 (see [Oll04]), but we do not know if this is the case for the
main theorems presented in this paper.

Hyperbolicity of random groups at d < 1/2 is proven using isoperimetry
of van Kampen diagrams. In this paper we shall repeatedly need a precise
statement of this isoperimetric inequality, which we state now.

For a van Kampen diagram D, we use the notation |∂D| for the length of
its boundary path, and the notation |D| for the number of 2-cells in D.

Convention 1.5. When a property of a random group depends on a param-
eter ε, the phrase “the property occurs with overwhelming probability” will
mean that for any ε > 0, the probability of the property tends exponentially
to 1 as ℓ → ∞. (This may not be uniform in ε.)

The following, proven in [Oll07], is a strengthening of the original state-
ment of Gromov, which held only for diagrams of size bounded by some
constant. Note the role of d = 1

2 .

Theorem 1.6. At density d, for any ε > 0 the following property occurs
with overwhelming probability: all reduced van Kampen diagrams D satisfy

|∂D| > (1 − 2d − ε)ℓ |D|

When using this result in this paper we will often omit the ε.
We now gather some definitions pertaining to small cancellation. We refer

to chapter V of [LS77] for the definition of a piece in a group presentation.

Definition 1.7 (Small cancellation). A presentation satisfies the C ′(α) con-
dition, with 0 6 α 6 1, if for each relator R, and each piece P occurring in
R, we have |P | < α |R|.

A presentation satisfies the B(2p) condition if every word w which is a
concatenation of at most p pieces and which is a subword of a relator R
satisfies |w| 6 1

2 |R|.
A presentation satisfies the C(p) condition if no relator R is the concate-

nation of fewer than p pieces.
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Figure 1. Diagrams contradicting the C(7) and B(6) con-
ditions.

Note that C ′( 1
2p) ⇒ B(2p) ⇒ C(2p) but that none of the reverse implica-

tions hold.

Proposition 1.8. With overwhelming probability:

(1) The C ′(α) condition occurs at density < α/2.
(2) The B(6) condition occurs at density < 1

8 .

(3) The C(p) condition occurs at density < 1
p .

Proof. The proof for C ′(α) is written in detail in [Gro93], § 9.B. Let us
briefly recall the argument. Since the number of reduced words of length L
is (2m)(2m−1)L−1, the probability that two random reduced words of length
ℓ share a common initial subword of length L 6 ℓ is

(
(2m)(2m − 1)L−1

)−1
6

(2m − 1)−L.
So given two random words of length ℓ, the probability that they share

a piece of length L is less than ℓ2(2m − 1)−L where the ℓ2 accounts for the
choice of the position at which the piece occurs.

Now in a random group at density d, there are by definition (2m − 1)dℓ

relators. So the probability that there exists a couple of relators in the
presentation having a piece of length L is at most ℓ2(2m − 1)2dℓ(2m − 1)−L

since there are (2m − 1)2dℓ possible choices of couples of relators (we also
have to check the special case when a relator shares a piece with itself, but
this is not difficult). So if L = αℓ this makes ℓ2(2m − 1)(2d−α)ℓ. If d < α/2,
this tends to 0 as ℓ → ∞ (but all the more slowly as d is close to α/2).
One can reverse the argument to see that if d > α/2, such an event actually
occurs.

It is worth to compare this with Theorem 1.6. Indeed, when two relators
share a piece of length αℓ we can form a van Kampen diagram D of boundary
length |∂D| = 2ℓ − 2αℓ = |D| ℓ(1 − α) so that this diagram contradicts
Theorem 1.6 when d < α/2.

The C(p) condition amounts to the exclusion of a reduced van Kampen
diagram D in which a 2-cell is surrounded by at most p−1 2-cells as on the left
of Figure 1. Such a diagram D satisfies |∂D| 6 pℓ−2ℓ whereas Theorem 1.6
yields |∂D| > pℓ(1 − 2d − ε) so that (choosing ε = (1/p − d)/10) this is a
contradiction when d < 1/p. This proves statement (3).

The B(6) condition amounts to the exclusion of a diagram in which half
the boundary of a 2-cell is covered by three other 2-cells as on the right
of Figure 1. Note that this diagram D satisfies |∂D| = 4ℓ − 2(ℓ/2) = 3ℓ.
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Theorem 1.6 implies that |∂D| > 4ℓ(1 − 2d − ε), so d > 1/8 − ε/2. So if
d < 1/8 we get a contradiction (choosing e.g. ε = (1/8 − d)/10). �

Remark 1.9. By [Wis04], hyperbolicity and the B(6) condition together
imply the existence of a free and cocompact action on a CAT(0) cube com-
plex. So this conclusion holds at density < 1

8 . This is a bit stronger than
the < 1

12 condition mentioned in the introduction.
Since the C(6) condition is satisfied at density < 1

6 , our results suggest
that generic C(6) groups are a-T-menable. It is currently an open problem
whether or not every infinite C(6) group fails to satisfy Property (T ).

In this paper we shall sometimes need to avoid some annoying topological
configuration. This is the object of the next two propositions.

Proposition 1.10. Let G be a random group at density d < 1/4. Let p
be a closed path embedded in the Cayley graph of G. Then the length of p
is at least ℓ; moreover, either p is the boundary path of some relator in the
presentation, or the length of p is at least ℓ + ℓ(1 − 4d − ε).

Consequently, the boundary paths of relators embed.

Proof. This results from Theorem 1.6. Indeed, since p is not homotopic to
0, it is the boundary path of some van Kampen diagram D with at least
one 2-cell, and so |p| > ℓ |D| (1 − 2d − ε). Now either |D| = 1 and p is the
boundary path of a relator, or |D| > 2 and |p| > 2ℓ(1 − 2d − ε). �

Corollary 1.11. Let G be a random group at density d < 1/4 and let X̃ be
the Cayley complex associated to the presentation. Let c1, c2 be two 2-cells

in X̃. Then ∂c1 ∩ ∂c2 is connected.

Proof. Suppose not and let v, w be two 0-cells of X̃ lying in different com-
ponents of ∂c1 ∩ ∂c2. Let p1, p

′
1 be the two paths in ∂c1 joining v to w on

each side of c1, and likewise let p2, p
′
2 be the two paths in ∂c2 joining v to w.

Each of the paths p1p
−1
2 , p1p

′
2
−1, p′1p

−1
2 and p′1p

′
2
−1 is a closed path in

the 1-skeleton of X̃. Each of these paths is not null-homotopic in this 1-
skeleton, otherwise v and w would lie in the same component of ∂c1 ∩ ∂c2.
So by Proposition 1.10 each of these paths has length at least ℓ, and since
|p1| + |p′1| = |p2| + |p′2| = ℓ, the only possibility is that |p1| = |p′1| = |p2| =

|p′2| = ℓ/2. This implies that
∣∣p1p

−1
2

∣∣ = ℓ, so that p1p
−1
2 is the boundary

path of some 2-cell c3. Now c1 and c3 share half of their boundary length,
which at d < 1/4 contradicts Proposition 1.8. �

Another notion we shall need is that of fulfilling of a diagram. Let D,
an abstract diagram, be a finite connected graph embedded in the plane,
each edge of which is decorated with a positive integer, its length. Let
〈 a1, . . . , am | R 〉 be any group presentation. A fulfilling of D is the at-
tribution to each face of D of a relator in R (together with an orientation)
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such that the resulting object is a reduced van Kampen diagram of the pre-
sentation, in a way compatible with the prescribed lengths (see the notion
of decorated abstract van Kampen diagram in [Oll04] for precisions).

The following appears in [Oll05a], Propositions 12 and 13:

Theorem 1.12. Let G = 〈 a1, . . . , am | R 〉 be a group presentation. For any
abstract diagram D, let Sn(D) be the number of n-tuples of distinct relators
in R such that there exists a fulfilling of D using these relators (n is at most
the number of faces |D| of D since a relator may be used multiple times in
the diagram).

For random groups at density d, for any abstract diagram D we have the
following bound on the expectation of Sn(D):

ESn(D) 6 (2m − 1)
1
2
(|∂D|−(1−2d)ℓ|D|)

and so for any D, with overwhelming probability we have:

Sn(D) 6 (2m − 1)
1
2
(|∂D|−(1−2d−ε)ℓ|D|)

We note that the second assertion in Theorem 1.12 (which holds for fixed
D) follows from the first one by the Markov inequality.

2. Hypergraphs and carriers

2.1. Historical background on cubulating groups. The results in this
paper employ Sageev’s construction [Sag95] of an action on a CAT(0) cube
complex from a group G and a codimension-1 subgroup H.

Niblo and Reeves [NR03] and Wise [Wis04] had observed that Sageev’s
construction works in the context of “geometric spaces with walls”. For Cox-
eter groups, these walls are the reflection walls stabilized by the involutions
in the Coxeter complex. For small cancellation groups, the walls are con-
structed as we do here: by producing immersed graphs in a 2-complex that
are transverse to the 1-skeleton and such that each edge of the graph bisects
a 2-cell. The walls corresponding to such graphs appear to have played a
role in Ballmann-Swiątkowski’s proof of the failure of Property (T) for the
geometric case of (4, 4)-complexes and (6, 3)-complexes [BŚ97].

It is clear from [Wis04] that Sageev’s cubulation result can be carried
out for a family of more general codimension-1 graphs which embed, are
transverse to the 1-skeleton, and locally separate the 2-complex. These are
examples of Dunwoody’s “tracks” and we expect they will be referred to as
“walls” in future work on this subject. Indeed, subsequently, Nica [Nic04]
and Chatterji and Niblo [CN05] have written out an explicit application of
Sageev’s construction to cubulate abstract “spaces with walls”. Those were
introduced by Haglund and Paulin [HP98] especially motivated by Coxeter
groups and CAT(0) cube complexes.

Building upon [Sag97, NR03, Wis04], Hruska and Wise [HW04] have laid
out “axioms” on a space with walls (or 2-complex with hypergraphs) for
verifying finiteness properties of the cubulation. We follow the framework
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there to verify our main results. We expect there will be further work along
these lines.

2.2. Definition of hypergraphs. In a nutshell, hypergraphs in a 2-complex
are obtained by drawing a segment between the midpoints of each pair of
opposite 1-cells in each 2-cell. These segments define a graph, the connected
components of which are the hypergraphs. We give a more precise definition
below.

Definition 2.1. Let X̃ be a simply connected 2-complex. We suppose that
each 2-cell of X̃ has even boundary length. (If this is not the case, we just
perform a subdivision of all 1-edges of X̃ before constructing hypergraphs.)

We define a graph Γ as follows: The set of vertices of Γ is the set of 1-cells
of X̃. There is an edge in Γ between two vertices if there is some 2-cell R of
X̃ such that these vertices correspond to antipodal 1-cells in the boundary
of R (if there are several such 2-cells R, we put as many edges in Γ). The
2-cell R is the 2-cell of X̃ containing the edge.

There is a natural map ϕ from Γ to a geometric realization of it in X̃,
which sends each vertex of Γ to the midpoint of the corresponding 1-cell of
X̃, and each edge of Γ to a segment joining two antipodal points in the 2-cell
R. Note that the images of two edges contained in the same 2-cell R always
intersect, so that in general ϕ is not an embedding.

A hypergraph in X̃ is a connected component of Γ. The 1-cells of X̃
through which a hypergraph passes are dual to it. The hypergraph Λ embeds

if ϕ is an embedding from Λ to its geometric realization in X̃, i.e. if no two
distinct edges of Λ live in the same 2-cell of X̃.

For each subgraph A ⊂ Γ̃, we define a 2-complex V , the unfolded carrier
of A, in the following way: For each edge e in A contained in the 2-cell R

of X̃, consider an isomorphic copy Re of R. Now take the disjoint union of
these copies and glue them as follows: if edges e and e′ of A share a common
endpoint v ∈ A, identify Re and Re′ along the 1-cell corresponding to vertex
v. When A is connected, it is by construction an embedded hypergraph of
its unfolded carrier.

A hypergraph segment (resp. ray, resp. line) is an immersed finite path
(resp. immersed ray, immersed line) in a hypergraph. A ladder is the un-
folded carrier of a segment.

Remark 2.2. The term “hypergraph” is a misnomer, which arose as a graph
corresponding to a “hyperplane” in a CAT(0) cube complex C. Hypergraphs
will play the role of “codimension-1 subgraphs” later in the paper. The
term hypergraph is used in graph theory to mean a certain high-dimensional
generalization of a graph, but we will have no use for that notion in this
paper.

Lemma 2.3. Suppose a hypergraph Λ is an embedded tree in the simply

connected complex X̃. Then X̃ − Λ consists of two components.
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Proof. This follows easily from the fact that H1(X̃) = 0 and a Mayer-Vietoris
sequence argument applied to the complement of the hypergraph and a neigh-
borhood of the hypergraph. �

3. Studying hypergraphs with collared diagrams

In this section we define and examine various notions of “collared dia-
grams”. In Section 3.1, we show that hypergraphs are trees unless certain
collared diagrams exist. In Section 3.3, we show that the intersection of a
pair of hypergraphs contains at most one point, unless there is a certain
collared diagram between them. In Section 3.4, we explain that if a geodesic
touches a hypergraph in exactly two points, then there is a certain rela-
tively collared diagram between the geodesic and the hypergraph. In each
case, various quasicollared diagrams will serve as a useful technical object to
facilitate the proofs.

Convention 3.1 (Conventions on X̃ and its hypergraphs). In the remainder
of the paper, X̃ is the Cayley 2-complex of a random group (and hence all
relations have the same length). However in this section we work under
more general hypotheses (which the reader is welcome to ignore). Our only
hypothesis on X̃ is that it is a simply connected combinatorial 2-complex,
and that the boundary cycle of each 2-cell is an immersed path in X̃1, of
even length.

3.1. Collared diagrams. We refer to [MW02] (Def. 2.6) for the definition of
disc diagrams, which play for arbitrary 2-complexes the role of van Kampen
diagrams for Cayley complexes. The reader may just read “van Kampen
diagram”.

The central notion in this section is the following (see Figure 2):

Definition 3.2 (Collared diagram). A collared diagram is a disc diagram
D → X̃ with the following properties:

(1) there is an external 2-cell C called a corner of D

(2) there is a hypergraph segment λ → D → X̃ of length at least 2
(3) the first and last edge of λ lie in C, and no other edge lies in C
(4) λ passes through every other external 2-cell of D exactly once
(5) λ does not pass through any internal 2-cell of D.

D is cornerless if moreover the first and last edge of λ coincide in C (in
which case the hypergraph cycles).

The above definition implies that the diagram is homeomorphic to a disc.

Remark 3.3. Note that we do not exclude that C is the only boundary
2-cell of D (in which case the boundary path of C is not simple). However,
since the boundary path of any 2-cell is immersed by assumption, D has at
least two 2-cells. But it might not have any internal 2-cells.
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Figure 2. Several kinds of collared diagrams: The corner
2-cell of the first collared diagram on is shaded. The second
collared diagram is cornerless. The hypergraph segment of
the third collared diagram ends before it enters the interior.
The last collared diagram is more typical in the sense that the
carrier of the segment folds. (Note that the figure is topolog-
ical only, so that some 1-cells may appear longer or shorter
than others, yet hypergraphs still cross 2-cells at antipodal
pairs of 1-cells.)

Definition 3.4. A cancellable pair in Y → X is a pair of distinct 2-cells
R1, R2 meeting along an edge e in Y such that R1 and R2 map to the same
2-cell in X, and moreover, the boundary paths of R1 and R2 starting at e,
map to the same path in X. A map Y → X is reduced if Y contains no
cancellable pairs. Note that the composition of reduced maps is reduced.

In our framework, Y → X is reduced precisely if Y → X is a near-
immersion meaning that (Y − Y 0) → X is an immersion. See [MW02] for
more about reduced maps.

For van Kampen diagrams this notion coincides with the usual notion of
reduced diagram (at least if relators which are proper powers are handled
correctly, which is a messy point in the van Kampen diagram literature).

The main goal of this section is to prove the following theorem.

Theorem 3.5. Let Λ be some hypergraph. The following are equivalent:

(1) Λ is an embedded tree.
(2) There is no reduced collared diagram collared by a segment of Λ.
(3) There is no quasicollared diagram collared by a segment of Λ (Defi-

nition 3.6 below).

Proof. If there is a reduced diagram E → X̃ collared by a segment λ of Λ

then clearly either Λ is not a tree or Λ → X̃ is not an embedding. Indeed, the
path λ → E has the property that its first and last edges cross or coincide,
and so this is the case for λ → X̃.

The converse, which plays an important role in this paper needs a bit more
work, and so we outline the proof which employs several lemmas proven later
in this section. Suppose Λ is not an embedded tree.

In Lemma 3.8, we prove that if Λ is not an embedded tree in X̃, then there
exists a diagram quasicollared by Λ (Definition 3.6), denoted by F → X̃.
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Figure 3. On the left is the path P in the ladder L con-
taining part of the hypergraph Λ. On the right is the quasi-
collared disc diagram L ∪P D obtained by attaching L to D
along P .

In Lemma 3.9, we show that by removing cancellable pairs, we can assume
that F → X̃ is reduced.

In Lemma 3.10 we extract a reduced collared diagram E → X̃ from the
reduced quasicollared diagram F → X̃. �

We now define quasicollared diagrams which, unlike collared diagrams, do
not have an easily stated intrinsic definition.

Definition 3.6 (Quasicollared diagram). Consider the ladder L of some
hypergraph segment λ of length at least 2. We suppose that the first and
last 2-cells C1, C2 of L map to the same two-cell of X̃.

Let A = L/{C1=C2} be the complex obtained from L by identifying the
closures of C1 and C2 (using the maps C1 → X̃, C2 → X̃).

Let P → A be a simple cycle in A representing a generator of H1(A).
Suppose that there exists a disc diagram D → X̃ with boundary path P .

A quasicollared diagram F → X is the complex obtained by forming the
union F = A ∪P D. (See Figure 3.) We say that F is collared by the
hypergraph segment λ.

Remark 3.7. F is a genuine disc diagram precisely when P → A does not
cross λ. This happens precisely when A is a cylinder instead of a Moebius
strip and P → A is a boundary cycle of A.

Lemma 3.8 (Existence). Suppose that the hypergraph Λ is not an embedded

tree in X̃. Then there exists a quasicollared diagram F → X̃ that is collared
by Λ.

Proof. The hypergraph Λ is not an embedded tree if and only if there exists
a nontrivial immersed edge-path λ → Λ such that λ projects to a non-simple
path in X̃. We can assume that the hypergraph segment λ is minimal, that
is, any proper subsegment of λ embeds.
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Figure 4. The basic loops.

So the 2-cells of X̃ containing the first and last edge of λ are the same.
Let L be the ladder carrying λ; its first and last 2-cells C1, C2 map to the
same 2-cell of X̃.

We can therefore form a quotient space A = L/{C1=C2} and there is an
induced map A → X̃. We will refer to the cell C1 = C2 as the corner. As in
Figure 4, there are two cases for A according to whether or not λ “preserves
orientation” of A.

Let P → A be a simple cycle in A that maps to a generator of π1(A).
Since X̃ is simply connected, there is a disc diagram D → X̃ whose boundary
path is P .

Note that while P → A is an immersion, the map A → X̃ may not be,
and so it is possible that D is singular, and may have spurs.

Finally we form the desired quasicollared diagram F = A ∪P D.
If we think of P as a path in L instead of A, then P may travel from one

side of L to the other, as in Figure 3. Indeed, this is always the case in the
orientation reversing case where A is a Moebius strip. F is a genuine disc
diagram exactly when λ does not cross any edge of P . �

Lemma 3.9 (Reducing). Let F → X be a quasicollared diagram. Then
there exists a reduced quasicollared diagram F ′ → X which is collared by a
subsegment of the hypergraph segment collaring F .

Proof. Keeping the notation in the definition of quasicollared diagrams, there
are three types of cancellable pairs in F → X̃ to consider according to
whether the 2-cells lie in: D, D or D, A, or A, A.

In the first case, the cancellable pair is removed in the usual way for
van Kampen diagrams (prone to errors in the literature, but works nev-
ertheless...): We remove the open 2-cells and the open 1-cell along which
they form a cancellable pair, and we identify their remaining corresponding
boundaries.

In the second case, we can adjust our choice of P to form a new simple
cycle. Namely let R1, R2 be the 2-cells forming the cancellable pair, with
R1 ⊂ A and R2 ⊂ D. Push P across to the other side of R1. Now R2 can
be removed from D. This is illustrated as the first two configurations in
Figure 5, where cancellable pairs are marked by dots: the first configuration
is the case when originally P does not jump from one side of A to the other
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Figure 5. A cancellable pair between D and A, another can-
cellable pair in a slightly different position, and a cancellable
pair between A and A. The cancellable pairs are marked with
dots.

around some side of R1 (in which case the new P crosses A twice at this
point); the second configuration is when originally P crosses A along some
side of R1, in which case the new P crosses A along the other side of R1

afterwards.
In the third case (reduction between A and A), this implies that there

is a pair of 2-cells R1, R2 in L, different from the pair of extremal 2-cells,
mapping to the same 2-cell of X̃. This means that we can find a proper
subsegment λ′ of the hypergraph segment λ which does not embed in X̃.
The ladder carrying λ′, which has R1 and R2 as extremal 2-cells, can now be
used to define a smaller quasicollared diagram as in the rightmost illustration
of Figure 5.

Keep reducing cancellable pairs. The only thing to check is that eventually
A is not empty. Observe that reductions between D and D and between D
and A preserve A and λ. So the only way A can become empty is if at some
step two consecutive 2-cells of A are cancellable. But this means that λ was
not immersed, which it is by definition of a hypergraph segment. �

We now extract a collared diagram from a quasicollared one.

Lemma 3.10 (Collaring). If there is a reduced quasicollared diagram F ,
then there is a reduced collared diagram F ′. Moreover, F ′ and F are collared

by segments of the same hypergraph of X̃.

Proof. Keeping the same notation again, suppose some edge e of P crosses
Λ, that is, consider an edge e in P that is dual to Λ (witnessing for the fact
that the diagram is quasicollared but not collared). Observe that Λ enters D
at e. Let λ′ be the path of Λ in D issuing from e. As on the left in Figure 6,
either λ′ is simple or λ′ crosses itself in D.

If λ′ crosses itself then we choose some subpath λ′′ of λ′ that is a simple
loop in D bounding some topological disc in D, as in the middle diagram of
Figure 6.
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Figure 6.
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Figure 8.

There is then a diagram D′ having λ′′ as the hypergraph in its collar.
This is illustrated on the right in Figure 6. (Note that D′ is only nearly a
subdiagram of D since the map D′ → D might fail to be injective on ∂D′.)

The other possibility is that the path λ′ is simple in D (Figure 7). In this
case, λ′ has to exit D by crossing the collar at some 2-cell C, dividing F into
two halves. Pick the half of F that does not contain the corner of F : this
provides a new quasicollared diagram F ′ with C as its corner. (If C happens
to be the corner of F already, then any half will do.)

This new diagram is smaller than F in the sense that the number of in-
tersections between ∂D and the hypergraph segment collaring the diagram
decreases. So repeating the process will eventually provide a collared dia-
gram. The last step is illustrated on Figure 8.

The new diagram obtained is reduced since F itself is. �

3.2. Diagrams quasicollared by hypergraphs and paths. We now give
a definition of a notion generalizing that of quasicollared diagram, in which
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Figure 9. A diagram collared by hypergraphs and paths.

we allow the collar to consist of segments of several hypergraphs and/or
paths in X̃.

Definition 3.11. Let n > 2 be an integer and decompose {1, . . . , n} as a
disjoint union I ∪ J (where I or J may be empty). For i ∈ I let λi be a
hypergraph segment of length at least 2, carried in ladder Li. For i ∈ I let
also pi be a path immersed in Li joining a point in the boundary of the first
2-cell of Li and a point in the boundary of the last 2-cell of Li. For j ∈ J

let pj be any path immersed in X̃.
We suppose that (subscripts mod n):

(1) When i ∈ I and i + 1 ∈ I, then: The final 2-cell of Li and the initial
2-cell of Li+1 have the same image in X̃. Moreover the final edge
of λi and the initial edge of λi+1 do not have the same image in X̃.
Moreover the (images in X̃ of) initial point of pi+1 and the final point
of pi coincide.

(2) When i ∈ I and i + 1 ∈ J , then the image in X̃ of the final point of
pi coincides with the initial point of pi+1, and likewise when i ∈ J
and i + 1 ∈ I.

(3) If i ∈ J then both i + 1 and i − 1 lie in I.

This allows to define a cyclic path P = ∪pi. Let D be a disc diagram with
boundary path P .

Let A′ be the disjoint union of Li for i ∈ I and let A be the quotient of
A′ under the identification of the last 2-cell of Li with the first 2-cell of Li+1

whenever i, i + 1 ∈ I.
A diagram quasicollared by the λi, i ∈ I and the pj , j ∈ J is the union

E = D ∪pi,i∈I A.
The corners of E are the initial and final 2-cells of the Li’s.
It is said to be collared by the λi, i ∈ I and the pj , j ∈ J if E is a genuine

disc diagram.
We say that the hypergraphs λi do not enter E if for i ∈ I, the initial and

final points of λi belong to the boundary of E.

Note that D may be singular, since the map from the unfolded carrier of
a hypergraph to X̃ generally identifies a lot of 1-cells and this will result in
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“spurs” in D. D may even contain no 2-cell in the case P is a null-homotopic
path in the 1-skeleton of X̃. Note also that we do not allow “cornerless” di-
agrams since we imposed that two successive hypergraph segments intersect
transversely.

3.3. 2-collared diagrams. A 2-collared diagram is a diagram collared by
two hypergraph segments.

The main goal of this section is the following:

Theorem 3.12. Suppose Λ1 and Λ2 are distinct hypergraphs that are embed-

ded trees in X̃. There is more than one point in Λ1 ∩Λ2 if and only if there
exists a reduced diagram E collared by segments of Λ1 and Λ2. Moreover, if
Λ1 and Λ2 cross at a 2-cell C, then we can choose E so that C is one of its
corners.

Proof. If there exists a diagram E → X̃ collared by Λ1 and Λ2, then the
intersections of λ1 and λ2 in the two corners 2-cells map to two intersection
points in X̃, which are distinct since Λ1 and Λ2 are embedded trees.

The converse requires more work, and we outline its proof which depends
upon lemmas proven in this section.

In Lemma 3.13, we show that if Λ1 and Λ2 intersect twice, then there is a
quasicollared diagram between them.

In Lemma 3.15, we show that if there is a quasicollared diagram between
them then there is a reduced quasicollared diagram between them.

In Lemma 3.16, we extract a reduced collared diagram between Λ1 and
Λ2, from a reduced quasicollared diagram. �

Lemma 3.13 (Existence of 2-quasicollared diagrams). Suppose there are
distinct hypergraphs Λ1 and Λ2 which are embedded trees and whose images

in X̃ intersect in more than one point. Then there exists a diagram F quasi-
collared by Λ1 and Λ2; moreover, its corners can be taken to be an arbitrary
pair of distinct 2-cells where Λ1 and Λ2 intersect.

Proof. Let λ1, λ2 be hypergraph segments in Λ1, Λ2 which intersect at the
centers of their first and last edges. Let Li be the ladder carrying λi, and
observe that the first and last 2-cells of L1, L2 project to the same 2-cells
of X̃. Let A → X̃ be obtained by forming the union of L1 and L2 and
identifying their first and last closed 2-cells. Observe that π1(A) ∼= Z except
for the degenerate case where each Li consists entirely of these first and last
2-cells.

In this degenerate case, define F = A. Otherwise, let P → A be a simple
closed path representing a generator of π1(A). Let D → X̃ be a disc diagram
with boundary path P → X̃. Let F = A ∪P D. �

Lemma 3.14. Let F be a diagram quasicollared by two embedded hypergraph
segments λ1, λ2. Then there exists a diagram F ′ quasicollared by two sub-
segments λ′

1, λ
′
2 of λ1, λ2, such that the only 2-cells in the intersection of the
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images of the ladders of λ′
1 and λ′

2 in X̃ are the corners of F ′. Moreover, F ′

can be chosen to contain either corner of F as one of its corners.

Proof. This is more difficult to state than to prove. Let C1 be the first corner
of F . Let C2 be the first 2-cell in the ladder of λ1, distinct from C1, which
lies in the image of the ladder of λ2 in X̃. Taking the corresponding initial
subsegments of λ1 and λ2 and applying Lemma 3.13, we get what we need,
preserving corner C1. �

Lemma 3.15 (Reducing). Let F be a diagram quasicollared by two hyper-
graphs which are embedded trees. Then there exists a reduced diagram F ′

quasicollared by two segments of the same hypergraphs, and moreover F ′ can
be chosen to contain either corner of F .

Proof. This is similar to Lemma 3.9. Applying Lemma 3.14, we can suppose
that the images of the ladders collaring F intersect only at the two corners
of F .

Keep the notation of Definition 3.11. Cancellable pairs between 2-cells
both in D can be removed as usual to lower the total number of 2-cells.

Now for the case of cancellable pairs between A and A. Since each hyper-
graph is an embedded tree, the two cells of the pair cannot lie in the same
ladder Li. But the cancellation cannot occur between L1 and L2 either since
this would contradict the conclusion of Lemma 3.14.

Finally, if there is a cancellable pair between D and A, then we can push
the boundary path P across the 2-cell in A (compare Lemma 3.9), obtaining
a new closed path P ′, which is the boundary path of a disc diagram D′ with
one less 2-cell. (Note that this operation preserves A.) �

Lemma 3.16 (Collaring). Let F be a reduced diagram quasicollared by two
hypergraphs Λ1, Λ2 which are embedded trees. Then there is a reduced dia-
gram F ′ collared by Λ1 and Λ2. Moreover, F ′ can be chosen to share either
corner with F .

Proof. Keeping notation again, note that if the path P does not intersect λ1

and λ2 then the diagram is collared.
Now suppose that P crosses, say, the segment λ1. (The argument for λ2 is

identical.) Consider the first such situation on λ1. Then λ1 can be extended
into a hypergraph segment µ1 that enters D. Since Λ1 is an embedded tree,
µ1 cannot cross itself. So µ1 exits D by crossing λ2, not λ1. (This contrasts
with Lemma 3.10, where we did not assume that the hypergraph was an
embedded tree.) Then by choosing the part of F lying between µ1 and λ2

we get a diagram which is quasicollared by λ2 and µ1, containing the first
corner of F . Repeating the argument with λ2 produces a diagram collared
by µ1 and a segment µ2 of Λ2, which ends the proof. �

3.4. Diagrams collared by a hypergraph and a path.

Lemma 3.17 (Existence). Let Λ be a hypergraph which is an embedded tree

in X̃. Let λ be a segment of Λ. Let γ be an embedded path in X̃ with the
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same endpoints as λ. (Here γ is an edge path which starts and ends at “mid-
edge vertices” corresponding to vertices of Λ.) Then there exists a reduced
diagram F quasicollared by λ and γ.

Moreover, in the case γ does not intersect Λ anywhere except at its end-
points, then F is actually collared.

Remark 3.18. γ will be geodesic in our applications. This will serve to
study the metric properties of embedded hypergraphs.

Proof. We proceed as above to get a reduced diagram quasicollared by λ and
γ: Let L be the ladder carrying λ. Let P → L be a simple edge-path with
the same endpoints as λ. Let D → X̃ be a disc diagram with boundary path
P−1γ. The 2-complex F = D ∪P L is a quasicollared diagram between Λ
and γ.

The reduction process is carried out as above. Note that since λ embeds
there is no pair of cancellable 2-cells between L and L, and so λ is preserved
by the reduction process.

Now suppose that F is not a collared diagram. Then λ passes through
an edge of P . Thus λ can be extended into D by a segment µ in D lying
in the same hypergraph Λ (see Figure 10). Since Λ is an embedded tree, µ
cannot cross λ again. So it has to exit D by crossing γ, thus providing a
third intersection point between Λ and γ. �

4. The hypergraphs are embedded trees at d < 1/5

Henceforth, X̃ is the Cayley 2-complex associated to a finite presentation
of the random group G at density d and length ℓ (Def. 1.1), that is, X̃ is the
universal cover of the standard 2-complex associated to the presentation. In
case ℓ is odd, we perform a subdivision of all 1-cells of X̃ so that hypergraphs
can be defined.

Definition 4.1. Let D be a van Kampen diagram. The external 1-cells of
D are the 1-cells which lie in ∂D. The other 1-cells are internal. A 2-cell of
D is external if its closure contains an external 1-cell, otherwise it is internal.

A pseudoshell of D is a 2-cell R such that |∂R ∩ ∂D| > 1
2 |∂R|.

A shell of D is a 2-cell R such that the boundary path of D contains a
subpath Q, where Q is a subpath of the boundary path of R, and |Q| >
1
2 |∂R|.
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A spur of D is an 1-cell ending at a valence 1 0-cell on ∂D. Note that D
has no spur if and only if its boundary path is immersed.

The following frequently arising condition is a special case of Greendlinger’s
lemma for C ′(1

6) presentations:

Condition 4.2. For every reduced spurless van Kampen diagram D → X
either

(1) D has at most one 2-cell.
(2) D contains at least two shells.

Theorem 4.3. Let X be the standard 2-complex of some presentation. Sup-
pose that X satisfies Condition 4.2. Then there is no reduced collared van
Kampen diagram D → X (either cornerless or with a corner)

Consequently, all hypergraphs are trees embedded in X̃.

Proof. We show that there is no collared diagram. Indeed, suppose there is a
collared diagram. It has no spurs, and has more than one 2-cell. But its only
possible shell is its corner. Indeed, every other external 2-shell R, contains
an edge of a hypergraph in the interior of D, so any path on ∂R ∩ ∂D has
length < 1

2 |∂R|. This contradicts Condition 4.2. �

Corollary 4.4. For random groups at density d < 1/5, with overwhelming

probability all hypergraphs are trees embedded in X̃.

Proof. Theorem 6 in [Oll07] states that Condition 4.2 holds with overwhelm-
ing probability for random groups at density d < 1/5. We can therefore apply
Theorem 4.3. �

The goal of section 11 is to prove that as soon as d > 1/5, on the contrary
there is only one hypergraph, which crosses every 1-cell of X̃. Figure 21
at the end of the paper shows why hypergraphs are not embedded trees at
d > 1/5.

We now turn to the metric aspect of the embeddings.

Theorem 4.5. Consider a random group at density d < 1/5. With over-

whelming probability, the distance in X̃1 between two vertices of a hypergraph
Λ is at least (1/2− 2d− ε)ℓ times the minimal number of edges joining them
in Λ.

Proof. Let γ be a geodesic in X̃1 between two points y1, y2 ∈ Λ. It is sufficient
to prove the statement of the theorem under the additional hypothesis that
γ does not intersect Λ at any other points.

By Lemma 3.17, there exists a reduced diagram E collared by γ and a
ladder L carrying a segment of Λ.

Since E is collared and not only quasicollared, in particular it is an ordi-
nary van Kampen diagram. Let n be the number of cells in the ladder L.
We have |∂E| 6 nℓ/2 + |γ|. But by Theorem 1.6, up to some ε we have
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Figure 11.

|∂E| > (1 − 2d)ℓ |E| > (1 − 2d)nℓ and so as claimed we have:

|γ| > nℓ(
1

2
− 2d)

�

Note that the multiplicative constant does not vanish as d → 1
5 (compare

Figure 18 at d > 1
5). However in the proof of this theorem, we already used

that hypergraphs are embedded trees (a condition needed in our previous
study of diagrams collared between a hypergraph and a geodesic).

Corollary 4.6. In random groups at density d < 1
5 , with overwhelming

probability, the stabilizer of any hypergraph is a free, quasiconvex subgroup.

Proof. Since hypergraphs are trees in the Cayley complex, their stabilizers
acts freely on a tree. Since random groups are torsion-free, so are the stabi-
lizers, hence freeness since torsion-free groups acting freely on trees are free.
Now a quasi-isometrically embedded tree in a hyperbolic space is quasicon-
vex, since quasi-geodesics remain at bounded distance from geodesics. �

5. 2-collared diagrams

In Section 4, we showed that hypergraphs do not self-intersect at density
d < 1

5 . It will also be useful to understand the way a pair of hypergraphs can
intersect each other. A naive hope would be that distinct hypergraphs are
either disjoint or intersect in a single point, but this is almost never the case
as Figure 11 shows. However, we will show that at low density, intersecting
hypergraphs might “braid” with each other a bit, but after departing do not
converge again, so that intersection is a relatively local matter.

In Theorem 4.3 we saw that there are no 1-quasicollared diagrams at
d < 1

5 . We now turn to 2-collared diagrams.

Theorem 5.1. For random groups at d < 1
6 , with overwhelming probabil-

ity every reduced diagram with at least three 2-cells has at least three pseu-
doshells.

In particular, there exists no reduced 2-collared diagram except the one
depicted in Figure 11.

Corollary 5.2. For random groups at density d < 1
6 , with overwhelming

probability the following holds: Let Λ1, Λ2 be two hypergraph rays intersecting
in 2-cell c. Either they intersect in a 2-cell adjacent to c as in Figure 11, or
they do not intersect anywhere else.
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Proof of the corollary. This follows from the theorem by Theorem 3.12. �

To prove the theorem, we shall need the following lemma (which will be
of independent use).

Lemma 5.3. Consider a random group at density d < 1/4. With over-
whelming probability the following holds.

Let D be a reduced spurless van Kampen diagram. Let nps be the number
of pseudoshells in D. Let ni be the number of internal 2-cells of D.

Then the number of external 2-cells in D is at most

(1/2 − d)(nps/2 − ni)

1/4 − d

Proof of the lemma. Let A be the set of 2-cells R of D with ∂R ∩ ∂D 6= ∅.
Let B ⊂ A be those 2-cells R with |∂R ∩ ∂D| > ℓ/2 (the pseudoshells of D).
Let C ⊂ B be those 2-cells R with |∂R ∩ ∂D| > ℓ(1 − d). Let ne = #A,
nps = #B and nd = #C.

Let D′ be the diagram obtained from D by removing the 2-cells in C. (D′

might not be connected, but this does not matter since Theorem 1.6 applies
to non-connected diagrams as well.) Let us evaluate the boundary length of
D′. By definition, a 2-cell in C contributes at most dℓ edges to ∂D′ (the
ones that were not on ∂D). All other edges of ∂D′ were already present on
∂D and belonged to the boundary of a 2-cell in A − C. A 2-cell in A − B
contributes at most ℓ/2 edges and a 2-cell in B − C contributes at most
ℓ(1 − d) edges. So we have

∣∣∂D′
∣∣ 6 qdℓ + (ne − nps)

ℓ

2
+ (nps − nd)(1 − d)ℓ.

On the other hand, by Theorem 1.6,
∣∣∂D′

∣∣ > (1 − 2d − ε)ℓ
∣∣D′

∣∣ = (1 − 2d − ε)(ne + ni − nd)ℓ

and the combination of these two inequalities yields the conclusion. �

Proof of Theorem 5.1. Suppose there are at most two pseudoshells. By Lemma 5.3,
the number of external 2-cells is bounded above by (1/2−d)(nps/2−ni)

1/4−d . When

nps = 2 and d < 1
6 this bound is < 4 and so there are at most 3 external

2-cells. Note that if ni > 1 then there are 6 0 external 2-cells, hence ni = 0
and there are no internal 2-cells.

So it is enough to rule out diagrams D having exactly three 2-cells r1, r2, r3

where only r1, r2 are pseudoshells. Since r3 is not a pseudoshell the internal
length of D is at least ℓ/2 and so |∂D| < |D| ℓ−2(ℓ/2) = 2ℓ. But for d < 1/6
Theorem 1.6 yields |∂D| > 2

3 ℓ |D| = 2ℓ (choosing e.g. ε < (1/6 − d)/10)
hence a contradiction.

Note that a 2-collared diagram has at most two pseudoshells (its corners).
�

Another consequence of the lemma is the following.
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Figure 12.

Theorem 5.4. For random groups at d < 1
5 , with overwhelming probability,

any reduced 2-collared diagram has at most five 2-cells, and no internal cells.

Proof. For d < 1
5 and nps = 2, the quantity (1/2−d)(nps/2−ni)

1/4−d is less than 6,
and non-positive if ni > 1. �

A less sharp version of this last assertion probably follows from the qua-
siconvexity obtained in Section 4.

6. Typical carrier 2-cells at d < 1/5

We saw in Theorem 5.1, that at densities less than 1/6, there are no
nondegenerate 2-collared diagrams, whereas it is not difficult to check that
as soon as d > 1/6 there are 2-collared diagrams with more than two 2-cells
(e.g. the one of Figure 12). However, as proven in this section, for “most”
2-cells of X̃, there are no 2-collared diagrams having these 2-cells as corner
cells.

Let (r1, . . . , rN ) be the N -tuple of random relators making the presenta-
tion, where by definition N = (2m − 1)dℓ. In the sequel we prove that some
bad properties are excluded for relator r1 with overwhelming probability
(these properties are excluded with high probability for any relator ri with i
fixed in advance; however, for any random sample (r1, . . . , rN ), there might
be some i depending on the random sample, such that ri satisfies these bad
properties).

Lemma 6.1. Consider a random group at density d. Then with overwhelm-
ing probability the following holds.

Let D be a reduced diagram with |D| = 3, and suppose D contains a 2-cell
corresponding to relator r1. Then the number of internal 1-cells in D is at
most 2dℓ + εℓ.

In particular at d < 1/4 the diagram of Figure 12 does not contain the
relator r1.

Proof. By Theorem 1.12, the expected number of fulfillings of D is at most

ESn(D) 6 (2m − 1)
1
2
(|∂D|−(1−2d)ℓ|D|) = (2m − 1)dℓ|D|−L

where L = 1
2 (ℓ |D| − |∂D|) is the internal length of D.

By symmetry of all relators in the presentation, the expected number of
fulfillings of D having the fixed relator r1 as one of its 2-cells is at most
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cbl cbr

Figure 13.

3(2m− 1)−dℓ
ESn(D) (the 3 accounts for the choice of the 2-cell in D we are

talking about). Thus the probability that there exists such a fulfilling is at
most

3(2m − 1)−dℓ
ESn(D) 6 3(2m − 1)2dℓ−L

which decreases exponentially fast if L > 2dℓ + εℓ. �

Lemma 6.2. Consider a random group at d < 1/4. Let c be a 2-cell in X̃
mapping to r1. Let Λ1 be any hypergraph through c. Then, with overwhelming
probability, there exists a hypergraph Λ2 through c which is locally transverse
to Λ1 in the following sense:

If Λ1 (resp. Λ2) intersects ∂c at the points xl, xr (resp. xt, xb), then any
2-cell adjacent to c contains at most one of xl, xr, xt, xb. In particular, Λ1, Λ2

do not form a 2-collared diagram as illustrated in Figure 11.
Moreover, there are at least (1/2 − 2d − ε)ℓ choices for Λ2.

Proof. There are two paths ptop, pbot from xl to xr in ∂c. Note that since a
random word of large length ℓ very probably contains every generator of the
group at least once, every 1-cell in X̃ is contained in several 2-cells). Now
define ctl (“topleft”) as any 2-cell adjacent to c and containing xl so that the
length of the intersection of ∂ctl with ptop is maximal. (Note that thanks to
Corollary 1.11, the intersection of ∂ctl with ∂c is connected.) Let ℓtl be this
length.

Define ctr, cbl, cbr and ℓtr, ℓbl, ℓbr similarly (see Figure 13). We may have
ctl = cbl and ctr = cbr, but this does not affect our argument.

We have ℓtl < 2dℓ − ℓbl + εℓ, otherwise the diagram c ∪ ctl ∪ cbl would
contradict Lemma 6.1. (In order to get a genuine van Kampen diagram in
case ctl∩ctb contains some 1-cells, we have to unglue a bit ctl below x

l
and cbl

above x
l
— this is consistent with our definition of ℓtl and ℓbl as the length

of the intersection with resp. ptop and pbot).
Similarly, we have ℓtl 6 2dℓ − ℓtr + εℓ, ℓbr 6 2dℓ − ℓbl + εℓ, and ℓbr 6

2dℓ − ℓtr + εℓ.
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Set L1 = max(ℓtl, ℓbr) and L2 = max(ℓbl, ℓtr). We have L1 6 2dℓ+εℓ−L2.
Since d < 1/4 we can choose ε so that 2d + ε < 1/2, and so L1 < ℓ/2 − L2

(and the discrepancy is at least (1/2 − 2d − ε)ℓ).
Now take any point xt on ptop so that the distance from xt to xl lies in the

interval
(
L1, (ℓ/2−L2)

)
. There are at least (1/2− 2d− ε)ℓ such points. Let

xb ∈ pbot be the opposite point in c. By construction, xt and xb do not lie
in any of ctl, ctr, cbl, cbr. By maximality of these latter 2-cells among 2-cells
adjacent to c containing either xl or xp, no other 2-cell adjacent to c can
contain two of the x’s.

Now let of course Λ2 be the hypergraph through xt and xb. �

Lemma 6.3. Consider a random group at d < 1/5. With overwhelming
probability, there is no reduced 2-collared diagram admitting r1 on one of its
corner cells, except the one on Figure 11.

Proof. Let D be a 2-collared diagram having relator r1 as one of its corner
cells. By Theorem 5.4, we only have a finite number of diagrams to check.
We can thus obtain overwhelming probability by intersecting finitely many
events with overwhelming probability.

First, suppose that the other corner 2-cell of D has less than (1 − d)ℓ
edges on the boundary of D. Since in a 2-collared diagram, every 2-cell
except maybe the corners has less than half its length on the boundary, this
means that we have |∂D| 6 ℓ + (1 − d)ℓ + (|D| − 2)ℓ/2. So the expected
number of fulfillings of this diagram is, by Theorem 1.12, at most:

ESn(D) 6 (2m − 1)
1
2
(|∂D|−(1−2d)ℓ|D|)

6 (2m − 1)ℓ(1/2−d/2+|D|(d−1/4))

By symmetry of all (2m − 1)dℓ relators in the presentation, the expected
number of fulfillings of D having the fixed relator r1 as its corner 2-cell is
at most (2m− 1)−dℓ

ESn(D), and so the probability that there exists such a
fulfilling is at most

(2m − 1)−dℓ
ESn(D) 6 (2m − 1)ℓ(1/2−3d/2+|D|(d−1/4))

so that if
1/2 − 3d/2 + |D| (d − 1/4) < 0

then this probability is exponentially small. So if |D| > 1/2−3d/2
1/4−d then with

overwhelming probability this does not happen. For d < 1/5 the right-hand
side is less than 4. So the only possibility is the three 2-cell diagram depicted
on Figure 12. But we have just excluded it in Lemma 6.1.

Second, suppose that the other corner of D has more than (1 − d)ℓ on
the boundary. Then we get the same conclusion by reasoning on the new
diagram D′ obtained by removing this corner. �

7. Codimension-1 subgroups at d < 1/5

Here for some time X̃ is an arbitrary simply connected 2-complex each
2-cell of which has even boundary length; X̃ is equipped with its hypergraph



CUBULATING RANDOM GROUPS AT DENSITY LESS THAN 1/6 26

system as in Definition 2.1. We shall then return to the case when X̃ is
the Cayley 2-complex of a presentation of a random group at density d and
length ℓ (up to subdivision of the 1-cells if ℓ is odd).

Definition 7.1. For a hypergraph Λ in the 2-complex X̃, the orientation-
preserving stabilizer Stabilizer+(Λ) of Λ is the index 6 2 subgroup of Stabilizer(Λ)

that also stabilizes each of the two halfspaces which are components of X̃−Λ.
Equivalently, Stabilizer+(Λ) equals Stabilizer(H+) where H+ is one of the
components of X̃ − Λ.

We now prove the existence of codimension-1 subgroups at density d <
1/5. These subgroups are orientation-preserving stabilizers of hypergraphs
passing through “typical” 2-cells of X̃.

Lemma 7.2 (Codimension-1 criterion). Suppose that the discrete group G

acts cocompactly on the simply connected 2-complex X̃ and that the system

of hypergraphs in X̃ is locally finite and cocompact (meaning that the hy-

pergraphs in X̃/G are compact and there is only a finite number of them).
Suppose that two distinct hypergraphs Λ1 and Λ2 cross each other at a single
point. Suppose that each Λi is an embedded tree with no leaves.

Then Hi = Stabilizer+(Λi) is a subgroup of G with relative number of ends
e(G, Hi) = 2.

Proof. Let H1 = Stabilizer+(Λ1). Let X̄1 = H1\X̃. We have to prove that
X̄1 has at least two ends.

According to Lemma 2.3, Λ1 separates X̃ into two connected components.
Let Λ̄i be the image of Λi in X̄1. Suppose a component of X̄1−Λ̄1 is compact.
Consider the edge e of Λ2 where Λ2 crosses Λ1. Using that Λ2 is a leafless
tree, extend e to a ray r in the direction of the halfspace mapping to the
compact component of X̄1 − Λ̄1.

By compactness, the projection r̄ of r to X̄1 must pass through Λ̄1 a
second time. Indeed, let u be the first combinatorial subpath of the graph r
whose initial and final vertices have the same projection in X̄1, so that the
projection ū is a cycle in X̄1; such a path necessarily exists by compactness.
Thus r = suv, and s is minimal with this property. Consider the path
p = s̄ūs̄−1. We show that p is an immersed path. Indeed, if ūs̄−1 has a
backtrack then ū = w̄ē and s̄ = s̄′ē. Let ū′ = ēw̄. Then ū′ is a closed path
with |s̄′| < |s̄|, so ū′ occurs earlier than ū which contradicts the choice of u.

The lift p̃ of p to X̃ is a segment of Λ2, which is not closed since it is a
subpath of r which is a geodesic in Λ2.

Finally, let q1 be a path in Λ1 which projects to a path in Λ̄1 with the
same endpoints as p. The common endpoints of p and q1 provide, after
lifting to X̃, two intersections of the hypergraphs in X̃, which contradicts
the assumption. �

Lemma 7.3. With overwhelming probability, at any density, the first relator
r1 in the random presentation involves all generators.
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Consequently, hypergraphs have no leaves, and any hypergraph passes through
a 2-cell bearing relator r1.

Proof. The first assertion is a consequence of the law of large numbers. It fol-
lows that any 1-cell of the Cayley 2-complex of a random group is contained
in a 2-cell bearing relator r1; hence, hypergraphs are leafless. �

Theorem 7.4. With overwhelming probability, random groups G at density
d < 1

5 have a subgroup H which is free, quasiconvex and such that the relative
number of ends e(G, H) is at least 2.

This subgroup can be taken to be the orientation-preserving stabilizer of
any hypergraph.

Proof. Let r1 be the first relator in the presentation. Let Λ1 be a hyper-
graph. By Lemma 7.3 this hypergraph travels through a 2-cell c bearing r1.
Let Λ2 be the hypergraph provided by Lemma 6.2. By Theorem 4.3, these
hypergraphs are embedded trees, leafless by Lemma 7.3.

By Lemma 6.3 (in conjunction with Lemma 6.2), Λ1 and Λ2 do not form
any reduced collared diagram with corner 2-cell c, and so by Theorem 3.12
they intersect only at c.

Now apply Lemma 7.2 to get the number of relative ends. The other
assertions follow from Corollary 4.6. �

Corollary 7.5. Suppose that d < 1/5. Then with overwhelming probability,
a random group does not have Property (T ).

Proof. It was shown in [NR98] that groups having a subgroup with more
than one relative end do not have Property (T ). �

8. Carriers are convex at d < 1/6

Recall that the carrier of a hypergraph is the set of 2-cells the hypergraph
passes through. We say that a subcomplex Y of the 2-complex X̃ is convex
if for any two 0-cells in Y , the shortest path between them in X̃ is included
in Y .

Theorem 8.1. The following holds with overwhelming probability at d < 1
6 :

For each hypergraph Λ its carrier Y is a convex subcomplex of X̃.

Proof. Let y1, y2 be two points on Y (which may not lie on the same side of
Λ). Let γ be a geodesic in X̃ joining y1 to y2. We want to show that γ lies
in Y .

Suppose that γ does not lie in Y . We can decompose γ into subparts which
either are included in Y , or intersect Y only at their endpoints. There is
nothing to prove in the former case, so we can suppose that the intersection
of γ with Y is exactly {y1, y2} (and in particular y1 and y2 lie on the same
side of Λ).

Let L be a ladder in Y between 2-cells containing y1 and y2, and let y′1 and
y′2 be the extremal points of the hypergraph segment contained in L. Let
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γ′ = [y′1y1].γ.[y2y
′
2] be the union of γ with paths joining yi to y′i respectively.

Let D be a reduced van Kampen diagram collared by L and γ′, as provided
by Lemma 3.17 (see Figure 14). According to this lemma, D is collared and
not only quasicollared since γ′ does not intersect the hypergraph except at
its endpoints.

Thanks to the collaring, every 2-cell of L except the two extremal ones
has less than half its length on the boundary of D.

Now let c be a 2-cell lying on the boundary of D but not belonging to L
(so that ∂c ∩ ∂D ⊂ γ). Since γ is a geodesic, this means that the length of
∂c ∩ γ is no more than half the boundary length of c (otherwise we could
shorten the geodesic).

So every 2-cell of D except maybe the two extremal cells of L has no
more than half its length on the boundary of D, so that D has at most two
pseudoshells. But at d < 1/6 this is ruled out by Theorem 5.1, except when
D = L has only two 2-cells, which was to be proven. �

Remark 8.2. At density d < 1/6, if a 2-cell R is such that ∂R is included in
the carrier Y of some hypergraph Λ, then R itself is included in Y . Indeed,
otherwise any hypergraph through R would meet Λ twice, contradicting
Corollary 5.2.

Remark 8.3. It is not difficult to see that carriers are not convex when
d > 1/6. Indeed, at density > d, with overwhelming probability there exists
a diagram as depicted on Figure 15, in which the bottom 2-cell has more
than half its boundary length on the boundary of the carrier, thus making it
shorter to turn around from below. To see that such a diagram exists, first
select the two middle relators of the diagram: they have to share a length
2dℓ, and at density > d such a pair of relators exists with overwhelming
probability by Proposition 10 in [Oll05b]; then one has to find the right
and left relators, each of which has to share a length dℓ with the rest of
the diagram, and at density > d this is possible thanks to Proposition 9 in
[Oll05b].

Remark 8.4. At density d < 1
4 , any 2-cell R is convex. Indeed, let p be a

immersed path in ∂R with |p| 6 ℓ/2, and let p′ be a distinct immersed path
with the same endpoints as p and |p′| 6 |p|. Then p′p−1 is the boundary of
a van Kampen diagram D, which thus satisfies |∂D| 6 ℓ. But according to
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Figure 15. The carrier is not convex at d > 1/6.

Theorem 1.6 at d < 1/4, this implies that D has at most one 2-cell, which
easily implies that D = R and |p| = ℓ/2.

9. Separation by hypergraphs at d < 1/6

The goal of this section is to prove that for any two points in X̃, the
number of hypergraphs separating them grows linearly with their distance.
This will enable us to apply a CAT(0) criterion in Section 10.

For p, q ∈ X we let #(p, q) equal the number of hypergraphs Λ such that
p and q lie in distinct components of X − Λ.

Theorem 9.1. The following holds with overwhelming probability at d < 1
6 :

For all p, q ∈ X̃0 we have:

#(p, q) >
1

2

(
1

6
− d − ε

)
(d(p, q) − 6ℓ)

Corollary 9.2. A random group at density d < 1/6 has the Haagerup prop-
erty.

Proof of the corollary. A discrete group acts properly on its Cayley 2-complex
(equipped, say, with the edge metric on the 1-skeleton and Euclidean metrics
on each 2-cell). Now, since the hypergraphs are embedded trees, the system
of hypergraph turns this 2-complex into a space with walls [HP98], and the
theorem above states that the wall metric is equivalent to the edge metric.
So the group acts properly on a space with walls, which by a folklore remark
(see e.g. [CMV04]) implies the Haagerup property. �

For the proof of Theorem 9.1 we will need two lemmas.

Lemma 9.3. The following holds with overwhelming probability at d < 1
6 :

For each 2-cell R, any two disjoint pieces P1, P2 in ∂R satisfy |P1| + |P2| <
3dℓ + εℓ < ℓ

2 .

Proof. This follows directly from Theorem 1.6: indeed, we can form a three-
2-cell diagram involving the two pieces, and at d < 1/6 its internal length is
less than ℓ/2. �

Lemma 9.4. The following holds with overwhelming probability at d < 1
6 :

Let Λ be a hypergraph passing through a 2-cell R. Then there exists another
hypergraph Λd passing through R, such that Λ∩Λd consists of a single point.

Actually there are at least (1/2 − 3d − ε)ℓ choices for Λd.
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Sketch following Lemma 6.2. The proof is identical to Lemma 6.2, except
that at density < 1/6 we do not have to fix the relator in advance (and we
use Lemma 9.3 in place of Lemma 6.1). See Figure 13. �

Proof of Theorem 9.1. Let γ be a geodesic between p and q. We show that
for each length-3ℓ subpath σ of γ, either the hypergraph through an edge
at the middle of σ crosses γ only once, or there are at least (1/2 − 3d − ε)ℓ
edges in σ the hypergraph through which crosses γ only once. This shows
that whenever d(p, q) > 6ℓ the number of choices for such a hypergraph is
at least (1/2 − 3d − ε)ℓ(6ℓ)−1 (d(p, q) − 6ℓ).

Let e1 be an edge at the middle of σ. Let Λe be the corresponding hyper-
graph. If Λe ∩ γ = Λe ∩ e1 then we are done. Otherwise Λe crosses γ at a
first other edge e3. Without loss of generality, assume that e1 < e3 in the
ordering on γ.

By convexity, the subpath [e1e3] of γ lies in the carrier of Λe. Also re-
member that, by Remark 8.4, all 2-cells of X̃ are convex.

First observe that e1 and e3 cannot be consecutive dual 1-cells of Λe

crossing the same 2-cell R, for then |[e1e3]| = ℓ
2 + 1 but the complementary

part of ∂R has length ℓ
2 − 1 so γ would fail to be a geodesic.

In the other extreme, if there is more than one dual 1-cell of Λe between
e1 and e3, then we let R be the second 2-cell in the ladder of Λe between
e1 and e3. We then apply Lemma 9.4 to obtain a hypergraph Λk passing
through R that intersects Λe at a single point (and we have (1/2 − 3d − ε)ℓ
choices for Λk).

This hypergraph Λk crosses γ in a single edge k. Indeed, suppose Λk

crossed γ in a second edge k2. If e1 < k2 < e3 then Λk crosses Λe in a
second point which is impossible. Similarly, if k2 < e1 then by convexity
[k2k] ⊂ Yk and hence e1 ⊂ Yk. Consequently, Λe crosses Λk at the center of
a 2-cell containing e1 on its boundary. By hypothesis, this 2-cell cannot be
R, and so Λe and Λk intersect in more than one point which is impossible.
An analogous argument excludes the possibility that e3 < k2.

Finally, we consider the case where e1 and e3 are separated by a single
dual 1-cell e2. Let Re be the 2-cell between e1 and e2, and let R be the 2-cell
between e2 and e3 (see Figure 16).

Applying Lemma 9.4, let Λf be a hypergraph passing through R that
intersects Λe at a single point. Let Yf be the carrier of Λf .

If Λf intersects γ in a single 1-cell f3 then we are done (and there are
(1/2− 3d− ε)ℓ choices for Λf ). Otherwise, let f1 be the next 1-cell in γ that
Λf passes through. As in the first case above, since γ is a geodesic, f3 and
f1 cannot be consecutive dual 1-cells of Λf . We may also assume that there
is no more than one dual 1-cell f2 between them, for otherwise, as in the
construction of Λk considered above, we could find a third hypergraph Λh

intersecting Λf at a single point which is at the center of a 2-cell separating
f1 and f3 and we would be done (once more with at least (1/2 − 3d − ε)ℓ
choices for Λh).
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Finally, we consider the case where there is exactly one dual 1-cell f2

between f3 and f1 in Yf . We refer the reader to Figure 16.
Let Rf be the 2-cell in Yf between f2 and f1. Let Pe = R ∩ Re and

let Pf = R ∩ Rf . Note that Pe and Pf are disjoint. Indeed, otherwise the
complement of γ ∩ R is the concatenation of two pieces and this has length
less than 3dℓ + εℓ < ℓ

2 by Lemma 9.3, and so γ would not be a geodesic.
Consequently, Pe and Pf are separated on either side of R by R ∩ γ and an
edge g2. More precisely, since |γ ∩ R| 6 ℓ/2 and |Pe| + |Pf | < 3dℓ + εℓ, we
have at least (1/2 − 3d − ε)ℓ choices for g2.

Let Λg be the hypergraph dual to g2, with carrier Yg, and let g3 be the
1-cell in ∂R that is antipodal to g2. Note that since g2 lies between e2 and
f2, the 1-cell g3 lies between f3 and e3 in ∂R, and hence Λg crosses γ in g3.
We will show that Λg does not cross any other edge of γ.

Note that g2 is not a 1-cell of γ, since as γ is a geodesic it cannot contain
two opposite 1-cells of a 2-cell.

By definition, g2 does not lie in Re ∩ R. Neither does g3, since f3 is
between e2 and g3 on ∂R and by definition Λf does not pass through Re. So
by Corollary 5.2, Λg does not pass through Re, i.e. Re 6⊂ Yg.

Let a be the last 1-cell in γ before R. Suppose that Λg crossed a 1-cell
h of γ with h 6 a. Since Re does not lie in Yg we have h 6 e1. But then
since e1 lies in the geodesic γ between g3 and h, by convexity of Yg we get
e1 ⊂ Yg. Since e2 ⊂ Yg too by construction, by convexity and Remark 8.2
we get Re ⊂ Yg which is a contradiction.

Let b be the first 1-cell in γ after R. A similar argument shows that Λg

cannot cross a 1-cell h of γ with b 6 h.
Note that we used only three 2-cells in the construction, so that the in-

tersection of γ with these has length at most 3ℓ/2, hence all hypergraphs
considered are dual to some edge inside the subpath σ; we have to consider
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a segment σ of length 3ℓ because we do not know on which side of e1 the
edge e3 will fall. �

10. CAT(0) cubulation at d < 1/6

We now proceed to the geometrization theorem at d < 1/6. We begin by
listing the following criteria from [HW04]:

Theorem 10.1 (Local Finiteness). Let X̃ be a 2–complex equipped with a
collection of hypergraphs satisfying the following properties.

(1) X̃ is locally finite.
(2) The hypergraph system is uniformly locally finite.
(3) There is a constant K so that for each n ≥ 1, every pair of points

at a distance at least nK apart are separated by at least n distinct
hypergraphs.

(4) There is a constant δ such that every hypergraph triangle is δ–thin.

Then the cube complex C associated to X̃ is locally finite.

Theorem 10.2 (Properness). Let X̃ be locally finite with a locally finite cube

complex C. If Γ acts properly discontinuously on X̃, then the induced action
of Γ on C is also properly discontinuous.

The following is formulated in [HW04] but was first proven by Sageev in
[Sag97].

Theorem 10.3 (Cocompactness). Suppose Γ acts properly and cocompactly

on X̃ then Γ acts properly and cocompactly on C provided that the following
conditions hold.

(1) X̃ is δ–hyperbolic.
(2) The hypergraphs are quasiconvex.
(3) The hypergraph system is locally finite.

We can now prove our second main theorem:

Theorem 10.4. With overwhelming probability, a random group at density
d < 1

6 acts freely and cocompactly on a CAT(0) cube complex C.

Proof. As shown by Gromov [Gro93] (see also [Oll04]), G is hyperbolic and
torsion-free with overwhelming probability at d < 1

2 .
The quasiconvexity of the hypergraphs, and hence the codimension-1 sub-

groups that are their orientation-preserving stabilizers, was proven in The-
orem 4.5 at d < 1

5 with overwhelming probability. In fact, the convexity of
hypergraph carriers was proven in Theorem 8.1 at d < 1

6 with overwhelming
probability.

The uniform local finiteness of X̃ and the system of hypergraphs is obvious
in our case.

Applying Theorem 10.3, we see that G acts cocompactly on the cube
complex C.
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Figure 17. At d > 1/4, the hypergraph is trivially 1-dense
in X̃.

Since G is hyperbolic, and the hypergraphs embed by quasi-isometries,
we see that all hypergraph triangles in X̃ are δ-thin for some δ depending
on the hyperbolicity constant for G and the quasi-isometry constants for the
hypergraphs.

Finally the linear separation condition was proven in Theorem 9.1.
Thus the cube complex is locally finite by Theorem 10.1. Consequently G

acts properly discontinuously on C by Theorem 10.2.
Since G is torsion-free we see that the action is free, and we are done. �

The crucial difference between the 1/5 and 1/6 cases was the separation
of any two points by a linear number of hypergraphs proven in Theorem 9.1.
We suspect that this should hold at density d < 1/5, but adapting the
proof of Theorem 9.1 to this case involves the analysis of many particular
cases corresponding to the existence of small 2-collared diagrams at density
1/6 < d < 1/5.

Conjecture 10.5. With overwhelming probability, random groups at density
d < 1

5 act freely and cocompactly on a CAT(0) cube complex.

11. The unique hypergraph is π1-surjective at d > 1/5

The next theorem shows that our approach fails at density d > 1
5 .

Theorem 11.1. Let Λ be a hypergraph in the standard 2-complex X = X̃/G
of a random group presentation at density d > 1

5 . Then π1Λ → π1X ∼= G is
surjective.

Proof. It is equivalent to prove that in X̃, if the hypergraph Λ contains the
midpoint of some edge e1, then it also contains the midpoint of any other
edge e2 sharing a vertex with e1. In particular it follows that there is only
one hypergraph in X̃.

First, let us give a very simple argument proving this under the stronger
condition that d > 1/4. Indeed, in this case, with overwhelming probability
there are two relators sharing a piece of length ℓ/2. Thus the diagram of
Figure 17 occurs with overwhelming probability (and then, since all reduced
words have equal probability, every combination of generators of the group
will occur on edges e1 and e2).

We will show that as soon as d > 1/5, with overwhelming probability
there exists a van Kampen diagram as depicted on Figure 18, where edges
e1 and e2 are the rightmost edges of the diagram. Actually, we will prove
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Figure 18. At d > 1/5, the hypergraph is 1-dense in X̃.

Figure 19.

Figure 20.

ℓ/52ℓ/5

ℓ/10

ℓ/10

r3

w

r2

r1

Figure 21. Hypergraphs do not embed at d > 1/5.

that at d > 1/5, very probably a van Kampen diagram as depicted on
Figure 19 occurs; indeed, as the latter diagram has one more internal edge,
it has smaller probability to be realized by random relators, hence if the
latter diagram occurs with high probability then so does the former (and
then, since all reduced words have equal probability, every combination of
generators of the group will occur on edges e1 and e2).

The diagram in Figure 19 can be obtained by gluing two copies of the
diagram in Figure 20. Let us divide the set of relators R of the random
groups into two (arbitrary) halves R1 and R2 each with 1

2(2m−1)dℓ relators.
We will, at first, consider diagrams with relators only in R1 or only in R2.

Now fix an integer K > 3 and let DK be the diagram as in Figure 20 with
K 2-cells, and with the additional constraint that the “vertical” sides of the
diagram have length ℓ/5.

For K = 3 we get the diagram on Figure 21. In [Oll07] (last section),
it is established that such a diagram occurs with overwhelming probability
as soon as d > 1/5. This immediately proves that hypergraphs do not
embed at d > 1/5, so that Corollary 4.4 is sharp. Note that d = 1/5 is the
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smallest value for which the topology of Figure 21 will yield a non-embedded
hypergraph, in view of Theorem 1.6; note also that the results in [Oll07] are
unrelated to hypergraphs but d = 1/5 already plays a special role.

We will, by induction, establish that for any K < K0 = 3 + 1/5
d−1/5 the

diagram DK occurs with overwhelming probability. More precisely, for a
random group at d > 1/5 consider the set of all van Kampen diagrams with
shape DK occurring in the group and containing only relators from R1, and
let NK be the number of distinct reduced words of length ℓ/5 appearing on
the rightmost side of all these diagrams. We are going to show that with
overwhelming probability, NK > 1

8K−3 (2m − 1)(K−3)ℓ(d−1/5). We know that
with overwhelming probability N3 > 1.

We will use the following elementary lemma, the proof of which is omitted.

Lemma 11.2. Let w be a random reduced word of length ℓ. Let w1 and
w2 be disjoint subwords of w which are separated by at least one letter of w.
Then the law of w2 knowing w1 is close to the law of a random reduced word
independent from w1.

Here “close to” means that the ratio of probabilities lies between 1− c and
1 + c for some small universal constant c < 1; moreover the error decreases
exponentially with the number of letters separating w1 and w2.

Now, for K > 4 the diagram DK is obtained from DK−1 by gluing a relator
along a subword of length ℓ/5 on the rightmost side. If the subword on the
rightmost side of DK−1 is fixed, a random relator has probability (2m−1)−ℓ/5

to fulfill this condition. Since there are by definition NK−1 possibilities for
the subword on the rightmost side of DK−1, a random relator has probability
NK−1(2m−1)−ℓ/5 to form the rightmost 2-cell of a diagram with shape DK .

Since there are 1
2(2m−1)dℓ random relators in R1, on average 1

2NK−1(2m−

1)ℓ(d−1/5) distinct diagrams DK occur. This is only an average, but standard
(e.g. Chernoff-type) deviation results show that with overwhelming prob-
ability, at least 1

4NK−1(2m − 1)ℓ(d−1/5) distinct diagrams DK occur. To
compute NK we must consider the set of all subwords of length ℓ/5 on the
rightmost side of all these diagrams. According to the lemma above we
get 1

4NK−1(2m − 1)ℓ(d−1/5) independent reduced words with (almost) uni-
form distribution. All these random words are not necessarily distinct (there
might be some repetitions), but for K < K0 this number is negligible com-
pared to the total number of reduced words so that repetitions are negligible
and, with overwhelming probability, we get at least 1

8NK−1(2m − 1)ℓ(d−1/5)

distinct reduced words. So NK > 1
8NK−1(2m − 1)ℓ(d−1/5) as needed.

Choose K = K0 − 1. We know that NK > 1
8K0−4 (2m− 1)(K0−4)ℓ(d−1/5) ≫

(2m − 1)ℓ/10 (if 1/5 < d 6 1/4). So we can produce more than (2m − 1)ℓ/10

van Kampen diagrams with shape DK , with more than (2m−1)ℓ/10 distinct
random reduced words of length ℓ/5 on their rightmost side. For this we have
been using only the relators in R1; using the other half of the relators in the
presentation, we get a second set of diagrams with the same characteristics,
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distinct (as van Kampen diagrams) from the first set. Since there are (2m−

1)ℓ/5 reduced words of length ℓ/5, by the probabilistic pigeon-hole principle
(e.g. [Oll05b], p. 31) two random sets of more than (2m − 1)ℓ/10 reduced
words of length ℓ/5 will have a non-trivial intersection with overwhleming
probability. Thus, we can find two distinct copies of the diagram in Figure 20,
sharing the same rightmost subword. These two diagrams can be joined to
form the diagram in Figure 19. This ends the proof. �
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