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Abstract

This text is a presentation of the general context and results of [Oll07] and [Oll09],
with comments on related work. The goal is to present a notion of Ricci curvature
valid on arbitrary metric spaces, such as graphs, and to generalize a series of classical
theorems in positive Ricci curvature, such as spectral gap estimates, concentration
of measure or log-Sobolev inequalities.

The necessary background (concentration of measure, curvature in Riemannian
geometry, convergence of Markov chains) is covered in the first section. Special
emphasis is put on open questions of varying difficulty.

Our starting point is the following: Is there a common geometric feature between the
N -dimensional sphere SN , the discrete cube {0, 1}N , and the space R

N equipped with
a Gaussian measure? For a start, all three spaces exhibit the concentration of measure

phenomenon; moreover, it is known (Dvoretzky theorem) that random small-dimensional
sections of the cube are close to a sphere, and small-dimensional projections of either
the sphere or the cube give rise to nearly-Gaussian measures.

So one can wonder whether there exists a common underlying geometric property. A
hint is given by the Gromov–Lévy theorem [Gro86], which states that Gaussian concen-
tration occurs not only for the N -dimensional sphere, but for all Riemannian manifolds
of positive curvature in the sense that their Ricci curvature is at least that of the sphere.
In Riemannian geometry, Ricci curvature is the relevant notion in a series of positive-
curvature theorems (see section 1.2).

One is left with the problem of finding a definition of Ricci curvature valid for spaces
more general than Riemannian manifolds. Moreover, the definition should be local and
not global, since the idea of curvature is to seek local properties entailing global con-
straints. A first step in this direction is provided by Bakry–Émery theory [BE85], which
allows to define the Ricci curvature of a diffusion process on a Riemannian manifold (or
equivalently, of a second-order differential operator); when the diffusion is the ordinary
Brownian motion, this gives back usual Ricci curvature. When applied to the natural
process on R

N associated with the Gaussian measure, this yields a positive curvature for
the Gaussian space.

Because the Bakry–Émery definition involves differential calculus, it is not readily
adaptable to discrete spaces. To deal with the next basic example, the discrete cube,
one has to drop the continuity aspect and deal with more “robust” or “coarse” notions
that forget the small-scale properties of the underlying space. This is similar in spirit to
what has been done for a long time in the (very different) world of negative curvature, for
which coarse notions such as δ-hyperbolicity and CAT(0) spaces have been developed.

1



Such a notion can be summarized as follows [Oll07, Oll09]: a metric space has positive
curvature if small balls are closer than their centers are (Definition 18). Here one uses
transportation distances to measure the distance between balls.

It is possible to put emphasis on a random process (consistently with Bakry–Émery
theory) and replace the ball centered at a point with the transition probability of a
random walk. Doing so, one finds that the property above is equivalent to a property
first introduced by Dobrushin [Dob70, DS85] for Markov fields, and still known in the
Ising community as the “Dobrushin criterion” (several variants of which are in use). The
1970 Dobrushin paper was actually the one to make transportation distances known to
a wider audience.

Dobrushin’s contraction property in transportation distance for Markov chains can
be seen as a metric version of the more well-known Dobrushin ergodic coefficient (see
e.g. Section 6.7.1 in the textbook [Bré99]). It is, by Kantorovich duality, equivalent to a
Lipschitz contraction property for a semi-group, a fundamental feature of Bakry–Émery
theory. Under one form or the other, this property pops out sporadically in the Markov
chain literature [CW94, Dob96, BD97, Che04, Oli], generally to get rates of convergence.
Note its use in [DGW04] to propagate a strong functional inequality from local to global
level (thus getting concentration if this inequality holds locally). More recently, in an
approach somewhat similar to ours, Joulin uses it under the name “Wasserstein curva-
ture” to get concentration results for the time-t and invariant measure [Jou07] as well as
for the empirical measure [Jou].

1 Basics: concentration, curvature, Markov chains, trans-

portation distances

We now turn to the background material needed in this course: concentration of measure,
curvature of Riemannian manifolds, convergence of discrete Markov chains, transporta-
tion distances. We will try to keep the exposition simple and informal. Good beginner’s
guides are as follows: [Sch01, Oll, Led01, Mas07] for concentration; [DC92] or [Pet06]
for Riemannian geometry; [Mar04, ABCFGMRS00, DS96] for convergence of Markov
chains; [Vil03] for optimal transport.

1.1 Concentration of measure

The first occurrence of the concentration of measure phenomenon is generally attributed
to Lévy [Lév22], who noted that, in the Euclidean unit sphere SN of large dimension N ,
a neighborhood of the equator of size roughly 1/

√
N contains most of the mass of the

sphere (for the natural volume measure).
This means that if we take a function f : SN → R which is the orthogonal projection

on a coordinate axis, then for most points of SN the value of f is close to 0 (roughly
up to 1/

√
N). But concentration of measure is much more general: indeed the above

applies to any Lipschitz function f , not only the projection to a coordinate axis. The
precise quantitative meaning of “most” is a Gaussian control as follows.

Theorem 1 (Concentration on the sphere, [Lév22]).
Let SN ⊂ R

N+1 be the Euclidean unit sphere. Let f : SN → R be a 1-Lipschitz function.
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Then there exists a m ∈ R such that, for any t > 0

ν
(

{x ∈ SN , |f(x)−m| > t}
)

6 2 exp − t2

2D2

where D = 1/
√
N − 1 and ν is the natural measure on SN , normalized so that ν(SN ) = 1.

Exercise 2.
Prove the theorem. (Hint: Use the fact that, of all parts of SN with measure 1/2, half-spheres
are those that minimize the boundary length and the measure of their ε-neighborhood. Take for
m a median of f . Then use an estimate of

∫ π/2

u
cosN−1(s)ds.)

This means that something in the geometry of the sphere forces Lipschitz functions
to be constant. Our goal is to convince the reader that it is positive Ricci curvature, as
suggested by the Gromov–Lévy theorem.

Another space on which concentration of measure occurs is the discrete cube X =
{0, 1}N . Equip this space with the uniform probability measure, which means that we
pick at random a sequence of 0’s and 1’s with probability 1/2. Let f : X → R be the
function which maps each sequence to the proportion of 1’s it contains. It is well-known
that f is “most of the time” equal to 1/2, and that the deviations behave like 1/

√
N for

large N and take a Gaussian shape. But in fact, concentration of measure states that
this happens for a much wider class of functions, not only the “linear” f above.

Theorem 3 (Concentration on the cube).
Let X = {0, 1}N be the discrete cube equipped with the uniform probability measure ν.
Let f : X → R be a function such that, whenever one digit of the sequence is changed,
then the value of f changes by at most 1/N . Then there exists a m ∈ R such that, for
any t > 0

ν ({x ∈ X, |f(x)−m| > t}) 6 2 exp − t2

2D2

where D = 1/2
√
N .

The proof uses an important Laplace transform (i.e. exponential moments) technique
which is expressed in the following lemma.

Lemma 4 (Laplace transform).
Let X be a space equipped with a probability measure ν. Let f : X → R. Assume that
there exists some D > 0 such that, for any λ ∈ R one has

Eeλ(f−Ef)
6 eD

2λ2/2

where E denotes integration w.r.t. ν. Then for any t ∈ R we have

ν({x ∈ X, f(x)− Ef > t}) 6 e−t2/2D2

Exercise 5.
Prove the lemma. (Hint: Markov inequality applied to eλf for some λ.)
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Laplace transforms may appear mysterious at first glance. Observe that for small λ
we have Eeλ(f−Ef) = 1+ λE(f −Ef) + λ2

2 E(f −Ef)2 +O(λ3) = 1+ λ2

2 Var f +O(λ3) =

e(Var f)λ
2/2+O(λ3). So the D2 appearing in the assumption is a kind of “exponential

variance” for f .

Exercise 6.
Prove the theorem. (Hint: Work on the Laplace transform estimate. For N = 1 this results
from a Taylor expansion, and then use induction on N by performing the integration w.r.t. the
last coordinate only.)

This tensorization property of Laplace transforms make them a very convenient tool.

The relationship between the concentration theorems on the sphere and cube may be
formalized by turning {0, 1}N into a metric space. Let us say that the distance between
two length-N sequences of 0’s and 1’s is the number of digits to change to go from one to
the other. (This is the graph metric on the edges of the hypercube, or the ℓ1 metric on
{0, 1}N , also called Hamming metric.) Then the constraint on f in the theorem above
simply states that f is 1/N -Lipschitz. If one rescales the cube metric by 1/N so that the
diameter is 1 (for better comparison with the unit sphere), the constraint on f is simply
to be 1-Lipschitz, so that the theorems on the sphere and cube parallel each other very
well.

This shows why concentration is often described as a “metric measure” phenomenon,
expressed in terms of Lipschitz functions. The quantity D is, in the terminology of
Gromov [Gro99], the “observable diameter” of the space.

There are numerous generalizations to the theorems above. We refer to [Led01,
Mas07].

Let us just mention our third basic example: R
N equipped with the Gaussian prob-

ability measure ν(dx) = e−N |x|2/2/Z where Z is the normalization constant. We have
chosen the parameters such that E |x|2 = 1, for better comparison with the unit sphere.
Then the same theorem holds: for any 1-Lipschitz function f : RN → R, deviations from
the average are controlled by e−Nt2/2.

The traditional proof uses an isoperimetric inequality stating that in Gaussian space,
among all subsets of measure 1/2, those with the smallest neighborhoods are half-spaces.
The passage from isoperimetry to concentration is then similar to that for the sphere
above. Another proof is possible with Bakry–Émery theory, by using the Ornstein–
Uhlenbeck process, which is the natural process on R

N having the Gaussian measure
as its invariant distribution; actually this process has positive Ricci curvature in the
Bakry–Émery sense.

1.2 Ricci curvature of Riemannian manifolds

Riemannian manifolds. Manifolds are the natural higher-dimensional generalization
of curves and surfaces. Any (smooth) manifold can be seen as a subset of M ⊂ R

p such
that, at each point x ∈ M , there is a N -dimensional subspace of Rp, the tangent space

TxM , such that TxM coincides with M around x up to a second order error. The number
N is the dimension of the manifold.
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Note that if c(t) is a smooth curve in M , then the derivative dc(t)/dt is an element
of the tangent space at c(t).

It is possible to give an abstract version of this definition without resorting to sub-
spaces of Rp; according to a theorem of Whitney this amounts to the same.

A Riemannian manifold is a manifold equipped with a way to measure the length of
tangent vectors. Namely, suppose that for each x ∈ M we are given (in a smooth way)
a positive definite quadratic form on the tangent space TxM ; this consitutes a metric.
(For example, if M ⊂ R

p, then one can take the restriction to TxM of the Euclidean
structure on R

p.) Then, if c(t) is a curve in M , we can use the quadratic form on Tc(t)M
to define the length ‖dc(t)/dt‖ of a vector tangent to c. Hence, by integration, we can
define the length of a curve. One can then turn the manifold M into a metric space by
defining the distance between two points to be the infimum of the lengths of the curves
in M between the two points. (If M ⊂ R

p and if we use the Euclidean structure of Rp

as the metric, then we get the usual length for curves included in M .)
We will always assume that our Riemannian manifolds are connected and complete.
A geodesic is a curve in M such that, for any two close enough points on the curve,

the distance between these two points is realized by the curve. For example, the equator
and meridians are geodesics of the sphere, but the parallels are not. Locally, geodesics
between two points always exist. Moreover, given a starting point x and a tangent vector
v, there is always a geodesic starting at x with tangent vector v; it is the curve which
“goes straight” in M starting with direction v. We will call endpoint of v the point
obtained after following this geodesic for a unit time and we will denote it by expx v.

Intuition for Ricci curvature. A central notion of Riemannian geometry is curva-

ture. Let x ∈ M and let v be a tangent vector at x, with very small norm δ = ‖v‖. Let
y be the endpoint of v, in particular the distance d(x, y) is δ. Let w be another tangent
vector at x, with very small norm ε; for simplicity we assume that w is orthogonal to v.
Let w′ be “the same” tangent vector as w, but with basepoint y; this can be defined as the
tangent vector at y whose endpoint is closest to the endpoint of w, with the constraint
that w′ be orthogonal to the geodesic from x to y, as w is. (Exercise: relate this to the
usual definition of parallel transport and Levi–Civita connection.)

δ

ε
w

x

y

w′

δ(1− ε2K/2)

ε

Now we are interested in the distance between the endpoint of w and that of w′. If
we were in a Euclidean space, we would simply get a rectangle and so the length of the
fourth side would be exactly δ. Now, consider the case of the sphere: if, say, x and y are
close points on the equator, the geodesics issuing from x and y are meridians that meet
at the poles. So, intuitively, in positive curvature geodesics get closer, and farther away
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in negative curvature. Using the distance between the endpoints of w and w′ as a way
to quantify this phenomenon we get:

Proposition-Definition 7 (Sectional curvature).
Let (X, d) be a smooth complete Riemannian manifold. Let v, w be unit tangent vector
at x ∈ X. Let ε, δ > 0. Let y be the endpoint of δv and let w′ be the tangent vector at
y obtained by parallel transport of w along the geodesic from x to y. Then

d(expx εw, expy εw
′) = δ

(

1− ε2

2
K(v, w) +O(ε3 + ε2δ)

)

as (ε, δ) → 0. Here K(v, w) is the sectional curvature in the directions (v, w).

Exercise 8.
Prove the proposition using the classical definition of sectional curvature.

We are now ready to define Ricci curvature.

Definition 9 (Ricci curvature).
Let x be a point in a smooth N -dimensional Riemannian manifold, and let v be a tangent
vector at x. We define Ric(v), the Ricci curvature along v, as N times the average of
K(v, w) when w runs over the unit sphere in the tangent plane at x.

y

d(x, y) (1− ε2 Ric /2N) on average

Sy

Sx

x

The N factor comes from the fact that Ricci curvature is traditionally defined as a
trace, hence a sum on a basis instead of an average on the sphere. Moreover, generally
the Ricci curvature arises as a quadratic form so that Ric(v) is usually denoted Ric(v, v).

As a consequence we get (see also condition (xii) in [RS05], Theorem 1.5, which uses
an infimum of Ricci curvature instead):

Corollary 10 (Transport of Riemannian balls).
Let (X, d) be a smooth complete Riemannian manifold. Let v be a unit tangent vector
at x ∈ X. Let ε, δ > 0. Let y be the endpoint of δv.

Let Sx be the set of endpoints of the sphere of radius ε in the tangent plane at x,
and similarly for y. Then if we map Sx to Sy using parallel transport, on average points
travel over a distance

δ

(

1− ε2

2N
Ric(v) +O(ε3 + ε2δ)

)

as (ε, δ) → 0. If we use balls instead of spheres, the ε2

2N factor becomes ε2

2(N+2) .

This is the characterization of Ricci curvature we will use in more general spaces.
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Finally, let us mention, for the record, another visual characterization of Ricci cur-
vature. Consider once again a point x ∈ M and a unit tangent vector v at x. Consider
a very small neighborhood C of any shape around x. For each point z of C, throw a
geodesic zt starting at z with initial direction v (where v has been moved from x to z
by parallel transport). As we have seen, on average these geodesics tend to get closer
or farther away from the geodesic starting at x, according to the sign of curvature. Let
Ct be the set obtained by “gliding” C along these geodesics for a time t, i.e. the union
{zt, z ∈ C}. In particular C = C0.

v
v

v

Then we have (Exercise)

volCt = volC (1− t2

2 Ric(v) + smaller terms)

so that Ricci curvature controls the evolution of volumes under the geodesic flow. (Note
that the derivative of volCt is 0 for t = 0 because we choose geodesics with parallel
initial speeds.)

Theorems in positive Ricci curvature. A lot of positive curvature theorems in
Riemannian geometry take the form of a condition on Ricci curvature, compared to the
reference positively curved space SN . Let us mention a few of them, which will serve as
benchmarks for general notions of Ricci curvature. The sentence “the Ricci curvature is
at least that of SN ” means that for each unit tangent vector v, the value Ric(v) is at least
that obtained on a unit sphere (namely N − 1). By comparing to a sphere of different
radius and rescaling, the same bounds apply whenever Ricci curvature is bounded below
by any positive number.

Theorem 11 (Bonnet–Myers).
Let M be an N -dimensional Riemannian manifold. Suppose that the Ricci curvature of
M is at least that of SN . Then the diameter of M is at most that of SN . In particular
M is compact.

Theorem 12 (Lichnerowicz).
Let M be an N -dimensional Riemannian manifold. Suppose that the Ricci curvature of
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M is at least that of SN . Then the first non-zero eigenvalue of the Laplace–Beltrami
operator on M is at least that of SN .

Theorem 13 (Gromov–Lévy).
Let M be an N -dimensional Riemannian manifold. Suppose that the Ricci curvature of
M is at least that of SN .

Let A ⊂ M , and let A′ ⊂ SN be a ball of radius r around some point of SN , where
r is such that volA/ volM = volA′/ volSN .

Then for any ε > 0 one has

volAε

volM
>

volA′
ε

volSN

where Aε is the set of points at distance at most ε from A.
In particular, if A has smooth boundary then

volN−1 ∂A

volM
>

volN−1 ∂A
′

volSN

This means that relative volume growth in M is faster than in SN . (Note that
absolute volume growth is slower.)

Remember how we proved concentration of measure on SN : a 1/
√
N -neighborhood

of a hemisphere contains almost all the mass. The Gromov–Lévy theorem implies that
the same happens in any manifold with positive Ricci curvature. So we get

Corollary 14 (Concentration in positive Ricci curvature).
Let M be an N -dimensional Riemannian manifold. Suppose that the Ricci curvature of
M is at least that of SN . Let f : M → R be a 1-Lipschitz function. Then there exists a
m ∈ R such that, for any t > 0

ν ({x ∈ Sn, |f(x)−m| > t}) 6 2 exp − t2

2D2

where D = 1/
√
N − 1 and ν is the natural measure on M , normalized so that ν(M) = 1.

Let us now mention some aspects of the tools developed by Bakry and Émery. Re-
member that the heat equation ∂f

∂t = ∆f , where ∆ is the Laplace–Beltrami operator

generalizing the usual Laplacian
∑ ∂2

∂x2
i

, defines a semi-group of operators (Pt)t>0 acting

on, say, smooth functions on a Riemannian manifold.

Theorem 15 (Bakry–Émery).
Let M be an N -dimensional Riemannian manifold. Suppose that the Ricci curvature of
M is at least K > 0. Let (Pt)t>0 be the heat equation semigroup on M .

Then for any t > 0 and any smooth function f : M → R:

(i) supM ‖∇Ptf‖ 6 e−Kt supM ‖∇f‖,

(ii) ‖∇Ptf‖ (x) 6 e−Kt(Pt ‖∇f‖)(x),
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(iii) Ent f :=
∫

f log f∫
f
dν 6 1

2K

∫ ‖∇f‖2

f dν, f > 0,

where as usual ν is the normalized Riemannian volume on M .

The first inequality states that the Lipschitz norm is exponentially decreasing under
the heat equation. The second, more precise inequality states that the norm of the gra-
dient at point x at time t is controlled by the average around x of the initial norm of
the gradient. The third inequality is a so-called logarithmic Sobolev inequality ; in this
survey we will not say much about them, but there are deep links between concentra-
tion of measure, convergence of Markov chains or heat kernels, and these log-Sobolev
inequalities [ABCFGMRS00]. (Compare the Poincaré inequalities mentioned below.)

The Bonnet–Myers theorem can be found in any textbook on Riemannian geometry.
A probabilistic proof of the Lichnerowicz theorem using couplings of Brownian motions
can be found, for example, in [Hsu02] (Theorem 6.7.3). The Gromov–Lévy theorem is
proven in [Gro86] (see also e.g. [Pet06]) and Bakry–Émery theory can be found in [BE85].
Actually the concentration of measure part of the Gromov–Lévy theorem is a consequence
of the logarithmic Sobolec inequality, though this was not clear at the time.

1.3 Markov chains and their convergence

We present here basic results on Markov chains and their convergence. We refer the
reader to [Mar04], [ABCFGMRS00], [DS96] for approaches focusing on convergence rates,
especially in the discrete case. The presentation here is partially inspired by Laurent
Veysseire’s master’s dissertation.

Random walks. Let X be a, say, Polish space (i.e. metrizable, separable, complete;
this ensures a good behavior of measure theory). A Markov chain kernel, or random

walk, on X is the following data: for each x ∈ X, let mx be a probability measure on X
(and we assume that the measure mx depends on x in a measurable way). The Markov
chain jumps from a point x to a random point picked according to mx. The n-step
transition probability is given by

dm∗n
x (y) :=

∫

z∈X
dm∗(n−1)

x (z) dmz(y)

where of course m∗1
x := mx.

The Markov chain defines an operator on the set of (non-negative) measures on X:
if µ is a measure then we define the measure µ ∗m by

d(µ ∗m)(y) :=

∫

x∈X
dµ(x) dmx(y)

which describes, given an initial mass distribution, what is the new mass distribution
after a jump. Note that mass is preserved: (µ ∗m)(X) = µ(X).

In a dual way, the Markov chain defines an operator M on bounded functions on X
by

(Mf)(x) :=

∫

y∈X
f(y) dmx(y)
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and we check the duality
∫

Mf dµ =
∫

f d(µ ∗m), at least formally. Note that Mnf(x)
describes the expected value of f at the endpoint of n steps of the random walk. In
particular, if f is constant then Mf = f . Also note that supMf 6 sup f .

A measure µ is said to be invariant if µ∗m = µ. A measure µ is said to be reversible

if dµ(x) ⊗ dmx(y) = dµ(y) ⊗ dmy(x) as a measure on X × X. One checks that a
reversible measure is invariant, but reversibility describes a “local equilibrium” property
much stronger than invariance, namely that, under the initial mass distribution µ, the
“flow” from x to y is equal to that from y to x.

If ν is an invariant measure, then conservation of mass reads
∫

Mf dν =
∫

f dν.

Convergence to equilibrium, spectral gap and Poincaré inequalities. From
now on we suppose that ν is an invariant probability measure i.e. such that ν(X) = 1.
We denote integration under ν by E. Two natural questions arising in the theory and
practice of Markov chains are: Starting at a given point x ∈ X, how many steps are
necessary so that the law of the endpoint is close to the invariant distribution? Given a
function f : X → R, how close to Ef is the empirical average 1

T

∑T
t=1 f(xt) where the

xt’s are the steps of the random walk?
We will explain here the spectral answer to the first question. We will come back to

empirical measures in section 2.3.4.
In practice, the most widely used criterion to compare probability measures is the

total variation distance

∥

∥µ− µ′
∥

∥

TV
:= sup

A⊂X

∣

∣µ(A)− µ′(A)
∣

∣ =
1

2

∫

X
d
∣

∣µ− µ′
∣

∣ =
1

2

∥

∥

∥

∥

dµ

dµ′
− 1

∥

∥

∥

∥

L1(µ′)

(whenever the latter makes sense). The first expression given justifies the interest, since
it controls the worst error on all possible bets on the result.

What we want to control is
∥

∥m∗t
x − ν

∥

∥

TV
. It is often more convenient to work in L2

than in L1. Let us work for a moment with functions instead of measures. Let L2
0(ν) be

the quotient of L2(ν) by the constant functions; the norm on L2
0 is variance under ν:

‖f‖2L2
0
= ‖f − Ef‖L2 = Varν f =

1

2

∫∫

(f(x)− f(y))2 dν(x)dν(y)

One then checks (Exercise) the associativity of variances property:

‖f‖2 = ‖Mf‖2 +
∫

(Varmx
f) dν(x)

and similarly

Varν f = Varν Mf +

∫

(Varmx
f) dν(x)

where Varmx
denotes variance under the measure mx. This formula describes the

“smoothing” effect of the averaging operator; it means in particular that M is a non-
expanding operator on L2(ν).

The consequence for convergence of measures is the following. Let L2∗
0 (ν) be the set of

0-mass signed measures on X having an L2 density w.r.t. ν (i.e. the set {fν, f ∈ L2
0(ν)}).

Then the duality formula
∫

Mf dµ =
∫

f d(µ∗m) states that convolution by m on L2∗
0 (ν)
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is the dual operator to M. In particular, the operator norm of M∗ on L2∗
0 (ν) is equal

to that of M on L2
0(ν), since both are equal to sup{

∫

Mf dµ, f ∈ L2
0, ‖f‖ 6 1, µ ∈

L2∗
0 , ‖µ‖ 6 1}.

Assume for a moment that X is discrete, so that the Dirac measure δx has a density
w.r.t. ν (or that, instead of starting exactly at x, we start with an initial distribution
having a density w.r.t. ν). We can write

∥

∥

∥

∥

dm∗t
x

dν
− 1

∥

∥

∥

∥

L1(ν)

6

∥

∥

∥

∥

dm∗t
x

dν
− 1

∥

∥

∥

∥

L2(ν)

=

∥

∥

∥

∥

dm∗t
x

dν
− 1

∥

∥

∥

∥

L2
0
(ν)

=
∥

∥m∗t
x − ν

∥

∥

L2∗
0

(ν)

6 ‖δx − ν‖L2∗
0
(ν) ‖M∗‖tL2∗

0
(ν)→L2∗

0
(ν)

=
√

1−ν(x)
ν(x) ‖M‖tL2

0
(ν)→L2

0
(ν)

Remember the formula above Varν f = Varν Mf+
∫

(Varmx
f) dν(x). If we knew that,

for any function f , the quantity
∫

(Varmx
f) dν(x) represents at least some proportion α

of Varν f , then we would know that Varν Mf 6 (1− α)Varν f and so ‖M‖L2
0
(ν)→L2

0
(ν) 6√

1− α. Setting 1− λ =
√
1− α, what we have shown is

Proposition 16 (Poincaré inequality 1).
The norm of the operator M on L2

0(ν) is at most 1− λ if and only if the inequality

Varν f 6
1

λ(2− λ)

∫

Varmx
f dν

holds for any function f ∈ L2
0(ν).

In particular, in this case for any x ∈ X with ν(x) > 0 we have

∥

∥m∗t
x − ν

∥

∥

TV
6 1

2

√

1−ν(x)
ν(x) (1− λ)t

Such an inequality is (a variant of) a Poincaré inequality. It expresses the fact that
the global variance of f is controlled by the local variations Varmx

f .
Note that the

√

1/ν(x) factor is sometimes detrimental in applications, even in very
simple examples. For example, using this method on the (lazy) simple random walk on
the discrete cube {0, 1}N yields mixing time estimates of O(N2) because here 1/ν(x) =
2N , instead of the correct O(N lnN) (Exercise). We will see that the coarse Ricci
curvature method allows to recover O(N lnN) very easily.

Continuous time. One can define a continuous-time analogue of the situation above,
by deciding that in each time interval dt, the random walk has a probability dt to jump
from the point x to a new point picked according to mx. This amounts to taking an
“infinitely lazy” random walk and then speeding up time. Namely, we replace M with

Mt := lim ((1− ε) Id+εM)t/ε = et(M−Id)

which converges as an operator on L2(ν) since ‖M‖ 6 1.

11



The new transition probabilities at time t are given by

dptx(y) =
∑

k∈N

e−t t
k

k!
dm∗t

x (y)

i.e. the number of jumps in time t is Poissonian with parameter t.
In this situation it is nice to work with the Laplace operator

∆ := M− Id

which is the discrete analogue of the Laplacian
∑ ∂2

∂x2
i

.

In analogy with the above, we want to study the operator norm of et∆ on L2
0(ν). One

can check (Exercise) that

d

dt |t=0
Varν(e

t∆f) = 2〈f,∆f〉L2
0
(ν) = −

∫∫

(f(y)− f(x))2 dν(x)dmx(y)

where the last term is called the Dirichlet form associated with the random walk.
Once more, if we knew that the right-hand-side represents at least some fraction α of

Varν f , then we would know that Varν(e
t∆f) decreases at least exponentially with rate

α. What we have proven is

Proposition 17 (Poincaré inequality 2).
The inequality Varν(e

t∆f) 6 e−2λtVarν f holds for any f ∈ L2(ν) if and only if

Varν f 6
1

2λ

∫∫

(f(y)− f(x))2 dν(x)dmx(y)

holds for any function f ∈ L2(ν).
In particular, in this case for any x ∈ X with ν(x) > 0 we have

∥

∥ptx − ν
∥

∥

TV
6 1

2

√

1−ν(x)
ν(x) e−λt

This is the standard form of the Poincaré inequality. The best value of λ is called
the spectral gap. The spirit is the same as the one above: both Varmx

f and
∫

(f(y) −
f(x))2 dmx(y) quantify the variations of f around x.

The reversible case. One checks that the invariant measure ν is reversible if and only
if the operator M is self-adjoint in L2(ν). In this case, we have the duality formula

(fν) ∗m = (Mf)ν

meaning that the evolution of measures is the same as the evolution of their density
functions w.r.t. ν. In that case, the operator M has a real spectrum, included in [−1; 1],
and ∆ is a negative operator. The Poincaré inequality then states that the spectrum
of ∆ on L2

0(ν) is contained in [−2,−λ], hence the name spectral gap. Estimation of the
spectral gap is easier in the reversible case, since the operator norm of M is equal to its
spectral radius, which may be easier to compute.

12



The case of diffusions. If X is a Riemannian manifold, one can take for mx the
volume measure restricted to the ball of radius ε around X. Then, the discrete Laplace
operator of the random walk is an approximation of ε2

2(N+2) times the Laplace–Beltrami
operator of the manifold, and so the random walk will approximate Brownian motion
and the heat equation. In this case for a smooth function f both Varmx

f and
∫

(f(y)−
f(x))2 dmx(y) approximate ‖∇f‖2 (up to scaling), and the Poincaré inequality reads
Var f 6 1

λ

∫

‖∇f‖2.

1.4 Transportation distances

Transportation distances answer the following question: One wants to move a heap of
sand from an initial position to a prescribed new position, in a cost-effective way, meaning
that we want grains of sand to travel over the smallest possible distance. We refer to the
excellent [Vil03] or [Vil08].

This situation is formalized as follows: Let µ1, µ2 be two measures on a metric space
X with the same total mass. A transference plan from µ1 to µ2 is a measure ξ on
X×X such that

∫

y dξ(x, y) = dµ1(x) and
∫

x dξ(x, y) = dµ2(y). Here dξ(x, y) represents
the quantity of sand travelling from x to y, and the two constraints ensure that we
indeed start with measure µ1 and end up with measure µ2. Let Π(µ1, µ2) be the set of
transference plans from µ1 to µ2 (also called couplings between µ1 and µ2).

The L1 transportation distance (or Kantorovich–Rubinstein distance) between µ1 and
µ2 is the best average travel distance that can be achieved. It is defined as

W1(µ1, µ2) := inf
ξ∈Π(µ1,µ2)

∫∫

d(x, y) dξ(x, y)

In general this is only a semi-distance, as it may be infinite. The triangle inequality re-
quires the so-called “gluing lemma” (composition of couplings), which technically imposes
that X be Polish. This quantity defines a genuine distance when restricted to the set of
those probability measures µ with finite first moment i.e. such that

∫

d(o, x) dµ < ∞ for
some (hence any) o ∈ X.

Wasserstein distances are a generalization obtained by optimizing d(x, y)p instead of
d(x, y), for some p > 1.

The only property of transportation distances we shall use is Kantorovich duality. It
states that

W1(µ1, µ2) = sup
f :X→R

f 1−Lipschitz

∫

f dµ1 −
∫

f dµ2

and the supremum can also be restricted to bounded 1-Lipschitz functions.
The fact that the variation of the integral of a 1-Lipschitz function is bounded by

the transportation distance is easy. The converse direction is not at all trivial. A
non-constructive proof using minimax principles for convex functions is given in [Vil03],
whereas a somewhat more constructive approach is taken in [Vil08].
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2 Discrete Ricci curvature

2.1 Definition and examples

We now have all the necessary ingredients to define a coarse version of Ricci curvature,
as presented in [Oll07, Oll09]. Remember that, in Riemannian manifolds, the value of
Ricci curvature can be recovered by comparing the average distance between two small
balls to the distance between their centers (Corollary 10). We use this characterization
in more general spaces: we will say that coarse Ricci curvature is positive if balls are

closer than their centers are in transportation distance. The difference gives the value
of coarse Ricci curvature.

The notion of “small ball” depends on what is relevant in the situation considered.
For example, in a graph it might be natural to take balls of radius 1, whereas in a
manifold arbitrarily small balls are the natural choice. This allows for a definition of
Ricci curvature “at a given scale”. For example, the Earth is a reasonable approximation
of an ellipsoid up to a scale of a dozen kilometers; the definition below allows to compute
the Ricci curvature of the Earth at this scale and compare it to the ellipsoid.

So, to allow for a more general treatment, we will assume that for each point x in
our space X, a probability measure mx on X is given, which represents a “ball” of our
own choosing around x. Of course, this is exactly the same data as a Markov chain.

Moreover, in Riemannian manifolds Ricci curvature is defined for a tangent vector.
In more general spaces, the best we can do for a tangent vector is a pair of close points.
(The meaning of “close” is made precise by Exercise 22 below.)

x

y

x

y

w

w′

<d(x, y)
(1− κ) d(x, y)

my

mx

on average

Definition 18 (Coarse Ricci curvature).
Let (X, d) be a metric space, endowed with a family (mx)x∈X of probability measures
on X. Let x, y be two points in X. The coarse Ricci curvature κ(x, y) of X along xy is
defined by the relation

W1(mx,my) = (1− κ(x, y)) d(x, y)

where W1 is the L1 transportation distance.

The hidden technical assumptions are the following: X should be Polish; the measure
mx should depend measurably on x ∈ X; each mx should have finite first moment (see
section 1.4).
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Definition 19 (ε-step random walk).
Let (X, d, µ) be a metric measure space, and assume that balls in X have finite measure
and that Suppµ = X. Choose some ε > 0. The ε-step random walk on X, starting at a
point x, consists in randomly jumping in the ball of radius ε around x, with probability
proportional to µ; namely, mx = µ|B(x,ε)/µ(B(x, ε)). (One can also use other functions
of the distance, such as Gaussian kernels.)

Maybe the most fundamental example is the following.

Exercise 20 (Discrete cube).
Let {0, 1}N be the discrete cube equipped with its L1 metric and uniform probability
measure. Compute the coarse Ricci curvature of the 1-step random walk for a pair of
points x, y at distance 1.

Next, we did everything so that in Riemannian manifolds, we get the correct value of
Ricci curvature up to some scaling (and up to checking that parallel transport between
balls is indeed an optimal coupling up to higher-order terms). See also condition (xii)
in [RS05], Theorem 1.5, which uses an infimum of Ricci curvature instead.

Exercise 21 (Riemannian manifolds).
Let (X, d) be a smooth complete N -dimensional Riemannian manifold. Equip it with
the ε-step random walk, for ε small enough.

Let x, y ∈ X with d(x, y) small enough, and let v be the unit tangent vector at x on
the geodesic from x to y. Then

κ(x, y) =
ε2Ric(v)

2(N + 2)
+O(ε3 + ε2d(x, y))

The ε2 factor reflects the fact that Riemannian manifolds are locally Euclidean up
to second order.

In both these cases, we have computed curvature only for “close” points x, y. This is
justified by the following simple yet very useful property.

Exercise 22 (Geodesic spaces).
Suppose that (X, d) is α-geodesic in the sense that for any two points x, y ∈ X, there ex-
ists an integer n and a sequence x0 = x, x1, . . . , xn = y such that d(x, y) =

∑

d(xi, xi+1)
and d(xi, xi+1) 6 α.

Then, if κ(x, y) > κ for all pairs of points with d(x, y) 6 α, then κ(x, y) > κ for all
pairs of points x, y ∈ X.

For example, a graph is 1-geodesic, and a Riemannian manifold is α-geodesic for any
α > 0: in both cases, this is the very definition of the distance.

This property is to be kept in mind in the next series of examples.

Exercise 23 (ZN and R
N).

Let m be the simple random walk on the graph of the grid Z
N equipped with its graph

metric. Then for any two points x, y ∈ Z
N , the coarse Ricci curvature along (xy) is 0.

This example generalizes to the case of ZN or R
N equipped with any distance and

random walk which are translation-invariant. For example, the triangular tiling of the
plane has 0 curvature, as well as R

N equipped with an Lp norm.
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Our last basic example was R
N equipped with a Gaussian measure. Following the

spirit of Bakry–Émery theory, we use (a discretization of) the natural random process
having a Gaussian measure as its invariant distribution, namely the Ornstein–Uhlenbeck
process.

Exercise 24 (Ornstein–Uhlenbeck process).
Let s > 0, α > 0 and consider the Ornstein–Uhlenbeck process in R

N given by the
stochastic differential equation

dXt = −αXt dt+ s dBt

where Bt is a standard N -dimensional Brownian motion. The invariant distribution is
Gaussian, of variance s2/2α. Let δt > 0 and let the random walk m be the flow at time
δt of the process. Explicitly, mx is a Gaussian probability measure centered at e−αδtx,
of variance s2(1− e−2αδt)/2α ∼ s2δt for small δt.

Then the coarse Ricci curvature κ(x, y) of this random walk is 1 − e−αδt ∼ αδt, for
any two x, y ∈ R

N .

On Riemannian manifolds this generalizes as follows.

Exercise 25 (Ricci curvature à la Bakry–Émery).
Let X be an N -dimensional Riemannian manifold and F be a tangent vector field.
Consider the differential operator

L :=
1

2
∆ + F · ∇

associated with the stochastic differential equation

dXt = F dt+ dBt

where Bt is the Brownian motion in X. The Ricci curvature (in the Bakry–Émery sense)
of this operator, applied to a tangent vector v is 1

2 Ric(v, v)− v · ∇vF .
Consider the Euler approximation scheme at time δt for this stochastic equation,

which consists in following the flow of F for a time δt and then randomly jumping in a
ball of radius

√

(N + 2)δt.
Let x, y ∈ X with d(x, y) small enough, and let v be the unit tangent vector at x on

the geodesic from x to y. Then

κ(x, y) = δt

(

1

2
Ric(v, v)− v · ∇vF +O(d(x, y)) +O(

√
δt)

)
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x

y

v

Fxδt
x′

d(x, y) + δt v.(Fy − Fx)

d(x′, y′) (1− δtRic(v, v)/2)
on average

y′
Fyδt

Let us explain the normalization: Jumping in a ball of radius ε generates a variance
ε2 1

N+2 in a given direction. On the other hand, the N -dimensional Brownian motion
has, by definition, a variance dt per unit of time dt in a given direction, so a proper
discretization of Brownian motion at time δt requires jumping in a ball of radius ε =
√

(N + 2)δt. Also, as noted in [BE85], the generator of Brownian motion is 1
2∆ instead

of ∆, hence the 1
2 factor for the Ricci part.

Maybe the reason for the additional −v · ∇vF in Ricci curvature à la Bakry–Émery
is made clearer in this context: it is simply the quantity by which the flow of F modifies
distances between two starting points.

It is clear on this example why reversibility is not fundamental in this theory: the
antisymmetric part of the force F generates an infinitesimal isometric displacement.
Combining the Markov chain with an isometry of the space has no effect whatsoever on
our definition.

Exercise 26 (Multinomial distribution).
Consider the set X = {(x0, x1, . . . , xd), xi ∈ N,

∑

xi = N} viewed as the configuration
set of N balls in d + 1 boxes. Consider the process which consists in taking a ball at
random among the N balls, removing it from its box, and putting it back at random in
one of the d + 1 boxes. More precisely, the transition probability from (x0, . . . , xd) to
(x0, . . . , xi − 1, . . . , xj + 1, . . . , xd) (with maybe i = j) is xi/N(d+ 1). The multinomial
distribution N !

(d+1)N
∏

xi!
is reversible for this Markov chain.

Equip this configuration space with the metric d((xi), (x
′
i)) :=

1
2

∑ |xi − x′i| which is
the graph distance w.r.t. the moves above. The coarse Ricci curvature of this Markov
chain is 1/N .

Exercise 27 (Binomial and Poisson distributions).
Consider the discrete cube {0, 1}N equipped with the following continuous-time random
walk: during a time interval δt, each digit 0 has a probability p δt of becoming a 1 and
each digit 1 has a probability q δt of becoming a 0. What is the coarse Ricci curvature
of (a small-time discretization of) this random walk?

A particularly interesting case is when N → ∞ and p = λ/N, q = 1. Then the
number of 1’s asymptotically follows a Poisson law of parameter λ; the random walk

17



“projected” on N by considering only the number of 1’s tends to the so-called M/M/∞
process on N.

The next example relates our definition to a traditional generalization of negative
sectional curvature. Although negative Ricci curvature is generally not very useful in
Riemannian geometry, it is nice to see that at least the definition is consistent. (This
exercise requires good knowledge of δ-hyperbolic geometry.)

Exercise 28 (δ-hyperbolic groups).
Let X be the Cayley graph of a non-elementary δ-hyperbolic group with respect to some
finite generating set. Let k be a large enough integer (depending on the group) and
consider the random walk on X consisting in performing k steps of the simple random
walk. Let x, y ∈ X. Then κ(x, y) = − 2k

d(x,y) (1−o(1)) when k and d(x, y) tend to infinity.

Note that −2k/d(x, y) is the smallest possible value for κ(x, y), knowing that the
steps of the random walk are bounded by k. The argument applies to trees or discrete
δ-hyperbolic spaces with a uniform lower bound on the exponential growth rate of balls
as well.

Exercise 29 (Glauber dynamics for the Ising model).
Let G be a finite graph. Consider the configuration space X := {−1, 1}G together with
the energy function U(S) := −∑

x∼y∈G S(x)S(y) − h
∑

x S(x) for S ∈ X, where h ∈ R

is the external magnetic field. For some β > 0, equip X with the Gibbs distribution
µ := e−βU/Z where as usual Z :=

∑

S e−βU(S). The distance between two states is
defined as the number of vertices of G at which their values differ.

For S ∈ X and x ∈ G, denote by Sx+ and Sx− the states obtained from S by setting
Sx+(x) = +1 and Sx−(x) = −1, respectively. Consider the following random walk on X
(known as the Glauber dynamics): at each step, a vertex x ∈ G is chosen at random, and
a new value for S(x) is picked according to local equilibrium, i.e. S(x) is set to 1 or −1
with probabilities proportional to e−βU(Sx+) and e−βU(Sx−) respectively (note that only
the neighbors of x influence the ratio of these probabilities). The Gibbs distribution is
reversible for this Markov chain.

Then the coarse Ricci curvature of this Markov chain is at least

1

|G|

(

1− vmax
eβ − e−β

eβ + e−β

)

where vmax is the maximal valency of a vertex of G. In particular, if

β <
1

2
ln

(

vmax + 1

vmax − 1

)

then curvature is positive. Consequently, the critical β is at least this quantity.

This estimate for the critical temperature coincides with the one derived in [Gri67].
Actually, our argument generalizes to different settings (such as non-constant/negative
values of the coupling Jxy between spins, or continuous spin spaces), and the positive
curvature condition for the Glauber dynamics exactly amounts to the well-known one-
site Dobrushin criterion [Dob70] (or to G(β) < 1 in the notation of [Gri67], Eq. (19)). By
comparison, the exact value of the critical β for the Ising model on the regular infinite tree
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of valency v is 1
2 ln

(

v
v−2

)

, which shows asymptotic optimality of this criterion. When

block dynamics (see [Mar04]) are used instead of single-site updates, positive coarse Ricci
curvature of the block dynamics Markov chain is equivalent to the Dobrushin–Shlosman
criterion [DS85].

Positive curvature in our sense implies several properties, especially, exponential con-
vergence to equilibrium, concentration inequalities and a modified logarithmic Sobolev
inequality. For the Glauber dynamics, the constants we get in these inequalities are
essentially the same as in the infinite-temperature (independent) case, up to some factor
depending on temperature which diverges when positive curvature ceases to hold. This is
essentially equivalent to the main results of the literature under the Dobrushin–Shlosman
criterion (see e.g. the review [Mar04]), but may be a quick way to prove them. Note that
in our setting we do not need the underlying graph to be Z

N .

Exercise 30.
Make precise comparisons between the results obtained on Ising-like models using the-
orems on positive discrete coarse Ricci curvature, and the results from the literature.

We end this series of examples by asking for new ones.

Problem A (Log-concave measures).
We have seen that coarse Ricci curvature is positive for R

N equipped with a Gaussian
measure, and this generalizes to smooth, uniformly strictly log-concave measures. What
happens for a general log-concave measure? The next example would be a convex set
(whose boundary has “positive curvature” in an intuitive geometric sense), with the
associated process a Brownian motion conditioned not to leave the convex body.

Problem B (Finsler manifolds).
We have seen that coarse Ricci curvature is 0 for R

N equipped with an Lp norm. Does
this give anything interesting in Finsler manifolds? (Compare [Oht] and [OS].)

Problem C (Nilpotent groups).
We have seen that curvature of Z

N is 0. What happens on discrete or continuous
nilpotent groups?

For example, on the discrete Heisenberg group 〈 a, b, c | ac = ca, bc = cb, [a, b] = c 〉,
the natural discrete random walk analogous to the hypoelliptic diffusion operator on
the continuous Heisenberg group is the random walk generated by a and b. Since these
generators are free up to length 8, clearly coarse Ricci curvature is negative at small
scales, but does it tend to 0 at larger and larger scales?

2.2 Elementary properties

We leave here as exercices a series of simple properties associated with positive coarse
Ricci curvature. We say that coarse Ricci curvature is at least κ if for any pair of points
x, y ∈ X we have κ(x, y) > κ.

19



The first such result shows that our notion is a direct generalization of one of the
results of Bakry and Émery in positive Ricci curvature (part (i) of Theorem 15 above).
This was actually suggested in [RS05].

Exercise 31 (Lipschitz norm contraction).
Coarse Ricci curvature is at least κ if and only if the random walk operator M maps
1-Lipschitz functions to (1 − κ)-Lipschitz functions. (Hint: One direction is easy; use
Kantorovich duality for the other.)

Statements equivalent to the following proposition also appear in [Dob70] (Theo-
rem 3), in [Dob96] (Proposition 14.3), in the second edition of [Che04] (Theorem 5.22),
in [DGW04] (in the proof of Proposition 2.10) and in [Oli].

Exercise 32 (W1-contraction).
Coarse Ricci curvature is at least κ if and only if the random walk acting on the space
of probability measures with finite first moment, equipped with the L1 transportation
distance, is a (1 − κ)-contraction. (Hint: First check that this space is stable under the
random walk action, then either use Kantorovich duality or the fact from [Vil08] that optimal
couplings can be chosen in a measurable way.)

Corollary 33 (Convergence).
Suppose that coarse Ricci curvature is at least κ > 0. Then there exists a unique
invariant probability measure ν. Moreover, for any probability measure µ we have

W1(µ ∗m∗t, ν) 6 W1(µ, ν) (1− κ)t 6 (diamX) (1− κ)t

and, for x ∈ X,
W1(m

∗t
x , ν) 6

W1(δx,mx)
κ (1− κ)t

The latter estimate is sometimes very useful because W1(δx,mx) (the “jump” of the
random walk at x) is often readily accessible.

Exercise 34.
Use this to prove an O(N lnN) estimate for mixing time of the lazy simple random walk
on the discrete cube (in comparison with the O(N2) from the Poincaré inequality).

Exercise 35 (Composition).
Let X be a metric space equipped with two random walks m = (mx)x∈X , m′ = (m′

x)x∈X .
Suppose that the coarse Ricci curvature of m (resp. m′) is at least κ (resp. κ′). Let m′′

be the composition of m and m′, i.e. the random walk which sends a probability measure
µ to µ ∗m ∗m′. Then the coarse Ricci curvature of m′′ is at least κ+ κ′ − κκ′.

Exercise 36 (Superposition).
Let X be a metric space equipped with a family (m(i)) of random walks. Suppose that
for each i, the coarse Ricci curvature of m(i) is at least κi. Let (αi) be a family of non-

negative real numbers with
∑

αi = 1. Define a random walk m on X by mx :=
∑

αim
(i)
x .

Then the coarse Ricci curvature of m is at least
∑

αiκi.
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Exercise 37 (L1 tensorization).
Let ((Xi, di))i∈I be a finite family of metric spaces and suppose that Xi is equipped with
a random walk m(i). Let X be the product of the spaces Xi, equipped with the distance
d :=

∑

di. Let (αi) be a family of non-negative real numbers with
∑

αi = 1. Consider
the random walk m on X defined by

m(x1,...,xk) :=
∑

αi δx1
⊗ · · · ⊗mxi

⊗ · · · ⊗ δxk

Suppose that for each i, the coarse Ricci curvature of m(i) is at least κi. Then the
coarse Ricci curvature of m is at least inf αiκi. (The “infimum” aspect is clear: if some
component mixes very badly or not at all, then so does the whole process.)

We close this section with an open problem. In several examples above, the natural
process was a continuous-time one. When the space is finite or compact, or when one has
good explicit knowledge of the process (as for Ornstein–Uhlenbeck on R

N ), discretization
works very well, but this might not be the case in full generality.

Problem D (Continuous-time).
Suppose a continuous-time Markov semigroup (mt

x)x∈X,t∈R+
is given. One can define a

coarse Ricci curvature in a straightforward manner as

κ(x, y) := lim inf
t→0+

1

t

d(x, y)−W1(m
t
x,m

t
y)

d(x, y)

but then, in the proofs of the elementary properties above, there arise non-trivial issues
of commutation between limits and integrals, especially if the generator of the process is
unbounded. Is this definition, combined with some assumption on the process (e.g. non-
explosion), enough to get all the properties above in full generality, for both diffusions
and jump processes? Given an unbounded generator for the process, is positivity of the
κ(x, y) above enough to ensure non-explosion? (One could directly use the Lipschitz
norm contraction as a definition [RS05, Jou07], but first, this is not a local criterion, and
second, it only defines a lower bound on Ricci curvature, not a value at a given point.)

2.3 Results in positive coarse Ricci curvature

2.3.1 More notation

Before stating the theorems, we need two more definitions which capture coarse analogues
of the diffusion constant and dimension of the space. Here, as above, we consider a metric
space (X, d) equipped with a random walk (mx)x∈X .

Definition 38 (Diffusion constant).
Let the (coarse) diffusion constant of the random walk at x be

σ(x) :=

(

1

2

∫∫

d(y, z)2 dmx(y) dmx(z)

)1/2

and, if ν is an invariant distribution, let

σ := ‖σ(x)‖L2(X,ν)
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be the average diffusion constant. Let also σ∞(x) := 1
2 diamSuppmx and σ∞ :=

supσ∞(x).

Definition 39 (Local dimension).
Let the local dimension at x be

nx :=
σ(x)2

sup{Varmx
f, f : Suppmx → R 1-Lipschitz}

and n := infx nx.

Exercise 40.
Consider the ε-step random walk on an N -dimensional Riemannian manifold. Then

σ(x) = ε
√

N
N+2 + o(ε) and N − 1 6 nx 6 N (I do not know the exact value).

About this definition of dimension. Obviously nx > 1. For the discrete-time
Brownian motion on a N -dimensional Riemannian manifold, one has nx ≈ N . For the
simple random walk on a graph, nx ≈ 1. This definition of dimension amounts to saying
that in a space of dimension n, the typical variations of a (1-dimensional) Lipschitz
function are 1/

√
n times the typical distance between two points. This is the case in the

sphere Sn, in the Gaussian measure on R
n, and in the discrete cube {0, 1}n. So generally

one could define the “statistical dimension” of a metric measure space (X, d, µ) by this
formula i.e.

StatDim(X, d, µ) :=
1
2

∫∫

d(x, y)2 dµ(x)dµ(y)

sup{Varµ f, f 1-Lipschitz}
so that for each x ∈ X the local dimension of X at x is nx = StatDim(X, d,mx). With
this definition, RN equipped with a Gaussian measure has statistical dimension N and
local dimension ≈ N , whereas the discrete cube {0, 1}N has statistical dimension ≈ N
and local dimension ≈ 1.

2.3.2 Spectral gap

We now give a generalization to the Lichnerowicz theorem (Theorem 12) stating that
positive curvature implies a spectral gap. We begin with a study of Lipschitz versus L2

norms.

Exercise 41 (Variance of Lipschitz functions).
Let (X, d,m) be a random walk on a metric space, with coarse Ricci curvature at least
κ > 0. Let ν be the unique invariant distribution. Suppose that σ < ∞. Then the
variance of a 1-Lipschitz function is at most σ2

nκ(2−κ) 6 σ2

nκ . In particular, Lipschitz

functions are in L2(ν). (Hint: Iterate the formula Var f = VarMf +
∫

Varmx
f dν(x).)

Proposition 42 (Spectral gap).
Let (X, d,m) be a metric space with random walk, with invariant distribution ν. Suppose
that the coarse Ricci curvature of X is at least κ > 0 and that σ < ∞. Suppose that ν
is reversible, or that X is finite.
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Then the spectral radius of the averaging operator acting on L2(X, ν)/{const} is at
most 1− κ.

Compare Theorem 1.9 in [CW94] (Theorem 9.18 in [Che04]).

Proof (sketch).
The spectral radius w.r.t. Lipschitz norm of the operator M acting on Lipschitz functions
is at most 1−κ by the results above. In full generality, since the Lipschitz norm controls
the L2 norm by the above, the spectral radius of M w.r.t. the L2 norm, restricted to the
subspace of Lipschitz functions in L2, is 6 1 − κ as well. Now Lipschitz functions are
dense in L2, and for a bounded, self-adjoint operator it is enough to control the spectral
radius on a dense subspace. �

Problem E (Non-reversible spectral gap).
What happens in the non-reversible case? There are different ways to formulate the ques-
tion: spectral radius, norm of the operator, Poincaré inequality. (Note that a Poincaré
inequality with a worse constant and with a “blurred” gradient always holds, cf. the
section on log-Sobolev inequality in [Oll09].)

In the reversible case, we get that the spectrum of ∆ is included in [−2;−κ] together
with the two Poincaré inequalities

Varν f 6
1

κ(2− κ)

∫

Varmx
f dν(x)

and

Varν f 6
1

2κ

∫∫

(f(y)− f(x))2 dν(x) dmx(y)

as a corollary.

Exercise 43.
Run through all the examples above, and compare the spectral gap obtained by coarse
Ricci curvature to the actual value of the spectral gap, when known (e.g. on the cube).

Problem F (Sharp Lichnerowicz theorem).
For the ε-step random walk on a Riemannian manifold, the operator ∆ = M − Id
of the random walk behaves like ε2

2(N+2) times the Laplace–Beltrami operator and the

coarse Ricci curvature is ε2

2(N+2) times ordinary Ricci curvature, so that we get a spectral
gap estimate of inf Ric(v) for the Laplace–Beltrami operator. On the other hand, the
Lichnerowicz theorem has a qualitatively comparable but slightly better spectral gap
estimate N

N−1 inf Ric(v), which is sharp for the sphere. This is because our definition of
κ(x, y) somehow overlooks that the sectional curvature K(v, v) in the direction of xy is
0. Is there a way to take this into account? (Note that our estimate is sharp for the
discrete cube as well as for the Ornstein–Uhlenbeck process, so the phenomenon is rather
specific to this situation.)

Problem G (Non-constant curvature).
The estimate above uses the infimum of κ(x, y). Is it possible to relax this assumption
and, for example, include situations where κ takes “not too many” negative or zero values?
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Using the coarse Ricci curvature of the iterates mt
x for some t > 2 should “smoothen

out” exceptional values of κ(x, y), so that for large t the coarse Ricci curvature of mt
x

should be close to an “average” coarse Ricci curvature of mx (probably involving large
deviations of the average value of κ(x, y) along trajectories of the random walk).

This may be interesting e.g. on random objects (graphs...) where locally some nega-
tive curvature is bound to occur somewhere.

2.3.3 Concentration of measure

One of our main motivations was to find a common geometric property between three
concentrated spaces, namely the sphere, the discrete cube and the Gaussian space. It is
very satisfying that the property thus found implies concentration of measure.

We now state the theorem without proof (see [Oll09]). Remember the notation in
Section 2.3.1.

The estimated Gaussian variance is σ2/nκ, in the notation of section 2.3.1. However,
concentration is not always Gaussian far away from the mean, as exemplified by binomial
distributions on the cube or M/M/∞ queues. The width of the Gaussian window is
controlled by two factors. First, variations of the diffusion constant σ(x)2 can result in
purely exponential behavior; this leads to the assumption that σ(x)2 is bounded by a
Lipschitz function. Second, as Gaussian phenomena only emerge as the result of a large
number of small events, the “granularity” of the process must be bounded, which leads
to the (comfortable) assumption that σ∞ < ∞. Otherwise, a Markov chain which sends
every point x ∈ X to some fixed measure ν has coarse Ricci curvature 1 and can have
arbitrary bad concentration properties depending on ν.

In the case of Riemannian manifolds, simply letting the step of the random walk
tend to 0 makes the width of the Gaussian window tend to infinity, so that we recover
Gaussian concentration as predicted by the Gromov–Lévy theorem (Theorem 14). For
the uniform measure on the discrete cube, the Gaussian width is equal to the diameter of
the cube, so that we get full Gaussian concentration as well. In a series of other examples
(such as Poisson measures), the transition from Gaussian to non-Gaussian regime occurs
roughly as predicted by the theorem.

Theorem 44 (Gaussian concentration).
Let (X, d,m) be a random walk on a metric space, with coarse Ricci curvature at least
κ > 0. Let ν be the unique invariant distribution.

Let

D2
x :=

σ(x)2

nxκ

and
D2 := EνD

2
x

Suppose that the function x 7→ D2
x is C-Lipschitz. Set

tmax :=
D2

max(σ∞, 2C/3)

Then for any 1-Lipschitz function f , for any t 6 tmax we have

ν ({x, f(x) > Eνf + t}) 6 exp − t2

6D2
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and for t > tmax

ν ({x, f(x) > Eνf + t}) 6 exp

(

− t2max

6D2
− t− tmax

max(3σ∞, 2C)

)

Remark 45.
Actually σ(x)2/nxκ itself need not be Lipschitz, only bounded by some Lipschitz func-

tion. In particular, if σ(x)2 is bounded one can always set D2 = supx
σ(x)2

nxκ
and C = 0.

Statements somewhat similar to this latter case appear in [DGW04] (under a strong local
assumption) and in [Jou07].

Exercise 46 (Continuous-time situations).
Observe that the theorem above has a well-defined limit when we replace the random
walk m = (mx)x∈X with the lazy random walk m′ whose transition probabilities are
m′

x := (1 − δt) δx + δt mx. The point is that when δt → 0, both σ2
x and κ scale like

δt (and nx tends to 1). This means that we can apply Theorem 44 to continuous-time
examples.

Exercise 47.
Review the various examples and check that the order of magnitude of the Gaussian
variance is correct, especially for Riemannian manifolds and for binomial distributions
on the cube.

Exercise 48.
Remove the various technical assumptions (Lipschitz σ(x)2, bounded σ∞) and find
counter-examples to the resulting statements. Also find an example when the Gaus-
sian regime practically disappears and only the exponential part is visible.

Problem H (Isoperimetric profile and curvature at infinity).
Suppose that inf κ(x, y) = 0 but that the same infimum taken on balls of increasing radii
around some origin is non-zero. Is there a systematic correspondence between the way
curvature decreases to 0 at infinity and the isoperimetric profile? (Compare the section
of [Oll09] devoted to the relationship between non-negative coarse Ricci curvature and
exponential concentration.) An interesting example is the M/M/k queue.

Problem I (Local assumptions).
The condition σ∞ < ∞ can be replaced with a local Gaussian-type assumption, namely
that for each measure mx there exists a number sx such that Emx

eλf 6 eλ
2s2x/2eλEmxf for

any 1-Lipschitz function f . Then a similar theorem holds, with σ(x)2/nx replaced with
s2x. (When s2x is constant this is Proposition 2.10 in [DGW04].) However, this is not at
all well-suited to discrete settings, because when transition probabilities are small, the
best s2x for which such an inequality is satisfied is usually much larger than the actual
variance σ(x)2: for example, if two points x and y are at distance 1 and mx(y) = ε, sx
must satisfy s2x > 1/2 ln(1/ε) ≫ ε. Thus making this assumption will provide extremely
poor estimates of the variance D2 when some transition probabilities are small (e.g. for
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binomial distributions on the discrete cube). In particular, when taking a continuous-
time limit as above, such estimates diverge. So, is there a way to relax the assumption
σ∞ < ∞, yet keep an estimate based on the local variance σ2, and can this be done so
that the estimate stays bounded when taking a continuous-time limit?

Problem J (Functional inequalities).
The Laplace transform estimate Eeλ(f−Ef) 6 eD

2λ2/2 often used to establish Gaussian
concentration for a measure ν is equivalent, by a result of Bobkov and Götze [BG99], to
the following inequality: W1(µ, ν) 6

√

2D2 Ent(dµ/dν) for any probability measure µ ≪
ν. Is there a way to formulate our results in terms of functional inequalities? As such, the
inequality above will fail as concentration can be non-Gaussian far away from the mean
(e.g. in the simple example of the binomial distributions on the cube), so in a coarse
setting it might be necessary to plug additive terms in the formulation of the inequality
to account for what happens at small measures or small scales. Another suggestion by
Villani is to use a Talagrand inequality where the L2 transportation distance is replaced
with a quadratic-then-linear transportation cost and use the results in [GL07].

2.3.4 Further results: Convergence of empirical measures, Log-Sobolev in-

equality, Gromov–Hausdorff convergence

Several more results are proven under these or similar assumptions.

• For example, in his preprint [Jou], Joulin proves that, under a positive curvature
assumption, the empirical means of Lipschitz functions are concentrated and sat-
isfy a Poisson-like deviation inequality (together with a control of their deviation
from the actual expectation under the invariant measure). The order of magni-

tude for the variance at time t is, with our notation, supσ(x)2

tκ2 , and the transition
from Gaussian to Poisson behavior of the tail is controlled by σ∞ as above. (See
also [DGW04] for related results.)

• A generalization of the results of Bakry–Émery mentioned above (Theorem 15)
holds [Oll09]. We use a kind of “blurred Lipschitz constant” defined by ∇λf(x) :=

supy,y′∈X
|f(y)−f(y′)|

d(y,y′) e−λd(x,y)−λd(y,y′). The larger λ is, the closer this is to the usual
Lipschitz norm, but there is a maximal possible value of λ depending on the object:
typically for a manifold one can take λ → ∞ and thus recover the usual gradient,
whereas in a graph one has to take λ ≈ 1.

With this gradient, one can prove generalizations to points (ii) and (iii) of Theo-
rem 15. Namely, any positive function f : X → R with ∇λf < ∞ satisfies

Entν f :=

∫

f log f dν 6

(

sup
x

4σ(x)2

κnx

)
∫

(∇λf)
2

f
dν

and moreover, we have the contraction property ∇λ(Mf) 6 (1−κ/2)M(∇λf). (So
compared to Theorem 15, we lose a factor 4 or so in the constants for Riemannian
manifolds; this is to be expected for a theorem valid both on discrete and continuous
settings.)
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Exercise 49 (Herbst argument for ∇λ).
Use the Herbst argument to show that a logarithmic Sobolev inequality with the
gradient ∇λf as above implies Gaussian-then-exponential concentration, where the
transition from Gaussian to exponential is controlled by the value of λ. (Hint:

Show that for λ′ 6 λ, for any 1-Lipschitz function f we have the chain rule (∇λe
λ′f )(x) 6

λ′ eλ
′f(x). For this use the inequality

∣

∣ea − eb
∣

∣ 6 |a− b| ea+eb

2 . Then apply the usual
Herbst argument.) Does the argument work the other way round?

• Oliveira [Oli] used contraction of transportation distances by Markov chains to sub-
stantially improve mixing time estimates of a random walk on the set of orthogonal
matrices known as Kac’s random walk, which consists, at each step, in composing
the current matrix with a rotation of random angle in the plane generated by two
randomly chosen coordinates. This is consistent, of course, with the positive Ricci
curvature of SO(N) as a Riemannian manifold, but Kac’s random walk is more
practical than Brownian motion on SO(N).

• Finally, since the objects used in the definition of coarse Ricci curvature involve
only integrals of the distance function under the transition kernel, it is kind of
tautological [Oll09] to prove continuity theorems for coarse Ricci curvature in
the Gromov–Hausdorff topology (suitably extended to include convergence of the
Markov kernel).

2.3.5 A few more problems

Problem K (Sturm–Lott–Villani definition).
What is the relationship (if any) between our notion and the one defined by Sturm
and Lott–Villani [Stu06, LV]? The latter is generally more difficult to work out on
concrete examples, and is not so well suited to discrete settings (though see [BS]), but
under the stronger CD(K,N) version, some more theorems are proven, including the
Brunn–Minkowski inequality and Bishop–Gromov comparison theorem, together with
applications to the Finsler case [Oht, OS].

Problem L (Bishop–Gromov theorem).
Is it possible to generalize more traditional theorems of positive Ricci curvature, i.e. the
Bishop–Gromov theorem, or something close to the isoperimetric form of the Gromov–
Lévy theorem? It is not clear what a reference constant curvature space would be in
this context. Observe for example that, in the discrete cube, the growth of balls is
exponential-like for small values of the radius (namely N , N(N − 1)/2, etc.). Such
theorems may be limited to manifold-like spaces for which a reference comparison space
exists. Yet in the case of the cube, the isoperimetric behavior of balls still “slows down”
in a positive-curvature-like way. A maybe useful definition of the “boundary” of a part
A is W1(1A, 1A ∗m). Also compare Problem R below.

Problem M (Entropy decay).
The logarithmic Sobolev inequality (under the form comparing Ent f2 to

∫

‖∇f‖2, not
under the modified form comparing Ent f to

∫

‖∇f‖2 /f) usually implies an exponential
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decreasing of entropy by the Markov chain. Is there some form of this phenomenon in our
setting? (Once more, it is necessary to keep in mind the case of binomial distributions
on the cube, for which the modified form of the Sobolev logarithmic inequality was
introduced.)

Problem N (Discrete Ricci flow).
Define a “discrete Ricci flow” by letting the distance on X evolve according to coarse
Ricci curvature

d

dt
d(x, y) = −κ(x, y) d(x, y)

where κ(x, y) is computed using the current value of the distance (and by either keeping
the same transition kernel mx or having it evolve according to some rule). What can
be said of the resulting evolution? (Note that if the same transition kernel is kept, then
this will only compare to the usual Ricci flow up to a change of time, since, e.g. on a
Riemannian sphere, this will amount to using smaller and smaller “diffusion constants”
whereas the diffusion constant C in the Ricci flow dg

dt = −C Ric is taken constant; in
particular, the diameter of a sphere will tend exponentially towards 0 instead of linearly.)

Problem O (Up to δ).
The constraint W1(mx,my) 6 (1 − κ) d(x, y) may be quite strong when x and y are
too close, even if the measures mx,my have a larger support. In order to eliminate
completely the influence of small scales, and in the spirit of δ-hyperbolic spaces, we can
define a “positive curvature up to δ” condition. Namely, κ(x, y) is the best 6 1 constant
in the inequality

W1(mx,my) 6 (1− κ(x, y)) d(x, y) + δ

so that positive curvature up to some δ becomes an open property in Gromov–Hausdorff
topology. Which theorems extend to this setting? Is it possible, in such a situation, to
choose a discrete subset X ′ ⊂ X and to redefine the random walk on X ′ in a reasonable
way such that it has positive coarse Ricci curvature?

Problem P (Discrete sectional curvature).
A notion equivalent to non-negative sectional curvature for Riemannian manifolds can
be obtained by requiring that there be a coupling between mx and my, such that the
coupling moves all points of mx by at most d(x, y). (This amounts to replacing W1

with the L∞ transportation distance in the definition.) Does this have any interesting
properties? Is it possible to get an actual value for sectional curvature? (In this definition,
the contribution from x and y themselves will generally prevent getting non-zero values.)
Is this related to positive sectional curvature in the sense of Alexandrov? (Though the
latter cannot be applied to discrete spaces.)

Problem Q (Discrete scalar curvature).
In Riemannian geometry, scalar curvature at x is the average of Ric(v) over all unit
vectors v around x. It controls, in particular, the growth of the volume of balls. Here
one can transpose this definition and set S(x) :=

∫

κ(x, y) dmx(y) (where maybe a weight
depending on d(x, y) should be added). Does it have any interesting properties?
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Problem R (L2 Bonnet–Myers and the dimension parameter).
For an L2 version of the Bonnet–Myers theorem to hold, it is necessary to make stronger
assumptions than positive curvature, namely that for any points x, x′ and for any small
enough pair of times t, t′ one has

W1(m
∗t
x ,m

∗t′

x′ ) 6 e−κ inf(t,t′)d(x, x′) +
C(

√
t−

√
t′)2

2d(x, x′)

whereas before one used only the case t = t′. (The second term is obtained by consid-
ering Gaussian measures of variance t and t′ centered at x and x′ in R

N .) Then (see
the section on strong Bonnet–Myers theorem in [Oll09]) one gets a diameter estimate

diamX 6 π
√

C
2κ so that C plays the role of N − 1. Is the constant C somehow re-

lated to a “dimension”, in particular to the “dimension” n in the Bakry–Émery CD(K,n)
condition?

Problem S (Alexandrov spaces).
What happens for spaces with positive sectional curvature in the sense of Alexandrov?
Do they have positive Ricci curvature for a reasonable choice of mx? This seems to be
unknown for the Sturm–Lott–Villani definition too. Would it be enough to approximate
these spaces by manifolds or use a parallel transport in Alexandrov spaces? (See also
Problem P above.)

Problem T (Expanders).
Is there a family of expanders (i.e. a family of graphs of bounded degree, spectral gap
bounded away from 0 and diameter tending to ∞) with non-negative Ricci curvature?
(Suggested by A. Naor and E. Milman.)

Problem U (Permutation groups).
For the permutation groups, with respect to the random walk generated by transposi-
tions, Ricci curvature is positive but does not allow to recover concentration of measure
with the correct order of magnitude. Is this related to results by N. Beresticky about
the δ-hyperbolic-like properties of the permutation groups, which thus appear to have a
mixture of positive and negative curvature properties?
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