
Learn as you go:
Training recurrent networks online

without backtracking

Yann Ollivier
CNRS & Paris-Saclay University, France

Joint work with Guillaume Charpiat and Corentin Tallec

Alan Turing Institute Workshop on Deep Learning
Edinburgh, November 23–25, 2015



Algorithms to train dynamical systems

p = #params

Algorithm Cost per Store past Store past
time step states data

Kalman filter O(p2) No No

RTRL O(p2) No No
Backprop through time O(p) O(

√
Tp) O(T )

(T-truncated) biased
? O(p) No No



Algorithms to train dynamical systems

p = #params

Algorithm Cost per Store past Store past
time step states data

Kalman filter O(p2) No No
RTRL O(p2) No No

Backprop through time O(p) O(
√

Tp) O(T )
(T-truncated) biased

? O(p) No No



Algorithms to train dynamical systems

p = #params

Algorithm Cost per Store past Store past
time step states data

Kalman filter O(p2) No No
RTRL O(p2) No No

Backprop through time O(p) O(
√

Tp) O(T )
(T-truncated) biased

? O(p) No No



Algorithms to train dynamical systems

p = #params

Algorithm Cost per Store past Store past
time step states data

Kalman filter O(p2) No No
RTRL O(p2) No No

Backprop through time O(p) O(
√

Tp) O(T )
(T-truncated) biased

? O(p) No No



Recurrent networks as dynamical systems
Problem: how to train a dynamical system defined by

h(t + 1) = F (h(t), x(t), 𝜃)

I h(t): internal state of the system at time t
I x(t): external input signal
I F : transition function, fixed
I 𝜃: parameter to be trained

Goal: minimize some loss function ℓt(h(t)) along the trajectories of
the system.

Example: recurrent network with activation function 𝜎,

hj(t + 1) =
∑︁

i
wij 𝜎(hi (t)) +

∑︁
k

rkjxk(t)

with 𝜃 = (w , r).



Recurrent networks as dynamical systems
Problem: how to train a dynamical system defined by

h(t + 1) = F (h(t), x(t), 𝜃)

I h(t): internal state of the system at time t
I x(t): external input signal
I F : transition function, fixed
I 𝜃: parameter to be trained

Goal: minimize some loss function ℓt(h(t)) along the trajectories of
the system.

Example: recurrent network with activation function 𝜎,

hj(t + 1) =
∑︁

i
wij 𝜎(hi (t)) +

∑︁
k

rkjxk(t)

with 𝜃 = (w , r).



Recurrent networks as dynamical systems
Problem: how to train a dynamical system defined by

h(t + 1) = F (h(t), x(t), 𝜃)

I h(t): internal state of the system at time t
I x(t): external input signal
I F : transition function, fixed
I 𝜃: parameter to be trained

Goal: minimize some loss function ℓt(h(t)) along the trajectories of
the system.

Example: recurrent network with activation function 𝜎,

hj(t + 1) =
∑︁

i
wij 𝜎(hi (t)) +

∑︁
k

rkjxk(t)

with 𝜃 = (w , r).



Simple strategy: online gradient descent over the loss at time t,

𝜃 ← 𝜃 − 𝜂
𝜕ℓt(h(t))

𝜕𝜃

with learning rate 𝜂.

Problem: how to compute the derivative 𝜕ℓt
𝜕𝜃

? Current loss depends
on 𝜃 via whole past trajectory.

(More complex algorithms like the Kalman filter also rely on 𝜕ℓt
𝜕𝜃

.)

Standard approach to compute 𝜕ℓt
𝜕𝜃

: backpropagation through time
(BPTT).
Problem: goes back in time...



Simple strategy: online gradient descent over the loss at time t,

𝜃 ← 𝜃 − 𝜂
𝜕ℓt(h(t))

𝜕𝜃

with learning rate 𝜂.

Problem: how to compute the derivative 𝜕ℓt
𝜕𝜃

? Current loss depends
on 𝜃 via whole past trajectory.

(More complex algorithms like the Kalman filter also rely on 𝜕ℓt
𝜕𝜃

.)

Standard approach to compute 𝜕ℓt
𝜕𝜃

: backpropagation through time
(BPTT).
Problem: goes back in time...



Simple strategy: online gradient descent over the loss at time t,

𝜃 ← 𝜃 − 𝜂
𝜕ℓt(h(t))

𝜕𝜃

with learning rate 𝜂.

Problem: how to compute the derivative 𝜕ℓt
𝜕𝜃

? Current loss depends
on 𝜃 via whole past trajectory.

(More complex algorithms like the Kalman filter also rely on 𝜕ℓt
𝜕𝜃

.)

Standard approach to compute 𝜕ℓt
𝜕𝜃

: backpropagation through time
(BPTT).
Problem: goes back in time...



Simple strategy: online gradient descent over the loss at time t,

𝜃 ← 𝜃 − 𝜂
𝜕ℓt(h(t))

𝜕𝜃

with learning rate 𝜂.

Problem: how to compute the derivative 𝜕ℓt
𝜕𝜃

? Current loss depends
on 𝜃 via whole past trajectory.

(More complex algorithms like the Kalman filter also rely on 𝜕ℓt
𝜕𝜃

.)

Standard approach to compute 𝜕ℓt
𝜕𝜃

: backpropagation through time
(BPTT).
Problem: goes back in time...



Why backpropagation through time?
For instance, let us compute how the current loss ℓt depends on the
starting point h(0):

𝜕ℓt
𝜕h(0)

=

𝜕ℓt
𝜕h(t)

× 𝜕h(t)

𝜕h(t − 1)
× · · · × 𝜕h(1)

𝜕h(t − 0)

= vector× sparse matrix× · · · × sparse matrix

Left-to-right: OK, only vector×sparse matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix, and
any sparsity is lost.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL). Same problem with Kalman filters.

Same forward-backward structure in many problems: hidden Markov models
(EM), reinforcement learning and optimal control (Bellman equations)...



Why backpropagation through time?
For instance, let us compute how the current loss ℓt depends on the
starting point h(0):

𝜕ℓt
𝜕h(0)

=
𝜕ℓt

𝜕h(t)
× 𝜕h(t)

𝜕h(t − 1)
× · · · × 𝜕h(1)

𝜕h(t − 0)

= vector× sparse matrix× · · · × sparse matrix

Left-to-right: OK, only vector×sparse matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix, and
any sparsity is lost.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL). Same problem with Kalman filters.

Same forward-backward structure in many problems: hidden Markov models
(EM), reinforcement learning and optimal control (Bellman equations)...



Why backpropagation through time?
For instance, let us compute how the current loss ℓt depends on the
starting point h(0):

𝜕ℓt
𝜕h(0)

=
𝜕ℓt

𝜕h(t)
× 𝜕h(t)

𝜕h(t − 1)
× · · · × 𝜕h(1)

𝜕h(t − 0)

= vector× sparse matrix× · · · × sparse matrix

Left-to-right: OK, only vector×sparse matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix, and
any sparsity is lost.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL). Same problem with Kalman filters.

Same forward-backward structure in many problems: hidden Markov models
(EM), reinforcement learning and optimal control (Bellman equations)...



Why backpropagation through time?
For instance, let us compute how the current loss ℓt depends on the
starting point h(0):

𝜕ℓt
𝜕h(0)

=
𝜕ℓt

𝜕h(t)
× 𝜕h(t)

𝜕h(t − 1)
× · · · × 𝜕h(1)

𝜕h(t − 0)

= vector× sparse matrix× · · · × sparse matrix

Left-to-right: OK, only vector×sparse matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix, and
any sparsity is lost.

=⇒ only for small networks. Known as real-time recurrent learning
(RTRL). Same problem with Kalman filters.

Same forward-backward structure in many problems: hidden Markov models
(EM), reinforcement learning and optimal control (Bellman equations)...



Why backpropagation through time?
For instance, let us compute how the current loss ℓt depends on the
starting point h(0):

𝜕ℓt
𝜕h(0)

=
𝜕ℓt

𝜕h(t)
× 𝜕h(t)

𝜕h(t − 1)
× · · · × 𝜕h(1)

𝜕h(t − 0)

= vector× sparse matrix× · · · × sparse matrix

Left-to-right: OK, only vector×sparse matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix, and
any sparsity is lost.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL).

Same problem with Kalman filters.

Same forward-backward structure in many problems: hidden Markov models
(EM), reinforcement learning and optimal control (Bellman equations)...



Why backpropagation through time?
For instance, let us compute how the current loss ℓt depends on the
starting point h(0):

𝜕ℓt
𝜕h(0)

=
𝜕ℓt

𝜕h(t)
× 𝜕h(t)

𝜕h(t − 1)
× · · · × 𝜕h(1)

𝜕h(t − 0)

= vector× sparse matrix× · · · × sparse matrix

Left-to-right: OK, only vector×sparse matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix, and
any sparsity is lost.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL). Same problem with Kalman filters.

Same forward-backward structure in many problems: hidden Markov models
(EM), reinforcement learning and optimal control (Bellman equations)...



Why backpropagation through time?
For instance, let us compute how the current loss ℓt depends on the
starting point h(0):

𝜕ℓt
𝜕h(0)

=
𝜕ℓt

𝜕h(t)
× 𝜕h(t)

𝜕h(t − 1)
× · · · × 𝜕h(1)

𝜕h(t − 0)

= vector× sparse matrix× · · · × sparse matrix

Left-to-right: OK, only vector×sparse matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix, and
any sparsity is lost.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL). Same problem with Kalman filters.

Same forward-backward structure in many problems: hidden Markov models
(EM), reinforcement learning and optimal control (Bellman equations)...



If you cannot travel back in time...

Algorithms that go forward in time must maintain the gradient of
the current state with respect to the parameters:

Gt :=
𝜕h(t)

𝜕𝜃

and then compute the gradient of the loss via the chain rule

𝜕ℓt
𝜕𝜃

=
𝜕ℓt

𝜕h(t)

𝜕h(t)

𝜕𝜃

Gt is a full object of size dim(state)×dim(param).

Sometimes, cannot even store Gt .



If you cannot travel back in time...

Algorithms that go forward in time must maintain the gradient of
the current state with respect to the parameters:

Gt :=
𝜕h(t)

𝜕𝜃

and then compute the gradient of the loss via the chain rule

𝜕ℓt
𝜕𝜃

=
𝜕ℓt

𝜕h(t)

𝜕h(t)

𝜕𝜃

Gt is a full object of size dim(state)×dim(param).

Sometimes, cannot even store Gt .



If you cannot travel back in time...

Algorithms that go forward in time must maintain the gradient of
the current state with respect to the parameters:

Gt :=
𝜕h(t)

𝜕𝜃

and then compute the gradient of the loss via the chain rule

𝜕ℓt
𝜕𝜃

=
𝜕ℓt

𝜕h(t)

𝜕h(t)

𝜕𝜃

Gt is a full object of size dim(state)×dim(param).

Sometimes, cannot even store Gt .



The NoBackTrack strategy

I At each time, maintain a search direction w̄t in parameter
space, together with an estimate v̄t of the effect of w̄t on the
current state h(t).

I Have the search direction w̄t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, v̄tw̄⊤
t is an unbiased

estimate of 𝜕h(t)

𝜕𝜃
:

Ev̄tw̄⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



The NoBackTrack strategy
I At each time, maintain a search direction w̄t in parameter

space,

together with an estimate v̄t of the effect of w̄t on the
current state h(t).

I Have the search direction w̄t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, v̄tw̄⊤
t is an unbiased

estimate of 𝜕h(t)

𝜕𝜃
:

Ev̄tw̄⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



The NoBackTrack strategy
I At each time, maintain a search direction w̄t in parameter

space, together with an estimate v̄t of the effect of w̄t on the
current state h(t).

I Have the search direction w̄t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, v̄tw̄⊤
t is an unbiased

estimate of 𝜕h(t)

𝜕𝜃
:

Ev̄tw̄⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



The NoBackTrack strategy
I At each time, maintain a search direction w̄t in parameter

space, together with an estimate v̄t of the effect of w̄t on the
current state h(t).

I Have the search direction w̄t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, v̄tw̄⊤
t is an unbiased

estimate of 𝜕h(t)

𝜕𝜃
:

Ev̄tw̄⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



The NoBackTrack strategy
I At each time, maintain a search direction w̄t in parameter

space, together with an estimate v̄t of the effect of w̄t on the
current state h(t).

I Have the search direction w̄t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, v̄tw̄⊤
t is an unbiased

estimate of 𝜕h(t)

𝜕𝜃
:

Ev̄tw̄⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



The NoBackTrack strategy
I At each time, maintain a search direction w̄t in parameter

space, together with an estimate v̄t of the effect of w̄t on the
current state h(t).

I Have the search direction w̄t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, v̄tw̄⊤
t is an unbiased

estimate of 𝜕h(t)

𝜕𝜃
:

Ev̄tw̄⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



The NoBackTrack strategy
I At each time, maintain a search direction w̄t in parameter

space, together with an estimate v̄t of the effect of w̄t on the
current state h(t).

I Have the search direction w̄t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, v̄tw̄⊤
t is an unbiased

estimate of 𝜕h(t)

𝜕𝜃
:

Ev̄tw̄⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃)

Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.

=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1.

Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

h(t + 1) = F (h(t), x(t), 𝜃) Gt :=
𝜕h(t)

𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 =
𝜕F (h(t), x(t), 𝜃)

𝜕𝜃
+

𝜕F (h(t), x(t), 𝜃)

𝜕h(t)
· Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+
𝜕F
𝜕h · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = v̄ w̄⊤.

Problem: Even if G̃t = v̄ w̄⊤ is rank-one, G̃t+1 is full-rank again.



The rank-one trick

Proposition
Let A be a matrix and decompose A as a sum of rank-one terms,

A =
∑︁

i
viw⊤

i

Let 𝜀i be independent random ±1 signs. Let

v̄ :=
∑︁

i
𝜀ivi w̄ :=

∑︁
i

𝜀iwi

Then v̄w̄⊤ is an unbiased, rank-one estimate of A:

E v̄ w̄⊤ = A

Proof: expand, E𝜀2
i = 1 and E𝜀i𝜀j = 0.



The rank-one trick

Proposition
Let A be a matrix and decompose A as a sum of rank-one terms,

A =
∑︁

i
viw⊤

i

Let 𝜀i be independent random ±1 signs. Let

v̄ :=
∑︁

i
𝜀ivi w̄ :=

∑︁
i

𝜀iwi

Then v̄w̄⊤ is an unbiased, rank-one estimate of A:

E v̄ w̄⊤ = A

Proof: expand, E𝜀2
i = 1 and E𝜀i𝜀j = 0.



The rank-one trick

Proposition
Let A be a matrix and decompose A as a sum of rank-one terms,

A =
∑︁

i
viw⊤

i

Let 𝜀i be independent random ±1 signs. Let

v̄ :=
∑︁

i
𝜀ivi w̄ :=

∑︁
i

𝜀iwi

Then v̄w̄⊤ is an unbiased, rank-one estimate of A:

E v̄ w̄⊤ = A

Proof: expand, E𝜀2
i = 1 and E𝜀i𝜀j = 0.



The rank-one trick (2)

I Easy to compute

I Extends to tensors of arbitrary order (use complex roots of
unity instead of ±1).

I Can reduce variance a lot by first rescaling vi and wi :

viw⊤
i = (𝜆ivi ) (w⊤

i /𝜆i )

Optimal choice of 𝜆i : first equalize the norms of vi and wi .
Very important in practice.



The rank-one trick (2)

I Easy to compute

I Extends to tensors of arbitrary order (use complex roots of
unity instead of ±1).

I Can reduce variance a lot by first rescaling vi and wi :

viw⊤
i = (𝜆ivi ) (w⊤

i /𝜆i )

Optimal choice of 𝜆i : first equalize the norms of vi and wi .
Very important in practice.



The rank-one trick (2)

I Easy to compute

I Extends to tensors of arbitrary order (use complex roots of
unity instead of ±1).

I Can reduce variance a lot by first rescaling vi and wi :

viw⊤
i = (𝜆ivi ) (w⊤

i /𝜆i )

Optimal choice of 𝜆i : first equalize the norms of vi and wi .
Very important in practice.



The rank-one trick (2)

I Easy to compute

I Extends to tensors of arbitrary order (use complex roots of
unity instead of ±1).

I Can reduce variance a lot by first rescaling vi and wi :

viw⊤
i = (𝜆ivi ) (w⊤

i /𝜆i )

Optimal choice of 𝜆i : first equalize the norms of vi and wi .

Very important in practice.



The rank-one trick (2)

I Easy to compute

I Extends to tensors of arbitrary order (use complex roots of
unity instead of ±1).

I Can reduce variance a lot by first rescaling vi and wi :

viw⊤
i = (𝜆ivi ) (w⊤

i /𝜆i )

Optimal choice of 𝜆i : first equalize the norms of vi and wi .
Very important in practice.



Corollary
Apply the rank-one trick at each step. Then v̄tw̄⊤

t is an unbiased
estimate of Gt at every step if

w̄t+1 = w̄t +
∑︁

i
𝜀i

𝜕Fi
𝜕𝜃

v̄t+1 =
𝜕F
𝜕h · v̄t +

∑︁
i

𝜀i ei

where ei is the i-th basis vector in state space, and where the 𝜀i are
random ±1 signs.

(Scaling by 𝜆i omitted for clarity.)

For RNNs: same computational cost as running the RNN itself.

In RNNs, 𝜕Fi
𝜕𝜃

is sparse since hi (t +1) depends on only a small subset
of parameters.



Corollary
Apply the rank-one trick at each step. Then v̄tw̄⊤

t is an unbiased
estimate of Gt at every step if

w̄t+1 = w̄t +
∑︁

i
𝜀i

𝜕Fi
𝜕𝜃

v̄t+1 =
𝜕F
𝜕h · v̄t +

∑︁
i

𝜀i ei

where ei is the i-th basis vector in state space, and where the 𝜀i are
random ±1 signs.

(Scaling by 𝜆i omitted for clarity.)

For RNNs: same computational cost as running the RNN itself.

In RNNs, 𝜕Fi
𝜕𝜃

is sparse since hi (t +1) depends on only a small subset
of parameters.



Corollary
Apply the rank-one trick at each step. Then v̄tw̄⊤

t is an unbiased
estimate of Gt at every step if

w̄t+1 = w̄t +
∑︁

i
𝜀i

𝜕Fi
𝜕𝜃

v̄t+1 =
𝜕F
𝜕h · v̄t +

∑︁
i

𝜀i ei

where ei is the i-th basis vector in state space, and where the 𝜀i are
random ±1 signs.

(Scaling by 𝜆i omitted for clarity.)

For RNNs: same computational cost as running the RNN itself.

In RNNs, 𝜕Fi
𝜕𝜃

is sparse since hi (t +1) depends on only a small subset
of parameters.



Corollary
Apply the rank-one trick at each step. Then v̄tw̄⊤

t is an unbiased
estimate of Gt at every step if

w̄t+1 = w̄t +
∑︁

i
𝜀i

𝜕Fi
𝜕𝜃

v̄t+1 =
𝜕F
𝜕h · v̄t +

∑︁
i

𝜀i ei

where ei is the i-th basis vector in state space, and where the 𝜀i are
random ±1 signs.

(Scaling by 𝜆i omitted for clarity.)

For RNNs: same computational cost as running the RNN itself.

In RNNs, 𝜕Fi
𝜕𝜃

is sparse since hi (t +1) depends on only a small subset
of parameters.



NoBackTrack: variants

This was Euclidean NoBackTrack.

Kalman NoBackTrack is obtained by feeding this gradient estimate to
a Kalman filter (with diagonal or block-diagonal covariance matrix).
Related to using a natural gradient on 𝜃 instead of the Euclidean
gradient.

In practice, Kalman NoBackTrack reduces the noise in sensitive
directions.

Can also do rank-k instead of rank-one.

Does it work?



NoBackTrack: variants

This was Euclidean NoBackTrack.

Kalman NoBackTrack is obtained by feeding this gradient estimate to
a Kalman filter (with diagonal or block-diagonal covariance matrix).

Related to using a natural gradient on 𝜃 instead of the Euclidean
gradient.

In practice, Kalman NoBackTrack reduces the noise in sensitive
directions.

Can also do rank-k instead of rank-one.

Does it work?



NoBackTrack: variants

This was Euclidean NoBackTrack.

Kalman NoBackTrack is obtained by feeding this gradient estimate to
a Kalman filter (with diagonal or block-diagonal covariance matrix).
Related to using a natural gradient on 𝜃 instead of the Euclidean
gradient.

In practice, Kalman NoBackTrack reduces the noise in sensitive
directions.

Can also do rank-k instead of rank-one.

Does it work?



NoBackTrack: variants

This was Euclidean NoBackTrack.

Kalman NoBackTrack is obtained by feeding this gradient estimate to
a Kalman filter (with diagonal or block-diagonal covariance matrix).
Related to using a natural gradient on 𝜃 instead of the Euclidean
gradient.

In practice, Kalman NoBackTrack reduces the noise in sensitive
directions.

Can also do rank-k instead of rank-one.

Does it work?



NoBackTrack: variants

This was Euclidean NoBackTrack.

Kalman NoBackTrack is obtained by feeding this gradient estimate to
a Kalman filter (with diagonal or block-diagonal covariance matrix).
Related to using a natural gradient on 𝜃 instead of the Euclidean
gradient.

In practice, Kalman NoBackTrack reduces the noise in sensitive
directions.

Can also do rank-k instead of rank-one.

Does it work?



NoBackTrack: variants

This was Euclidean NoBackTrack.

Kalman NoBackTrack is obtained by feeding this gradient estimate to
a Kalman filter (with diagonal or block-diagonal covariance matrix).
Related to using a natural gradient on 𝜃 instead of the Euclidean
gradient.

In practice, Kalman NoBackTrack reduces the noise in sensitive
directions.

Can also do rank-k instead of rank-one.

Does it work?



Large learning rate, non-Kalman: noise is clearly visible.

Compression rate (bits per characters) as a function of the number of
characters read, for predicting the next character of a synthetic music
notation model.



Small learning rate, non-Kalman: tracks the real gradient accurately.

Compression rate (bits per characters) as a function of the number of
characters read, for predicting the next character of a synthetic music
notation model.



Large learning rate, Kalman: noise is barely visible.

Compression rate (bits per characters) as a function of the number of
characters read, for predicting the next character of a synthetic music
notation model.



Small learning rate, non-Kalman: tracks the real gradient accurately.

Compression rate (bits per characters) as a function of the number of
characters read, for predicting the next character of a synthetic music
notation model.



On Shakespeare’s collected works, does no better, no worse than
truncated backprop through time.

Compression rate (bits per characters) as a function of the number of
characters read, for predicting the next character in Shakespeare’s complete
works.



On the anbn problem, clearly does better than truncated backprop
through time when the span of time dependencies is longer than the
truncation length for BPTT.

Compression rate (bits per characters) as a function of the number of
characters read, for predicting the next character of anbn sequences using
a leaky RNN model.



Open problems and future work

I Continuous time systems: OK in principle, 𝛿t → 0 limit.

I Extends to other similar situations, such as online EM for
Hidden Markov models

I Do the same with the Kalman covariance matrix/Fisher
information matrix?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Real physical systems: response of the environment depends on
the actions of the system (RL), but no gradient available for
this.

Thank you!



Open problems and future work
I Continuous time systems: OK in principle, 𝛿t → 0 limit.

I Extends to other similar situations, such as online EM for
Hidden Markov models

I Do the same with the Kalman covariance matrix/Fisher
information matrix?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Real physical systems: response of the environment depends on
the actions of the system (RL), but no gradient available for
this.

Thank you!



Open problems and future work
I Continuous time systems: OK in principle, 𝛿t → 0 limit.

I Extends to other similar situations, such as online EM for
Hidden Markov models

I Do the same with the Kalman covariance matrix/Fisher
information matrix?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Real physical systems: response of the environment depends on
the actions of the system (RL), but no gradient available for
this.

Thank you!



Open problems and future work
I Continuous time systems: OK in principle, 𝛿t → 0 limit.

I Extends to other similar situations, such as online EM for
Hidden Markov models

I Do the same with the Kalman covariance matrix/Fisher
information matrix?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Real physical systems: response of the environment depends on
the actions of the system (RL), but no gradient available for
this.

Thank you!



Open problems and future work
I Continuous time systems: OK in principle, 𝛿t → 0 limit.

I Extends to other similar situations, such as online EM for
Hidden Markov models

I Do the same with the Kalman covariance matrix/Fisher
information matrix?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Real physical systems: response of the environment depends on
the actions of the system (RL), but no gradient available for
this.

Thank you!



Open problems and future work
I Continuous time systems: OK in principle, 𝛿t → 0 limit.

I Extends to other similar situations, such as online EM for
Hidden Markov models

I Do the same with the Kalman covariance matrix/Fisher
information matrix?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Real physical systems: response of the environment depends on
the actions of the system (RL), but no gradient available for
this.

Thank you!



Open problems and future work
I Continuous time systems: OK in principle, 𝛿t → 0 limit.

I Extends to other similar situations, such as online EM for
Hidden Markov models

I Do the same with the Kalman covariance matrix/Fisher
information matrix?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Real physical systems: response of the environment depends on
the actions of the system (RL), but no gradient available for
this.

Thank you!


