
True Asymptotic Natural Gradient Optimization

Yann Ollivier

Abstract
We introduce a simple algorithm, True Asymptotic Natural Gradient

Optimization (TANGO), that converges to a true natural gradient
descent in the limit of small learning rates, without explicit Fisher
matrix estimation.

For quadratic models the algorithm is also an instance of averaged
stochastic gradient, where the parameter is a moving average of a
“fast”, constant-rate gradient descent. TANGO appears as a particular
de-linearization of averaged SGD, and is sometimes quite different on
non-quadratic models. This further connects averaged SGD and natural
gradient, both of which are arguably optimal asymptotically.

In large dimension, small learning rates will be required to approx-
imate the natural gradient well. Still, this shows it is possible to get
arbitrarily close to exact natural gradient descent with a lightweight
algorithm.

Let 𝑝𝜃(𝑦|𝑥) be a probabilistic model for predicting output values 𝑦 from
inputs 𝑥 (𝑥 = ∅ for unsupervised learning). Consider the associated log-loss

ℓ(𝑦|𝑥) := − ln 𝑝𝜃(𝑦|𝑥) (1)

Given a dataset 𝒟 of pairs (𝑥, 𝑦), we optimize the average log-loss over 𝜃 via
a momentum-like gradient descent.

Definition 1 (TANGO). Let 𝛿𝑡𝑘 6 1 be a sequence of learning rates
and let 𝛾 > 0. Set 𝑣0 = 0. Iterate the following:

∙ Select a sample (𝑥𝑘, 𝑦𝑘) at random in the dataset 𝒟.

∙ Generate a pseudo-sample 𝑦𝑘 for input 𝑥𝑘 according to the predictions
of the current model, 𝑦𝑘 ∼ 𝑝𝜃(𝑦𝑘|𝑥𝑘) (or just 𝑦𝑘 = 𝑦𝑘 for the “outer
product” variant). Compute gradients

𝑔𝑘 ←
𝜕ℓ(𝑦𝑘|𝑥𝑘)

𝜕𝜃
, 𝑔𝑘 ←

𝜕ℓ(𝑦𝑘|𝑥𝑘)
𝜕𝜃

(2)

∙ Update the velocity and parameter via

𝑣𝑘 = (1− 𝛿𝑡𝑘−1)𝑣𝑘−1 + 𝛾𝑔𝑘 − 𝛾(1− 𝛿𝑡𝑘−1)(𝑣⊤
𝑘−1 𝑔𝑘)𝑔𝑘 (3)

𝜃𝑘 = 𝜃𝑘−1 − 𝛿𝑡𝑘𝑣𝑘 (4)

1

TANGO is built to approximate Amari’s natural gradient descent, namely,
a gradient descent preconditioned by the inverse of the Fisher information
matrix of the probabilistic model 𝑝𝜃 (see definitions below). The natural
gradient arguably provides asymptotically optimal estimates of the parameter
𝜃 [Ama98]. However, its use is unrealistic for large-dimensional models due
to the computational cost of storing and inverting the Fisher matrix, hence
the need for approximations. One of its key features is its invariance to any
change of variable in the parameter 𝜃 (contrary to simple gradient descent).
The natural gradient is also a special case of the extended Kalman filter from
estimation theory [Oll17], under mild conditions.

In TANGO, 𝛿𝑡/𝛾 should be small for a good natural gradient approxima-
tion.

For stability of the update (3) of 𝑣, 𝛾 should be taken small enough; but
a small 𝛾 brings slower convergence to the natural gradient. A conservative,
theoretically safe choice is setting 𝛾 = 1/ max ‖𝑔‖2 using the largest norm of
𝑔 seen so far. This may produce a too small 𝛾 if gradients are unbounded. If
the gradients follow a Gaussian distribution (with any covariance matrix),
then 𝛾 = 1/E[3 ‖𝑔‖2] is theoretically safe; the average can be estimated
on past gradients. In general, 𝛾 6 E[‖𝑔‖2]/E[‖𝑔‖4] is a necessary but not
sufficient condition; this may be used as a starting point. (See discussion
after Theorem 5.)

TANGO enjoys the following properties:

1. TANGO converges to an exact natural gradient trajectory when the
learning rate 𝛿𝑡 tends to 0 with 𝛾 fixed, namely, to the trajectory of
the ordinary differential equation d𝜃/ d𝑡 = −𝐽(𝜃)−1E[𝜕ℓ/𝜕𝜃] with 𝐽
the Fisher matrix at 𝜃 (Theorem 3).

2. For 𝛿𝑡 = 1 TANGO is an ordinary gradient descent with constant
learning rate 𝛾.

3. For quadratic losses, TANGO is an instance of averaged stochastic gra-
dient descent with additional noise (Proposition 2): a “fast” stochastic
gradient descent with constant learning rate is performed, and the
algorithm returns a moving average of this trajectory (updated by a
factor 𝛿𝑡𝑘 at each step). However, for non-quadratic losses, TANGO
can greatly differ from averaged SGD (Fig. 1).

Thus, TANGO smoothly interpolates between ordinary and natural
gradient descent when the learning rate decreases.

To illustrate the convergence to the natural gradient in an informal way,
take 𝛿𝑡 = 0. Then 𝜃 does not move, and the average of 𝑔 is the gradient
of the expected loss at 𝜃. Then the average of 𝑣 over time converges to
(E𝑔𝑔⊤)−1E𝑔, the exact natural gradient direction at 𝜃. Indeed, this is the
only fixed point of (3) in expectation. Actually, (3) is a way of solving for

2

 0

 2

 4

 6

 8

 10

-2 0 2 4 6 8 10 12

s
ig

m
a

mu

TANGO
Euclidean stoch. gradient descent

Averaged SGD
True natural gradient

Figure 1: Learning a Gaussian model 𝒩 (𝜇, 𝜎2) with unknown 𝜇 and 𝜎, via
gradient descent on (𝜇, ln 𝜎). The initial point is 𝒩 (0, 1) and the data are
𝒩 (10, 1). The Fisher metric is isometric to the hyperbolic plane (𝜇, 𝜎), whose
geodesics are circles, so that the true natural gradient starts by increasing
variance so that 𝜇 moves faster. Plotted are trajectories of SGD with learning
rate 10−3, and TANGO and averaged SGD with 𝛾 = 10−2 and 𝛿𝑡 = 10−4.

(E𝑔𝑔⊤)𝑣 = E𝑔 by stochastic gradient descent on 𝑣. The Fisher matrix 𝐽 is
E𝑔𝑔⊤ by definition.

Acknowledgments. The author would like to thank Léon Bottou, Guil-
laume Charpiat, Fabrice Debbasch, Aaron Defazio, Gaétan Marceau-Caron
and Corentin Tallec for helpful discussions and comments around these ideas.

Related work. Three different lines of work lead to TANGO-like algo-
rithms. Averaged SGD [PJ92, Rup88] uses a “fast” gradient descent with
large learning rate 𝛾 (here on the variable 𝑣), with an averaging operation
on top (here by accumulation into 𝜃). For linear problems 𝛾 can be kept
constant.

Averaged SGD achieves the asymptotically optimal Cramer–Rao bound
involving the inverse Fisher matrix, although “no explicit Hessian inversion
has been performed” [MB11, PJ92]. TANGO may clarify how the implicit
Hessian or Fisher matrix inversion occurs.

Later work on averaged SGD focussed on non-asymptotic behavior (espe-
cially, forgetting of the starting point), on somewhat dimension-independent
bounds, and on larger 𝛾 for linear models [MB11, BM13, Mar14, DB15,
DFB16]. A constant, large 𝛾 provides the most benefits; yet for nonlinear
models, averaged SGD with constant 𝛾 leads to biases, hence the need for
TANGO. Our analysis of the dynamics of 𝑣 in TANGO and in Theorem 5
below follows this line of work.

Previous work on approximating the natural gradient for large-dimensional

3

models, such as TONGA and others [LMB07, Oll15, MG15, DSP+15, MCO16],
did not provide an arbitrarily good approximation to the Fisher matrix, as
it relied on structural matrix approximations (diagonal, block-diagonal,
diagonal plus small-rank...) An exception is [DPCB13] for Boltzmann
machines, directly transposed from the Hessian-free Newton method of
[Mar10, MS11, MS12]: at each step, a large number of auxiliary conjugate
gradient steps are performed to solve for Fisher matrix inversion, before
the main update of the parameter occurs. From this viewpoint, TANGO
performs the main gradient descent on 𝜃 and the auxiliary gradient descent
at the same time.

For quasi-Newton methods in the convex case, auxiliary gradient descents
to approximate the inverse Hessian have been suggested several times; see
[ABH16, Mar10, MS11, MS12] and the references therein. Second-order
methods for neural networks have a long history, see e.g. [LBOM98]. 1

Third, “two-timescale” algorithms in reinforcement learning use updates
reminiscent of TANGO, where the “fast” timescale is used to approximate a
value function over a linear basis via a least squares method, and the “slow”
timescale is used to adapt the parameters of a policy. For instance, the main
results of [Tad04] or [KB17] deal with convergence of updates generalizing
(3)–(4). However, these results crucially assume that both 𝛿𝑡 and 𝛾 tend to 0.
This would be too slow in our setting. A constant 𝛾 can be used in TANGO
(and in averaged SGD for linear least squares) thanks to the linearity of the
update of 𝑣, but this requires a finer analysis of noise.

Discussion and shortcomings. Critical to TANGO is the choice of the
parameter 𝛾: the larger 𝛾 is, the faster the trajectory will resemble natural
gradient (as 𝑣 converges faster to (E𝑔𝑔⊤)−1E𝑔). However, if 𝛾 is too large the
update for 𝑣 is numerically unstable. For averaged SGD on quadratic losses,
the choice of 𝛾 is theoretically well understood [DB15], but the situation
is less clear for non-quadratic losses. We provide some general guidelines
below.

The algorithmic interest of using TANGO with respect to direct Fisher
matrix computation is not clear. Indeed, for 𝛿𝑡 = 0, the update equation
(3) on 𝑣 actually solves 𝑣 = (E𝑔𝑔⊤)−1E𝑔 by stochastic gradient descent
on 𝑣. The speed of convergence is heavily dimension-dependent, a priori.
Similar Hessian-free Newton algorithms that rely on an auxiliary gradient
descent to invert the Hessian, e.g., [Mar10], need a large number of auxiliary
gradient iterations. In this case, the interest of TANGO may be its ease of
implementation.

1Technically the natural gradient is not a second-order method, as the Fisher matrix
represents a Riemannian metric tensor rather than a Hessian of the loss. It can be
computed from squared gradients, and the natural gradient is well-defined even if the loss
is flat or concave. The Fisher matrix coincides with the Hessian of the loss function only
asymptotically at a local minimum, provided the data follow the model.

4

Still, averaged SGD is proved to accelerate convergence for quadratic
problems [PJ92]. So TANGO-like algorithms bring benefits in some regimes.

For linear models, [DFB16] study situations in which the convergence of
(3) happens faster than suggested by the dimension of the problem, depending
on the eigenvalues of the Hessian. For non-linear problems, this may be the
case if the data clusters naturally in a few groups (e.g., classification with
few labels): sampling a value of 𝑦 in each of the clusters may already provide
an interesting low-rank approximation of the Fisher matrix E𝑔𝑔⊤. In such a
situation, 𝑣 may converge reasonably fast to an approximate natural gradient
direction.

Implementation remarks: minibatches, preconditioned TANGO.
If 𝑔 is computed as the average over a minibatch of size 𝐵, namely 𝑔 =
1
𝐵

∑︀𝐵
𝑖=1 𝑔𝑖 with 𝑔𝑖 the gradient corresponding to output sample 𝑦𝑖 in the

minibatch, then the equation for 𝑣 has to be modified to

𝑣𝑘 = (1− 𝛿𝑡𝑘−1)𝑣𝑘−1 + 𝛾𝑔𝑘 − 𝛾𝐵(1− 𝛿𝑡𝑘−1)(𝑣⊤
𝑘−1 𝑔𝑘)𝑔𝑘 (5)

because the expectation of 𝑔𝑔⊤ is 1
𝐵 times the Fisher matrix.

Preconditioned TANGO (e.g., à la RMSProp) can be obtained by choosing
a positive definite matrix 𝐶 and iterating

𝑣𝑘 = (1− 𝛿𝑡𝑘−1)𝑣𝑘−1 + 𝛾𝐶𝑔𝑘 − 𝛾(1− 𝛿𝑡𝑘−1)(𝑣⊤
𝑘−1 𝑔𝑘)𝐶𝑔𝑘 (6)

𝜃𝑘 = 𝜃𝑘−1 − 𝛿𝑡𝑘𝑣𝑘 (7)

(This is TANGO on the variable 𝐶−1/2𝜃.) The matrix 𝐶 may help to improve
conditioning of gradients and of the matrix 𝐶E𝑔𝑔⊤. Choices of 𝐶 may
include RMSProp (the entrywise reciprocal of the root-mean-square average
of gradients) or the inverse of the diagonal Fisher matrix, 𝐶−1 = diag(E𝑔⊙2).
These options will require different adjustements for 𝛾.

Quadratic output losses can be seen as the log-loss of a probabilistic
model, ℓ(𝑦|𝑥) = ‖𝑦−𝑓𝜃(𝑥)‖2

2𝜎2 for any value of 𝜎2. However, 𝜎2 should be set to
the actual mean square error on the outputs, for the natural gradient descent
to work best. The choice of 𝜎2 affects both the scaling of gradients 𝑔 and 𝑔,
and the sampling of pseudo-samples 𝑦, whose law is 𝒩 (𝑓𝜃(𝑥), 𝜎2).

TANGO as an instance of averaged SGD for quadratic losses. Av-
eraged SGD maintains a fast-moving parameter with constant learning rate,
and returns a moving average of the fast trajectory. It is known to have
excellent asymptotic properties for quadratic models.

For quadratic losses, TANGO can be rewritten as a form of averaged SGD,
despite TANGO only using gradients evaluated at the “slow” parameter 𝜃.
This is specific to gradients being a linear function of 𝜃.

5

Thus TANGO can be considered as a non-linearization of averaged SGD,
written using gradients at 𝜃 only. Even for simple nonlinear models, the
difference can be substantial (Fig. 1). For nonlinear models, averaged SGD
with a fixed learning rate 𝛾 can have a bias of size comparable to 𝛾, even
with small 𝛿𝑡. 2 TANGO does not exhibit such a bias.

Proposition 2. Assume that for each sample (𝑥, 𝑦), the log-loss ℓ(𝑦|𝑥) is
a quadratic function of 𝜃 whose Hessian does not depend on 𝑦 (e.g., linear
regression ℓ(𝑦|𝑥) = 1

2 ‖𝑦 − 𝜃⊤𝑥‖2).
Then TANGO is identical to the following trajectory averaging algorithm:

𝜃fast
𝑘 = 𝜃fast

𝑘−1 − 𝛾
𝜕ℓ(𝑦𝑘|𝑥𝑘)

𝜕𝜃fast
𝑘−1

+ 𝛾𝜉𝑘 (8)

𝜃𝑘 = (1− 𝛿𝑡𝑘)𝜃𝑘−1 + 𝛿𝑡𝑘𝜃fast
𝑘 (9)

where 𝜉𝑘 is some centered random variable whose law depends on 𝜃fast
𝑘−1 and

𝜃𝑘−1. The identification with TANGO is via 𝑣𝑘 = 𝜃𝑘−1 − 𝜃fast
𝑘 .

The proof (Appendix A) is mostly by direct algebraic manipulations. For
quadratic losses, the gradients are a linear function of the parameter, so that
the derivative at point 𝜃fast can be rewritten as the derivative at point 𝜃
plus a Hessian term; for quadratic losses, the Hessian is equal to the Fisher
metric.

The additional noise 𝜉𝑘 is multiplicative in 𝑣. This is standard for linear
regression [DFB16]: indeed, in linear regression, the gradient from sample
(𝑥, 𝑦) is −𝑦𝑥 + 𝑥𝑥⊤𝜃, and its expectation is −E(𝑦𝑥) + E(𝑥𝑥⊤)𝜃 so that the
gradient noise has a multiplicative component (𝑥𝑥⊤−E(𝑥𝑥⊤))𝜃. (Treatments
of gradient descent often assume additive noise instead, see discussion in
[DFB16].)

Replacing the TANGO update of 𝜃 in (4) with 𝜃𝑘 = 𝜃𝑘−1 − 𝑣𝑘 would
make TANGO equivalent to an accelerated gradient method with additional
noise for quadratic functions.

Convergence of TANGO to the natural gradient. Let the Fisher
matrix of the model be

𝐽(𝜃) := E𝑔𝑔⊤ = E(𝑥,𝑦)∈𝒟E𝑦∼𝑝𝜃(𝑦|𝑥)
𝜕ℓ(𝑦|𝑥)

𝜕𝜃

⊗2
(10)

where, for a column vector 𝑣, 𝑣⊗2 is the outer product 𝑣𝑣⊤.
2A bias of size 𝛾 is easy to see on the following example: Define a loss ℓ(𝑥) = |𝑥| for

|𝑥| > 𝛾/2, and extend this loss in an arbitrary way on the interval [−𝛾/2; 𝛾/2]. Since
the gradients are ±1 out of this interval, a gradient descent with fixed learning rate 𝛾,
initialized at a multiple of 𝛾/2, will make jumps of size exactly 𝛾 and never visit the interior
of the interval [−𝛾/2; 𝛾/2]. Whatever the average parameter of this trajectory is, it is
unrelated to the behavior of the loss on [−𝛾/2; 𝛾/2] and to the location of the minimum.
Thus averaged SGD can have a bias of size ≈ 𝛾, whatever 𝛿𝑡.

6

The stochastic natural gradient descent on 𝜃, with learning rate 𝛿𝑡, using
the exact Fisher matrix 𝐽(𝜃), is

𝜃𝑡+𝛿𝑡 = 𝜃𝑡 − 𝛿𝑡𝐽(𝜃𝑡)−1 𝜕ℓ(𝑦𝑘|𝑥𝑘)
𝜕𝜃𝑡

(11)

where at each step (𝑥𝑘, 𝑦𝑘) is a random sample from the dataset 𝒟. In the
limit of small learning rates 𝛿𝑡→ 0, it converges to a “true” continuous-time
natural gradient descent trajectory, driven by the differential equation

d𝜃𝑡

d𝑡
= −𝐽(𝜃𝑡)−1E(𝑥,𝑦)∈𝐷

𝜕ℓ(𝑦|𝑥)
𝜕𝜃𝑡

(12)

Theorem 3. Make the following regularity assumptions: The second
moment of gradients 𝑔 is bounded over 𝜃. The fourth moment of gradients
𝑔 is bounded over 𝜃. The lowest eigenvalue of the Fisher matrix 𝐽(𝜃), as a
function of 𝜃, is bounded away from 0. The Fisher matrix is a 𝐶1 function
of 𝜃 with bounded first derivatives.

Let 𝜃𝑇 be the value of the exact natural gradient (12) at time 𝑇 . Assume
that the parameter 𝛾 in TANGO is smaller than some constant that depends
on the moments of the gradients and the eigenvalues of the Fisher matrix.

Then the value of 𝜃 obtained after 𝑇/ 𝛿𝑡 iterations of TANGO converges
in probability to 𝜃𝑇 , when 𝛿𝑡→ 0.

The probability in this theorem refers to the random choice of samples
𝑥𝑘, 𝑦𝑘 and 𝑦𝑘 in TANGO.

Theorem 3 will be obtained as a corollary of the more general Theorem 5,
which also provides quantitative versions of the choice of 𝛾 in TANGO.

To illustrate a key idea of the proof, we start with a simpler, noise-free
situation.

Proposition 4. Consider the iteration of

𝑣𝑘 = 𝑣𝑘−1 + 𝛾𝐹 (𝜃𝑘−1)− 𝛾𝐴(𝜃𝑘−1)𝑣𝑘−1 (13)
𝜃𝑘 = 𝜃𝑘−1 − 𝛿𝑡 𝑣𝑘 (14)

initialized at 𝑣0 = 0, where 𝐹 is a vector field on 𝜃 and 𝐴 is a field of
symmetric positive definite matrices.

Assume that 𝐹 and 𝐴 are 𝐶1 with bounded derivatives. Let 𝜆min :=
inf𝜃 min eigenvalues(𝐴(𝜃)) and 𝜆max := sup𝜃 max eigenvalues(𝐴(𝜃)), and as-
sume 𝜆min > 0 and 𝜆max <∞. Fix 𝛾 smaller than 1/𝜆max.

Then when 𝛿𝑡 → 0, the value 𝜃 of this system after 𝑇/ 𝛿𝑡 iterations
converges to the value at time 𝑇 of the ordinary differential equation with
preconditioning 𝐴−1,

d𝜃𝑡

d𝑡
= −𝐴(𝜃𝑡)−1𝐹 (𝜃𝑡) (15)

initialized at 𝜃0 = 𝜃0. More precisely, 𝜃𝑇/ 𝛿𝑡 − 𝜃𝑇 = 𝑂(𝛿𝑡).

7

Proof.
We first deal with the case of constant 𝐴(𝜃) ≡ 𝐴.

First, note that the sums of the contributions of 𝑣1 to all future updates
of 𝜃 is 𝛿𝑡

∑︀
(Id−𝛾𝐴)𝑘𝑣1 = 𝛿𝑡𝛾−1𝐴−1𝑣1.

This suggests setting

𝑧𝑘+1 := 𝜃𝑘 − 𝛿𝑡𝛾−1𝐴−1𝑣𝑘+1 (16)

which contains “𝜃𝑘 plus all the known future updates from the terms 𝐹 (𝜃𝑗),
𝑗 6 𝑘, that are already present in 𝑣𝑘”. Substituting for 𝜃𝑘 and 𝑣𝑘+1 in 𝑧𝑘+1,
one finds that the update for 𝑧 is

𝑧𝑘+1 = 𝜃𝑘−1 − 𝛿𝑡𝑣𝑘 − 𝛿𝑡𝛾−1𝐴−1(𝑣𝑘 + 𝛾𝐹 (𝜃𝑘)− 𝛾𝐴𝑣𝑘) (17)
= 𝑧𝑘 − 𝛿𝑡𝐴−1𝐹 (𝜃𝑘) (18)

which only involves the new contribution from 𝐹 (𝜃𝑛), and not 𝑣.
Moreover,

𝑧𝑘 = 𝜃𝑘−1− 𝛿𝑡𝛾−1𝐴−1𝑣𝑘 = 𝜃𝑘 + 𝛿𝑡 𝑣𝑘 − 𝛿𝑡𝛾−1𝐴−1𝑣𝑘 = 𝜃𝑘 + 𝑂(𝛿𝑡 ‖𝑣𝑘‖) (19)

since 𝐴−1 is bounded (its largest eigenvalue is 1/𝜆min).
Now, the update for 𝑣𝑘 is (1− 𝛾𝜆min)-contracting, because the condition

𝛾 < 1/𝜆max implies that the eigenvalues of 𝛾𝐴 lie between 𝛾𝜆min and 1.
Since 𝜆min > 0 and 𝐹 is bounded, it is easy to show by induction that
‖𝑣𝑘‖ 6 (sup ‖𝐹‖)/𝜆min so that 𝑣 is bounded.

Therefore, 𝑧𝑘 = 𝜃𝑘 + 𝑂(𝛿𝑡). Then, given the regularity assumptions on
𝐹 , one has 𝐹 (𝜃𝑘) = 𝐹 (𝑧𝑘) + 𝑂(𝛿𝑡) and

𝑧𝑘+1 = 𝑧𝑘 − 𝛿𝑡𝐴−1𝐹 (𝑧𝑘) + 𝑂(𝛿𝑡2) (20)

since 𝐴−1 is bounded. This does not involve 𝑣 any more.
But this update for 𝑧𝑘 is just a Euler numerical scheme for the differential

equation 𝑧̇ = −𝐴−1𝐹 (𝑧). So by the standard theory of approximation of
ordinary differential equations, when 𝛿𝑡→ 0, 𝑧𝑇/ 𝛿𝑡 converges to the solution
at time 𝑇 of this equation, within an error 𝑂(𝛿𝑡). Since 𝜃𝑘 − 𝑧𝑘 is 𝑂(𝛿𝑡) as
well, we get the same conclusion for 𝜃.

For the case of variable 𝐴, set

𝑧𝑘+1 := 𝜃𝑘 − 𝛿𝑡𝛾−1𝐴−1(𝜃𝑘)𝑣𝑘+1 (21)

and substituting for 𝜃𝑘 and 𝑣𝑘+1 in this definition, one finds

𝑧𝑘+1 = 𝜃𝑘−1 − 𝛿𝑡𝛾−1𝐴(𝜃𝑘)−1𝑣𝑘 − 𝛿𝑡𝐴(𝜃𝑘)−1𝐹 (𝜃𝑘) (22)
= 𝑧𝑘 + 𝛿𝑡𝛾−1(𝐴(𝜃𝑘−1)−1 −𝐴(𝜃𝑘)−1)𝑣𝑘 − 𝛿𝑡𝐴(𝜃𝑘)−1𝐹 (𝜃𝑘) (23)

8

Now, under our eigenvalue assumptions, 𝐴−1 is bounded. Since 𝐴 has
bounded derivatives, so does 𝐴−1 thanks to 𝜕𝜃𝐴−1 = −𝐴−1(𝜕𝜃𝐴)𝐴−1. There-
fore we can apply a Taylor expansion of 𝐴−1 so that

𝐴(𝜃𝑘−1)−1 −𝐴(𝜃𝑘)−1 = 𝑂(𝜃𝑘−1 − 𝜃𝑘) = 𝑂(𝛿𝑡 ‖𝑣𝑘‖) (24)

so that
𝑧𝑘+1 = 𝑧𝑘 − 𝛿𝑡𝐴(𝜃𝑘)−1𝐹 (𝜃𝑘) + 𝑂(𝛿𝑡2 ‖𝑣𝑘‖2) (25)

after which the proof proceeds as for the case of constant 𝐴, namely: 𝑧𝑘 − 𝜃𝑘

is 𝑂(𝛿𝑡 ‖𝑣𝑘‖) so that

𝑧𝑘+1 = 𝑧𝑘 − 𝛿𝑡𝐴(𝑧𝑘)−1𝐹 (𝑧𝑘) + 𝑂(𝛿𝑡2 ‖𝑣𝑘‖+ 𝛿𝑡2 ‖𝑣𝑘‖2) (26)

and 𝑣𝑘 is bounded by induction. So the update for 𝑧𝑘 is a Euler numerical
scheme for the differential equation 𝑧̇ = −𝐴(𝑧)−1𝐹 (𝑧), which ends the
proof.

We now turn to the stochastic version of Proposition 4. This provides a
generalization of Theorem 3: Theorem 3 is a corollary of Theorem 5 using
𝐹𝑘 = 𝑔𝑘 and 𝐴𝑘 = (1− 𝛿𝑡)𝑔𝑘𝑔⊤

𝑘 + 𝛿𝑡
𝛾 Id.

For numerical simulations of stochastic differential equations, the usual
rate of convergence is 𝑂(

√
𝛿𝑡) rather than 𝑂(𝛿𝑡) [KP92].

Theorem 5. Consider the iteration of

𝑣𝑘 = 𝑣𝑘−1 + 𝛾𝐹𝑘 − 𝛾𝐴𝑘𝑣𝑘−1 (27)
𝜃𝑘 = 𝜃𝑘−1 − 𝛿𝑡 𝑣𝑘 (28)

initialized at 𝑣0 = 0, where 𝐹𝑘 is a vector-valued random variable and 𝐴𝑘 is
a symmetric-matrix-valued random variable.

Let ℱ𝑘 be the sigma-algebra generated by all variables up to time 𝑘, and
abbreviate E𝑘 for E[· | ℱ𝑘]. Let

𝐹𝑘 := E𝑘−1𝐹𝑘, 𝐴𝑘 := E𝑘−1𝐴𝑘 (29)

and assume that these depend on 𝜃𝑘−1 only, namely, that exist functions
𝐹 (𝜃) and 𝐴(𝜃) such that

𝐹𝑘 = 𝐹 (𝜃𝑘−1), 𝐴𝑘 = 𝐴(𝜃𝑘−1) (30)

Assume that the functions 𝐹 and 𝐴 are 𝐶1 with bounded derivatives. Let
𝜆 := inf𝜃 min eigenvalues(𝐴(𝜃)), and assume 𝜆 > 0.

Assume the following variance control: for some 𝜎2 > 0 and 𝑅2 > 0,

E𝑘−1
⃦⃦⃦
𝐹𝑘

⃦⃦⃦2
6 𝜎2, E𝑘−1

[︁
𝐴⊤

𝑘 𝐴𝑘

]︁
4 𝑅2𝐴𝑘 (31)

9

where 𝐴 4 𝐵 means 𝐵 −𝐴 is positive semidefinite.
Fix 0 < 𝛾 6 1/𝑅2.
Then when 𝛿𝑡 → 0, the value 𝜃 of this system after 𝑇/ 𝛿𝑡 iterations

converges in probability to the value at time 𝑇 of the ordinary differential
equation with preconditioning 𝐴−1,

d𝜃𝑡

d𝑡
= −𝐴(𝜃𝑡)−1𝐹 (𝜃𝑡) (32)

initialized at 𝜃0 = 𝜃0.
More precisely, for any 𝜀 > 0, with probability > 1−𝜀 one has 𝜃𝑇/ 𝛿𝑡−𝜃𝑇 =

𝑂(
√

𝛿𝑡) when the constant in 𝑂() depends on 𝜀, 𝑇 , 𝜆, 𝛾, 𝜎2, 𝑅2, and the
derivatives of 𝐹 (𝜃) and 𝐴(𝜃). The bounds are uniform for 𝑇 in compact
intervals.

The variance assumption on 𝐴 directly controls the maximum possible
value via 𝛾 6 1/𝑅2, and, consequently, the speed of convergence to 𝐴−1.
This assumption appears in [BM13, DB15, DFB16] for 𝐴 = 𝑔𝑔⊤, where the
value of 𝑅2 for typical cases is discussed.

With 𝐴 = 𝑔𝑔⊤, the variance assumption on 𝐴 is always satisfied with
𝑅2 = sup ‖𝑔‖2 if 𝑔 is bounded. 3 It is also satisfied with 𝑅2 = E ‖𝑔‖4 /𝜆,
without bounded gradients. (Indeed, first, one has E𝐴2 = E(‖𝑔‖2 𝑔𝑔⊤) 6
(sup ‖𝑔‖2)E𝑔𝑔⊤; second, for any vector 𝑢, one has 𝑢⊤E[𝑔𝑔⊤𝑔𝑔⊤]𝑢 = E[𝑢⊤𝑔𝑔⊤𝑔𝑔⊤𝑢] 6
E[‖𝑢‖2 ‖𝑔‖4] = ‖𝑢‖2 E ‖𝑔‖4 while 𝑢⊤𝐴𝑢 is at least 𝜆 ‖𝑢‖2.) If the distribu-
tion of 𝑔 has bounded curtosis 𝜅 in every direction, then the assumption is
satisfied with 𝑅2 = 𝜅E ‖𝑔‖2 [DFB16]; in particular, for Gaussian 𝑔, with any
covariance matrix, the assumption is satisfied with 𝑅2 = 3E ‖𝑔‖2. All these
quantities can be estimated based on past values of 𝑔.

Theorem 5 would still be valid with additional centered noise on 𝜃 and
additional 𝑜(𝛿𝑡) terms on 𝜃; for simplicity we did not include them, as they
are not needed for TANGO.

Lemma 6. Under assumptions of Theorem 5, the largest eigenvalue of 𝐴(𝜃)
is at most 𝑅2. The operator (Id−𝛾𝐴(𝜃)) is (1− 𝛾𝜆)-contracting.

Moreover, 𝜃 ↦→ 𝐴−1(𝜃) exists, is bounded, and is 𝐶1 with bounded
derivatives. The same holds for 𝜃 ↦→ 𝐴−1(𝜃)𝐹 (𝜃).

Proof.
First, for any vector 𝑢, one has ‖𝐴𝑢‖2 =

⃦⃦⃦
E𝐴𝑢

⃦⃦⃦2
6 E

⃦⃦⃦
𝐴𝑢

⃦⃦⃦2
= E[𝑢⊤𝐴⊤𝐴𝑢] 6

𝑅2𝑢⊤𝐴𝑢. Taking 𝑢 an eigenvector associated with the largest eigenvalue 𝜆max
of 𝐴 shows that 𝜆max 6 𝑅2. Next, the eigenvalues of 𝐴 lie between 𝜆 and

3 TANGO uses 𝐴 = (1 − 𝛿𝑡)𝑔𝑔⊤ + 𝛿𝑡
𝛾

Id rather than 𝐴 = 𝑔𝑔⊤. Actually it is enough to
check the assumption with 𝑔𝑔⊤. Indeed one checks that if 𝑔𝑔⊤ satisfies the assumption
with some 𝑅2, then (1 − 𝛿𝑡)𝑔𝑔⊤ + 𝛿𝑡

𝛾
Id satisfies the assumption with max(𝑅2, 1/𝛾), and

that 𝛾 6 1/𝑅2 implies 𝛾 6 1/ max(𝑅2, 1/𝛾).

10

𝑅2 so that the eigenvalues of 𝛾𝐴 lie between 𝛾𝜆 and 1. So the eigenvalues of
Id−𝛾𝐴 lie between 0 and 1− 𝛾𝜆.

Since 𝐴 is symmetric and its smallest eigenvalue is 𝜆 > 0, it is invertible
with its inverse bounded by 1/𝜆. Thanks to 𝜕𝜃𝐴−1 = −𝐴−1(𝜕𝜃𝐴)𝐴−1, the
derivatives of 𝐴−1 are bounded.

Lemma 7. Under the notation and assumptions of Theorem 5, for any 𝑘,

E ‖𝑣𝑘‖2 6
4𝜎2

𝜆2 (33)

Up to the factor 4, this is optimal: indeed, when 𝐹 and 𝐴 have a
distribution independent of 𝑘, the fixed point of 𝑣 in expectation is 𝑣 =
𝐴−1E𝐹 , whose square norm is (E𝐹)⊤𝐴−2E𝐹 which is

⃦⃦⃦
E𝐹

⃦⃦⃦2
/𝜆2 if E𝐹 lies

in the direction of the eigenvalue 𝜆.

Proof.
The proof is a variant of arguments appearing in [BM13]; in our case 𝐴 is
not constant, 𝐹𝑘 is not centered, 𝐴𝑘 is not rank-one, and we do not use the
norm associated with 𝐴 on the left-hand-side. Let

𝑤𝑘 := (Id−𝛾𝐴𝑘)𝑣𝑘−1 (34)

so that 𝑣𝑘 = 𝑤𝑘 + 𝛾𝐹𝑘. Consequently

‖𝑣𝑘‖2 = ‖𝑤𝑘‖2+
⃦⃦⃦
𝛾𝐹𝑘

⃦⃦⃦2
+2𝛾𝑤𝑘 ·𝐹𝑘 6 (1+𝛼) ‖𝑤𝑘‖2+(1+1/𝛼)

⃦⃦⃦
𝛾𝐹𝑘

⃦⃦⃦2
(35)

for any 𝛼 > 0, thanks to 2𝑎𝑏 = 2(
√

𝛼 𝑎)(𝑏/
√

𝛼) 6 𝛼𝑎2 + 𝑏2/𝛼 for any 𝛼 > 0
and 𝑎, 𝑏 ∈ R.

Now

‖𝑤𝑘‖2 = ‖𝑣𝑘−1‖2 − 𝛾𝑣⊤
𝑘−1(𝐴𝑘 + 𝐴⊤

𝑘)𝑣𝑘−1 + 𝛾2𝑣⊤
𝑘−1𝐴⊤

𝑘 𝐴𝑘𝑣𝑘−1 (36)

Take expectations conditionally to ℱ𝑘−1. Using E𝑘−1
[︁
𝐴⊤

𝑘 𝐴𝑘

]︁
4 𝑅2𝐴𝑘

we find
E𝑘−1 ‖𝑤𝑘‖2 6 ‖𝑣𝑘−1‖2 − 𝛾(2− 𝛾𝑅2)𝑣⊤

𝑘−1𝐴𝑘𝑣𝑘−1 (37)

By the assumptions, 𝛾𝑅2 6 1 and 𝑣⊤
𝑘−1𝐴𝑘𝑣𝑘−1 > 𝜆 ‖𝑣𝑘−1‖2. Thus

E𝑘−1 ‖𝑤𝑘‖2 6 (1− 𝛾𝜆) ‖𝑣𝑘−1‖2 (38)

Taking 1 + 𝛼 = 1−𝛾𝜆/2
1−𝛾𝜆 we find

E𝑘−1 ‖𝑣𝑘‖2 6 (1− 𝛾𝜆/2) ‖𝑣𝑘−1‖2 + (1 + 1/𝛼)𝛾2𝜎2 (39)

6 (1− 𝛾𝜆/2) ‖𝑣𝑘−1‖2 + 1− 𝛾𝜆/2
𝛾𝜆/2 𝛾2𝜎2 (40)

11

Taking unconditional expectations, we obtain

E ‖𝑣𝑘‖2 6 (1− 𝛾𝜆/2)E ‖𝑣𝑘−1‖2 + 1− 𝛾𝜆/2
𝛾𝜆/2 𝛾2𝜎2 (41)

and by induction, starting at 𝑣0 = 0, this implies

E ‖𝑣𝑘‖2 6
1− 𝛾𝜆/2
(𝛾𝜆/2)2 𝛾2𝜎2 6

4𝜎2

𝜆2 (42)

Corollary 8. Under the notation and assumptions of Theorem 5, for
any 𝑛, for any 𝜀 > 0, with probability > 1− 𝜀 one has

sup
06𝑘6𝑛

‖𝑣𝑘‖ 6
2𝜎

𝜆

√︂
𝑛

𝜀
(43)

Proof.
This follows from Lemma 7 by the Markov inequality and a union bound.

The next two lemmas result from standard martingale arguments; the
detailed proofs are given in the Appendix.

Lemma 9. Under the notation and assumptions of Theorem 5, let 𝜉 be the
noise on 𝐹 ,

𝜉𝑘 := 𝐹𝑘 − 𝐹𝑘 (44)

Let (𝑀𝑘) be any sequence of operators such that 𝑀𝑘 is ℱ𝑘−1-measurable
and ‖𝑀𝑘‖op 6 Λ almost surely.

Then
E

𝑛∑︁
𝑗=1
‖𝑀𝑗𝜉𝑗‖2 6 𝑛Λ2𝜎2 (45)

and moreover for any 𝑛, for any 𝜀 > 0, with probability > 1 − 𝜀, for any
𝑘 6 𝑛 one has ⃦⃦⃦⃦

⃦⃦ 𝑛∑︁
𝑗=𝑘

𝑀𝑗𝜉𝑗

⃦⃦⃦⃦
⃦⃦ 6 2

√︃
𝑛Λ2𝜎2

𝜀
(46)

Lemma 10. Under the notation and assumptions of Theorem 5, set

𝜁𝑘 := (𝐴𝑘 −𝐴𝑘)𝑣𝑘−1 (47)

Let (𝑀𝑘) be any sequence of operators such that 𝑀𝑘 is ℱ𝑘−1-measurable
and ‖𝑀𝑘‖op 6 Λ almost surely. Let 𝜆max = sup𝜃 max eigenvalues(𝐴𝑘), which
is finite by Lemma 6.

Then
E

𝑛∑︁
𝑗=1
‖𝑀𝑗𝜁𝑗‖2 6 4𝑛𝑅2𝜆maxΛ2𝜎2/𝜆2 (48)

12

and moreover, for any 𝑛, for any 𝜀 > 0, with probability > 1 − 𝜀, for any
𝑘 6 𝑛, ⃦⃦⃦⃦

⃦⃦ 𝑛∑︁
𝑗=𝑘

𝑀𝑗𝜁𝑗

⃦⃦⃦⃦
⃦⃦ 6 4

√︃
𝑛𝑅2𝜆maxΛ2𝜎2

𝜀𝜆2 (49)

Proof of Theorem 5.
Let 𝑛 := 𝑇/ 𝛿𝑡 be the number of discrete steps corresponding to continuous
time 𝑇 . All the constants implied in 𝑂() notation below depend on 𝑇 and on
the assumptions of the theorem (𝑅2, 𝛾, 𝜆, etc.), and we study the dependency
on 𝛿𝑡.

Similarly to Proposition 4, set

𝑧𝑘 := 𝜃𝑘−1 − 𝛿𝑡𝛾−1𝐵𝑘 𝑣𝑘 (50)

where 𝐵𝑘 is a matrix to be defined later (equal to 𝐴−1 for the case of constant
𝐴). Informally, 𝑧 contains 𝜃 plus the future updates to be made to 𝜃 based
on the current value of 𝑣.

Substituting 𝜃𝑘−1 = 𝜃𝑘−2− 𝛿𝑡 𝑣𝑘−1 and 𝑣𝑘 = 𝑣𝑘−1 + 𝛾𝐹𝑘−𝛾𝐴𝑘𝑣𝑘−1−𝛾𝜁𝑘

into the definition of 𝑧𝑘, one finds

𝑧𝑘 = 𝜃𝑘−2 − 𝛿𝑡 𝑣𝑘−1 − 𝛿𝑡𝛾−1𝐵𝑘

(︁
𝑣𝑘−1 + 𝛾𝐹𝑘 − 𝛾𝐴𝑘𝑣𝑘−1 − 𝛾𝜁𝑘

)︁
(51)

= 𝜃𝑘−2 − 𝛿𝑡𝐵𝑘(𝐹𝑘 − 𝜁𝑘)− 𝛿𝑡
(︁
Id +𝛾−1𝐵𝑘 −𝐵𝑘𝐴𝑘

)︁
𝑣𝑘−1 (52)

= 𝑧𝑘−1 − 𝛿𝑡𝐵𝑘(𝐹𝑘 − 𝜁𝑘)− 𝛿𝑡
(︁
Id−𝐵𝑘𝐴𝑘 + 𝛾−1(𝐵𝑘 −𝐵𝑘−1)

)︁
𝑣𝑘−1 (53)

Now define 𝐵𝑘 in order to cancel the 𝑣𝑘−1 term, namely

𝐵𝑘−1 := 𝐵𝑘 + 𝛾(Id−𝐵𝑘𝐴𝑘) (54)

initialized with 𝐵𝑛 := 𝐴−1
𝑛 . (If 𝐴 is constant, then 𝐵 = 𝐴−1.) Then

𝛿𝑡𝛾−1𝐵𝑘𝑣𝑘 represents all the future updates to 𝜃 stemming from the current
value 𝑣𝑘.

With this choice, the update for 𝑧 is

𝑧𝑘 = 𝑧𝑘−1 − 𝛿𝑡𝐵𝑘(𝐹𝑘 − 𝜁𝑘) = 𝑧𝑘−1 − 𝛿𝑡𝐵𝑘(𝐹𝑘 + 𝜉𝑘 − 𝜁𝑘) (55)

Remove the noise by defining

𝑦𝑘 := 𝑧𝑘 − 𝛿𝑡
𝑛∑︁

𝑗=𝑘+1
𝐵𝑗(𝜉𝑗 − 𝜁𝑗) (56)

so that
𝑦𝑘 = 𝑦𝑘−1 − 𝛿𝑡𝐵𝑘𝐹𝑘 (57)

Assume for now that 𝐵𝑘 = 𝐴−1(𝜃𝑘−1) + 𝑂(
√

𝛿𝑡). Then

𝑦𝑘 = 𝑦𝑘−1 − 𝛿𝑡𝐴−1(𝜃𝑘−1)𝐹 (𝜃𝑘−1) + 𝑂(𝛿𝑡3/2) (58)

13

Since 𝐴−1𝐹 is Lipschitz (Lemma 6), we have

𝑦𝑘 = 𝑦𝑘−1 − 𝛿𝑡𝐴−1(𝑦𝑘−1)𝐹 (𝑦𝑘−1) + 𝑂(𝛿𝑡 ‖𝑦𝑘−1 − 𝜃𝑘−1‖) + 𝑂(𝛿𝑡3/2) (59)

If we prove that 𝑦𝑘−1 − 𝜃𝑘−1 = 𝑂(
√

𝛿𝑡) then we find

𝑦𝑘 = 𝑦𝑘−1 − 𝛿𝑡𝐴−1(𝑦𝑘−1)𝐹 (𝑦𝑘−1) + 𝑂(𝛿𝑡3/2) (60)

so that 𝑦𝑘 is a Euler numerical scheme for the differential equation 𝑦̇ =
−𝐴−1(𝑦)𝐹 (𝑦), and thus converges to the natural gradient trajectory up to
𝑂(
√

𝛿𝑡), uniformly on the time interval [0; 𝑇].
Since we assumed that 𝜃𝑘 − 𝑦𝑘 = 𝑂(

√
𝛿𝑡), this holds for 𝜃𝑘 as well.

We still have to prove the two assumptions that 𝑦𝑘−1 − 𝜃𝑘−1 = 𝑂(
√

𝛿𝑡)
and that 𝐵𝑘 = 𝐴−1(𝜃𝑘−1) + 𝑂(

√
𝛿𝑡).

Lemma 11. Define 𝐵𝑘−1 := 𝐵𝑘 + 𝛾(Id−𝐵𝑘𝐴𝑘) initialized with 𝐵𝑛 := 𝐴−1
𝑛 .

Then for any 𝜀 > 0, with probability > 1− 𝜀, one has sup𝑘

⃦⃦⃦
𝐵𝑘 −𝐴−1

𝑘

⃦⃦⃦
op

=

𝑂(
√

𝛿𝑡).

Proof of Lemma 11.
With this definition one has

𝐵𝑘−1 −𝐴−1
𝑘−1 = (𝐵𝑘 −𝐴−1

𝑘)(Id−𝛾𝐴𝑘) + 𝐴−1
𝑘 −𝐴−1

𝑘−1 (61)

by a direct computation.
Now 𝐴−1

𝑘 −𝐴−1
𝑘−1 = 𝐴−1(𝜃𝑘−1)−𝐴−1(𝜃𝑘−2) = 𝑂(𝜃𝑘−1−𝜃𝑘−2) because 𝐴−1

is Lipschitz. Moreover 𝜃𝑘−1 = 𝜃𝑘−2− 𝛿𝑡𝑣𝑘−1. So 𝐴−1
𝑘 −𝐴−1

𝑘−1 = 𝑂(𝛿𝑡 ‖𝑣𝑘−1‖).
Thanks to Corollary 8, with probability > 1 − 𝜀, sup𝑘 ‖𝑣𝑘−1‖ = 𝑂(

√
𝑛) =

𝑂(1/
√

𝛿𝑡) so that 𝐴−1
𝑘 −𝐴−1

𝑘−1 is 𝑂(
√

𝛿𝑡), uniformly in 𝑘.
Now, the operator (Id−𝛾𝐴𝑘) is (1− 𝛾𝜆)-contracting. Therefore,⃦⃦⃦

𝐵𝑘−1 −𝐴−1
𝑘−1

⃦⃦⃦
op

6 (1− 𝛾𝜆)
⃦⃦⃦
𝐵𝑘 −𝐴−1

𝑘

⃦⃦⃦
op

+ 𝑂(
√

𝛿𝑡) (62)

and 𝐵𝑛 −𝐴−1
𝑛 is 0, so by induction,

⃦⃦⃦
𝐵𝑘−1 −𝐴−1

𝑘−1

⃦⃦⃦
op

= 𝑂(
√

𝛿𝑡), uniformly
in 𝑘.

Back to the proof of Theorem 5. To prove that 𝑦𝑘 − 𝜃𝑘 = 𝑂(
√

𝛿𝑡), let us
first prove that 𝑦𝑘 − 𝑧𝑘 = 𝑂(

√
𝛿𝑡). We have

𝑧𝑘 − 𝑦𝑘 = 𝛿𝑡
𝑛∑︁

𝑗=𝑘+1
𝐵𝑗(𝜉𝑗 − 𝜁𝑗) (63)

Thanks to Lemma 11, this rewrites as

𝑧𝑘 − 𝑦𝑘 = 𝛿𝑡
𝑛∑︁

𝑗=𝑘+1
𝐴−1

𝑗 (𝜉𝑗 − 𝜁𝑗) + 𝑂

⎛⎝𝛿𝑡3/2
𝑛∑︁

𝑗=𝑘+1
(‖𝜉𝑗‖+ ‖𝜁𝑗‖)

⎞⎠ (64)

14

For the first term, note that 𝐴−1
𝑗 = 𝐴−1(𝜃𝑗−1) is ℱ𝑗−1-measurable (while 𝐵𝑗

is not, because it depends on 𝜃𝑘 for 𝑘 > 𝑗). By Lemmas 9 and 10,
∑︀

𝐴𝑗𝜉𝑗

and
∑︀

𝐴𝑗𝜁𝑗 are both 𝑂(
√

𝑛) = 𝑂(
√︀

1/ 𝛿𝑡) with high probability. So the first
term of 𝑧𝑘 − 𝑦𝑘 is 𝑂(

√
𝛿𝑡).

For the second term,

𝑛∑︁
𝑗=𝑘+1

‖𝜉𝑗‖ 6
𝑛∑︁

𝑗=1
‖𝜉𝑗‖ 6

√
𝑛

⎯⎸⎸⎷ 𝑛∑︁
𝑗=1
‖𝜉𝑗‖2 (65)

by Cauchy–Schwarz. By Lemma 9, E
∑︀
‖𝜉𝑗‖2 is 𝑂(𝑛). So with probability

> 1 − 𝜀, thanks to the Markov inequality,
√︁∑︀

‖𝜉𝑗‖2 is 𝑂(
√

𝑛) where the
constant in 𝑂() depends on 𝜀. Therefore,

∑︀𝑛
𝑗=𝑘 ‖𝜉𝑗‖ is 𝑂(𝑛) = 𝑂(1/ 𝛿𝑡). The

same argument applies to 𝜁 thanks to Lemma 10.
Therefore, 𝑧𝑘 − 𝑦𝑘 is 𝑂(

√
𝛿𝑡).

Finally, 𝑧𝑘 − 𝜃𝑘 is 𝑂(𝛿𝑡 ‖𝑣𝑘‖) which is 𝑂(𝛿𝑡
√

𝑛) = 𝑂(
√

𝛿𝑡) by Corollary 8.
Therefore 𝑦𝑘 − 𝜃𝑘 is 𝑂(

√
𝛿𝑡) as well.

A Additional proofs
Proof of Proposition 2.
Start with the algorithm in Proposition 2, with any noise 𝜉𝑘. Under the
update for 𝜃𝑘 one has

𝜃𝑘 − 𝜃fast
𝑘 = (1− 𝛿𝑡𝑘)(𝜃𝑘−1 − 𝜃fast

𝑘) (66)

Now set
𝑣𝑘 := 𝜃𝑘−1 − 𝜃fast

𝑘 (67)

so that the update for 𝜃𝑘 is 𝜃𝑘 = 𝜃𝑘−1 − 𝛿𝑡𝑘𝜃𝑘−1 + 𝛿𝑡𝑘𝜃fast
𝑘 = 𝜃𝑘−1 − 𝛿𝑡𝑘𝑣𝑘 by

construction. To determine the update for 𝑣, remove 𝜃𝑘−1 from the update
of 𝜃fast

𝑘 :
𝜃fast

𝑘 − 𝜃𝑘−1 = 𝜃fast
𝑘−1 − 𝜃𝑘−1 − 𝛾𝑔fast

𝑘 + 𝛾𝜉𝑘 (68)

where we abbreviate 𝑔fast
𝑘 := 𝜕ℓ(𝑦𝑘|𝑥𝑘)

𝜕𝜃fast
𝑘−1

, the gradient of the loss at 𝜃fast
𝑘−1.

Let 𝐻𝑘 be the Hessian of the loss on the 𝑘-th example with respect to
the parameter. Since losses are quadratic, the gradient of the loss is a linear
function of the parameter:

𝑔fast
𝑘 = 𝑔𝑘 + 𝐻𝑘(𝜃fast

𝑘−1 − 𝜃𝑘−1) (69)

where 𝑔𝑘 := 𝜕ℓ(𝑦𝑘|𝑥𝑘)
𝜕𝜃𝑘−1

is the gradient of the loss at 𝜃𝑘−1.
Thus (68) rewrites as

𝑣𝑘 = −𝜃fast
𝑘−1 + 𝜃𝑘−1 + 𝛾𝑔𝑘 + 𝛾𝐻𝑘(𝜃fast

𝑘−1 − 𝜃𝑘−1)− 𝛾𝜉𝑘 (70)

15

and thanks to (66),

𝜃𝑘−1 − 𝜃fast
𝑘−1 = (1− 𝛿𝑡𝑘−1)𝑣𝑘−1 (71)

so the above rewrites as

𝑣𝑘 = (1− 𝛿𝑡𝑘−1)𝑣𝑘−1 + 𝛾𝑔𝑘 − 𝛾(1− 𝛿𝑡𝑘−1)𝐻𝑘𝑣𝑘−1 − 𝛾𝜉𝑘 (72)

If we set
𝜉𝑘 := (1− 𝛿𝑡𝑘−1)(𝑔𝑘𝑔⊤

𝑘 −𝐻𝑘)𝑣𝑘−1 (73)

then this is identical to TANGO. However, we still have to prove that such a
𝜉𝑘 is a centered noise, namely, E𝜉𝑘 = 0. This will be the case if

𝐻𝑘 = E𝑔𝑘𝑔⊤
𝑘 (74)

where the expectation is with respect to the choice of the random output 𝑦𝑘

given 𝑥𝑘. From the double definition of the Fisher matrix of a probabilistic
model, we know that

E𝑦∼𝑝𝜃(𝑦|𝑥)
𝜕ℓ(𝑦|𝑥)

𝜕𝜃

𝜕ℓ(𝑦|𝑥)
𝜕𝜃

⊤

= E𝑦∼𝑝𝜃(𝑦|𝑥)
𝜕2ℓ(𝑦|𝑥)

𝜕𝜃2 (75)

Since we have assumed that this Hessian does not depend on 𝑦, it is equal
to 𝐻𝑘.

Thus TANGO rewrites as averaged SGD with a particular model of noise
on the fast parameter.

Proof of Lemma 9.
This is a standard martingale argument. By the variance assumption on 𝐹𝑘,
one has E𝑘−1 ‖𝜉𝑘‖2 6 𝜎2. Likewise, E𝑘−1 ‖𝑀𝑘𝜉𝑘‖2 6 Λ2𝜎2. This proves the
first claim.

Moreover, since E𝑘−1𝜉𝑘 = 0 and 𝑀𝑘 is ℱ𝑘−1-measurable, E𝑘−1𝑀𝑘𝜉𝑘 = 0,
namely, the 𝑀𝑘𝜉𝑘 are martingale increments.

Setting 𝑋𝑘 :=
⃦⃦⃦∑︀𝑘

𝑗=1 𝑀𝑗𝜉𝑗

⃦⃦⃦2
, we find E𝑘𝑋𝑘+1 = 𝑋𝑘 + 2E𝑘[(𝑀𝑘+1𝜉𝑘+1) ·∑︀𝑘

𝑗=1 𝑀𝑗𝜉𝑗] + E𝑘 ‖𝑀𝑘+1𝜉𝑘+1‖2 = 𝑋𝑘 + E𝑘 ‖𝑀𝑘+1𝜉𝑘+1‖2.
Consequently, E𝑋𝑛 6 𝑛Λ2𝜎2. Moreover, E𝑘𝑋𝑘+1 > 𝑋𝑘, so that 𝑋𝑘 is a

submartingale. Therefore, by Doob’s martingale inequality, with probability
> 1− 𝜀,

sup
06𝑘6𝑛

𝑋𝑘 6
E𝑋𝑛

𝜀
6

𝑛Λ2𝜎2

𝜀
(76)

Finally,
∑︀𝑛

𝑗=𝑘 𝑀𝑗𝜉𝑗 =
∑︀𝑛

𝑗=1 𝑀𝑗𝜉𝑗 −
∑︀𝑘−1

𝑗=1 𝑀𝑗𝜉𝑗 , hence the conclusion by
the triangle inequality.

16

Proof of Lemma 10.
The argument is similar to the preceding lemma, together with the bound
on E ‖𝑣𝑘‖2 from Lemma 7. Conditionally to ℱ𝑘−1 one has E𝑘−1 ‖𝜁𝑘‖2 =
E𝑘−1𝑣⊤

𝑘−1(𝐴𝑘−𝐴𝑘)(𝐴𝑘−𝐴𝑘)𝑣𝑘−1 = E𝑘−1𝑣⊤
𝑘−1𝐴2

𝑘𝑣𝑘−1−𝑣⊤
𝑘−1𝐴2

𝑘𝑣𝑘−1 6 𝑅2𝑣⊤
𝑘−1𝐴𝑘𝑣𝑘−1 6

𝑅2𝜆max ‖𝑣𝑘−1‖2. Therefore, E ‖𝜁𝑘‖2 6 𝑅2𝜆maxE ‖𝑣𝑘−1‖2 6 4𝑅2𝜆max𝜎2/𝜆2

by Lemma 7.
The operators 𝑀𝑘 introduce an additional factor Λ2. Consequently,

E
∑︀𝑛

𝑘=1 ‖𝑀𝑘𝜁𝑘‖2 6 4𝑛𝑅2Λ2𝜆max𝜎2/𝜆2.
The rest of the proof is identical to Lemma 9.

References
[ABH16] Naman Agarwal, Brian Bullins, and Elad Hazan. Second

order stochastic optimization in linear time. arXiv preprint
arXiv:1602.03943, 2016.

[Ama98] Shun-ichi Amari. Natural gradient works efficiently in learning.
Neural Comput., 10:251–276, February 1998.

[BM13] Francis Bach and Eric Moulines. Non-strongly-convex smooth
stochastic approximation with convergence rate o (1/n). In
Advances in neural information processing systems, pages 773–
781, 2013.

[DB15] Alexandre Défossez and Francis Bach. Averaged least-mean-
squares: Bias-variance trade-offs and optimal sampling distri-
butions. In Artificial Intelligence and Statistics, pages 205–213,
2015.

[DFB16] Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach.
Harder, better, faster, stronger convergence rates for least-squares
regression. arXiv preprint arXiv:1602.05419, 2016.

[DPCB13] Guillaume Desjardins, Razvan Pascanu, Aaron Courville, and
Yoshua Bengio. Metric-free natural gradient for joint-training of
boltzmann machines. arXiv preprint arXiv:1301.3545, 2013.

[DSP+15] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, et al.
Natural neural networks. In Advances in Neural Information
Processing Systems, pages 2071–2079, 2015.

[KB17] Prasenjit Karmakar and Shalabh Bhatnagar. Two time-scale
stochastic approximation with controlled markov noise and off-
policy temporal-difference learning. Mathematics of Operations
Research, 2017.

17

[KP92] Peter E. Kloeden and Eckhard Platen. Numerical solution of
stochastic differential equations, volume 23 of Applications of
Mathematics (New York). Springer-Verlag, Berlin, 1992.

[LBOM98] Yann Le Cun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert
Müller. Efficient backprop. In Neural Networks, Tricks of the
Trade, Lecture Notes in Computer Science LNCS 1524. Springer
Verlag, 1998.

[LMB07] Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio.
Topmoumoute online natural gradient algorithm. In Advances
in Neural Information Processing Systems 20, Proceedings of the
Twenty-First Annual Conference on Neural Information Process-
ing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007, pages 849–856, 2007.

[Mar10] James Martens. Deep learning via Hessian-free optimization. In
Johannes Fürnkranz and Thorsten Joachims, editors, Proceed-
ings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel, pages 735–742. Om-
nipress, 2010.

[Mar14] James Martens. New insights and perspectives on the natural
gradient method. arXiv preprint arXiv:1412.1193, 2014.

[MB11] Éric Moulines and Francis R Bach. Non-asymptotic analysis
of stochastic approximation algorithms for machine learning.
In Advances in Neural Information Processing Systems, pages
451–459, 2011.

[MCO16] Gaétan Marceau-Caron and Yann Ollivier. Practical riemannian
neural networks. arXiv preprint arXiv:1602.08007, 2016.

[MG15] James Martens and Roger Grosse. Optimizing neural networks
with kronecker-factored approximate curvature. In International
Conference on Machine Learning, pages 2408–2417, 2015.

[MS11] James Martens and Ilya Sutskever. Learning recurrent neural
networks with Hessian-free optimization. In ICML, pages 1033–
1040, 2011.

[MS12] James Martens and Ilya Sutskever. Training deep and recurrent
neural networks with Hessian-free optimization. In Grégoire
Montavon, Geneviève B. Orr, and Klaus-Robert Müller, editors,
Neural Networks: Tricks of the Trade, volume 7700 of Lecture
Notes in Computer Science, pages 479–535. Springer, 2012.

18

[Oll15] Yann Ollivier. Riemannian metrics for neural networks I: feedfor-
ward networks. Information and Inference, 4(2):108–153, 2015.

[Oll17] Yann Ollivier. Online natural gradient as a kalman filter. arXiv
preprint arXiv:1703.00209, 2017.

[PJ92] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control and
Optimization, 30(4):838–855, 1992.

[Rup88] David Ruppert. Efficient estimations from a slowly convergent
robbins-monro process. Technical report, Cornell University
Operations Research and Industrial Engineering, 1988.

[Tad04] Vladislav B Tadic. Almost sure convergence of two time-scale
stochastic approximation algorithms. In American Control Con-
ference, 2004. Proceedings of the 2004, volume 4, pages 3802–3807.
IEEE, 2004.

19

	Additional proofs

