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Abstract

In reinforcement learning, temporal difference (TD) is the most
direct algorithm to learn the value function of a policy. For large or
infinite state spaces, exact representations of the value function are
usually not available, and it must be approximated by a function in
some parametric family.

However, with nonlinear parametric approximations (such as neural
networks), TD is not guaranteed to converge to a good approximation of
the true value function within the family, and is known to diverge even
in relatively simple cases. TD lacks an interpretation as a stochastic
gradient descent of an error between the true and approximate value
functions, which would provide such guarantees.

We prove that approximate TD is a gradient descent provided the
current policy is reversible. This holds even with nonlinear approxima-
tions.

A policy with transition probabilities 𝑃 (𝑠, 𝑠′) between states is
reversible if there exists a function 𝜇 over states such that 𝑃 (𝑠,𝑠′)

𝑃 (𝑠′,𝑠) = 𝜇(𝑠′)
𝜇(𝑠) .

In particular, every move can be undone with some probability. This
condition is restrictive; it is satisfied, for instance, for a navigation
problem in any unoriented graph.

In this case, approximate TD is exactly a gradient descent of the
Dirichlet norm, the norm of the difference of gradients between the true
and approximate value functions. The Dirichlet norm also controls the
bias of approximate policy gradient. These results hold even with no
decay factor (𝛾 = 1) and do not rely on contractivity of the Bellman
operator, thus proving stability of TD even with 𝛾 = 1 for reversible
policies.

The temporal difference (TD) algorithm is a cornerstone of reinforcement
learning, allowing for computation of the Bellman value function of a given
policy [SB98]. However, with large or continuous search spaces, maintain-
ing the exact value function at each state is unfeasible, and parametric
approximations of the value function are used instead [SB98, §8].

With such parametric approximations, TD is not guaranteed to converge
to the best approximation of the true value function within the family, or
even, to converge at all [TVR97, §X]. This is in great part because the TD
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algorithm lacks an interpretation as a stochastic gradient descent of an error
between the true and approximate value functions.

For linear families of approximating functions, TD is known to converge
to some fixed point [TVR97]; this fixed point is related, but generally not
identical, to the best approximation in the family. For nonlinear approxi-
mations, TD is known to diverge even in relatively simple cases. Current
popular families using neural networks are nonlinear.

As a theoretical study of nonlinear value function approximation, [MSB+09]
introduces an algorithm more complex than TD, involving second derivatives
of the approximating family. This algorithm has an interpretation as a
gradient descent of an objective function 𝐽 . 𝐽 is built so that the global
minimum of 𝐽 is also a fixed point of TD; however, the algorithm may also
converge to a local minimum of 𝐽 with unclear significance. Moreover this
does not address the interpretation of fixed points of TD in the first place.

Here we consider the unmodified approximate TD algorithm, with any
class of approximating functions, linear or not. We prove that approximate
TD coincides with a gradient descent of the Dirichlet norm of the error
between the true and approximate value functions (Theorem 1), provided
the current policy is reversible.

Reversibility (see Section 1) is a common assumption in the mathematical
treatment of Markov chains, because of its convenience. It implies that
any allowed transition between states can also occur in reverse with some
probability. It is satisfied, for instance, by the random walk on unoriented
graphs, or by Brownian motion and other stochastic processes.

The Dirichlet norm is used in the treatment of the convergence of Markov
chains [DSC96, LPW09], and is directly related to the spectral gap of the
random walk operator. This norm is given in a simple way by the transition
probabilities of the current policy (Eq. 11). Its natural appearance in
approximate TD is perhaps remarkable.

Therefore, approximate TD learning will minimize the approximation
error in Dirichlet norm, for reversible policies. Interestingly, this minimization
also directly controls the bias of approximate policy gradient, which also
involves the Dirichlet norm (Proposition 4).

However, in a reinforcement learning setting, the reversibility assumption
is quite restrictive. First, it implies that any move can be undone with
some probability. Second, reversibility depends both on the policy and the
environment (via Eq. 2); in general, reversibility cannot be checked knowing
the policy alone. An exception to this are navigation-type problems, in which
the policy consists in directly choosing the next state among a set of possible
states (e.g., exploring an undirected graph). For such problems, it is easy
to check reversibility, and to keep the policy reversible at all times, e.g., by
using a Gibbs policy with respect to some energy function on state space
(see Section 4).

Thus, although we have stated each result under general mathematical
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assumptions, the results here chiefly make sense in navigation-type problems,
in which the agent directly selects the next state among a set of neighbors,
and any move can be reversed.

Acknowledgments. I would like to thank Léon Bottou, Alessandro Lazaric,
Corentin Tallec and Nicolas Usunier for pointers to references and for sug-
gestions on the text.

1 Notation and Markov Chain Background
Markov decision processes. We mostly borrow notation from [MSB+09].
Consider a finite1 Markov decision process (MDP) and a policy 𝜋 for this
MDP. Let 𝜋(𝑠, 𝑎) be the probability to select action 𝑎 when in state 𝑠. Let
𝑃env((𝑠, 𝑎), 𝑠′) the probability that the environment jumps to 𝑠′ after that.
Let 𝑟1, . . . , 𝑟𝑡 be the sequence of rewards of this MDP: 𝑟𝑡 is the reward
incurred while arriving in state 𝑠𝑡, a random variable depending on 𝑎𝑡−1 and
𝑠𝑡−1.

Given an initial state 𝑠0, denote E𝜋,𝑠0 the expectation under a random
sequence (𝑎0, 𝑠1, 𝑎1, . . .) of actions and states resulting from 𝜋 and 𝑃env,
defined inductively by 𝑎𝑡 ∼ 𝜋(𝑠𝑡, ·) and 𝑠𝑡+1 ∼ 𝑃env((𝑠𝑡, 𝑎𝑡), ·).

The value function of policy 𝜋 in state 𝑠, with decay parameter 𝛾 < 1, is

𝑉 (𝑠) :=
∞∑︁

𝑡=1
𝛾𝑡−1E𝜋,𝑠[𝑟𝑡] (1)

Define the transition probability matrix 𝑃 on states, that amounts to
first selecting an action according to 𝜋, then letting the environment select
the next state [MSB+09]:

𝑃 (𝑠, 𝑠′) :=
∑︁

𝑎

𝜋(𝑠, 𝑎)𝑃env((𝑠, 𝑎), 𝑠′) (2)

The value function for policy 𝜋 satisfies the Bellman equation using
transition probabilities 𝑃 ,

𝑉 = 𝑅 + 𝛾𝑃𝑉 (3)

where 𝑃 and 𝑉 are seen as a matrix and vector, and

𝑅(𝑠) := E𝜋,𝑠[𝑟1] (4)

is the average instantaneous reward of the policy in a given state.
1The arguments presented here do not crucially rely on finiteness: algebraically the

results would hold for a countable or continuous state space as well, as long as all sums and
expectations are well-defined. We consider the finite case to avoid measurability issues.
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For 𝛾 = 1 the value function is usually infinite. We use the relative
value function [SB98, §6.7], also known as bias [Ber12, §5.1.1], denoted 𝑈 .
Assuming that the current policy has a unique stationary distribution 𝜇 over
states, the relative value function is obtained by centering rewards:

𝑈(𝑠) :=
∞∑︁

𝑡=1
E𝜋,𝑠[𝑟𝑡 − E𝜇𝑅] (5)

where E𝜇𝑅 =
∑︀

𝜇(𝑠)𝑅(𝑠) is the average reward under the stationary distribu-
tion 𝜇. (Assuming ergodicity of 𝑃 , this expectation is finite in a finite MDP
[Ber12, §5.1.1], though without the expectation the sum usually diverges
as noise accumulates.) The relative value function satisfies the Bellman
equation with 𝛾 = 1 and centered rewards [Ber12, Prop. 5.1.9]

𝑈 = (𝑅− E𝜇𝑅) + 𝑃𝑈 (6)

Approximate TD. Let 𝑉𝜃 be an approximation to the true function 𝑉 ,
belonging to some family of functions smoothly parameterized by 𝜃.

Given a transition 𝑠→ 𝑠′ with reward 𝑟, the gap in the Bellman equation
at 𝑠 is 𝑟 + 𝛾𝑉𝜃(𝑠′)− 𝑉𝜃(𝑠). For the true 𝑉 function, this gap is 0 on average
(on average, because given 𝑠, the state 𝑠′ and the reward are random).
Approximate TD (e.g. [SB98, §8.2] with 𝜆 = 0) performs an update on 𝑉𝜃(𝑠)
to reduce the gap,

𝜃 ← 𝜃 + 𝛼 Δ𝜃 (7)

where 𝛼 is a learning rate and Δ𝜃 is the update

Δ𝜃(𝑠, 𝑠′, 𝑟) :=
(︀
𝑟 + 𝛾𝑉𝜃(𝑠′)− 𝑉𝜃(𝑠)

)︀
𝜕𝜃𝑉𝜃(𝑠) (8)

This gradient step has the effect of moving 𝑉𝜃(𝑠) closer to the current
value of 𝑟 + 𝛾𝑉𝜃(𝑠′), ignoring the fact that 𝑉𝜃(𝑠′) will change as well.

Reversibility of Markov chains. A Markov chain defined by the transi-
tion matrix 𝑃 is reversible [LPW09, §1.6] if there exists a nonzero function
𝜇 on states such that

𝜇(𝑠)𝑃 (𝑠, 𝑠′) = 𝜇(𝑠′)𝑃 (𝑠′, 𝑠) ∀𝑠, 𝑠′ (9)

When nonzero this rewrites as 𝑃 (𝑠, 𝑠′)/𝑃 (𝑠′, 𝑠) = 𝜇(𝑠′)/𝜇(𝑠): the ratio
between the probability of a transition and the reverse transition must be
equal to a ratio of a function of the target states. In particular, any states 𝑠
and 𝑠′ with nonzero 𝜇 must satisfy 𝑃 (𝑠, 𝑠′) > 0⇔ 𝑃 (𝑠′, 𝑠) > 0.

For instance, the simple random walk in any unoriented graph is reversible
with 𝜇(𝑠) = deg(𝑠) [LPW09, §1.6].

When 𝑃 is reversible with respect to 𝜇, then 𝜇 (once rescaled) is a
stationary distribution of 𝑃 [LPW09, Prop. 1.19]. Indeed, the condition
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above describes detailed balance: if starting from distribution 𝜇, the flow of
mass from 𝑠 to 𝑠′ is equal to that from 𝑠′ to 𝑠, so that every exchange is
balanced and 𝜇 is stationary.

Therefore, reversibility of a Markov chain is usually expressed directly
with respect to its stationary distribution 𝜇.

On any unoriented graph, the Metropolis–Hastings construction provides
reversible random walks with arbitrary stationary distributions (see Section 4).
Thus, for navigation problems on states spaces with reversible moves, it would
be easy to keep the policy reversible.

By abuse of language, in a reinforcement learning context within a fixed
environment, we will call a policy reversible if the Markov chain 𝑃 defined
by this policy in that environment via (2) is reversible.

The Dirichlet norm for Markov chains. Given a function 𝑓 on the
state space, define its square norm under the stationary distribution 𝜇, and
the associated bilinear form, as

‖𝑓‖2𝜇 :=
∑︁

𝑠

𝜇(𝑠)𝑓(𝑠)2, ⟨𝑓, 𝑔⟩𝜇 :=
∑︁

𝑠

𝜇(𝑠)𝑓(𝑠)𝑔(𝑠) (10)

The weighting by 𝜇(𝑠) is perhaps best interpreted as an average over a long
trajectory sampled from the policy.

The Markov chain is reversible with respect to 𝜇 if and only if 𝑃 is
self-adjoint for this bilinear form, namely, if and only if ⟨𝑃𝑓, 𝑔⟩𝜇 = ⟨𝑓, 𝑃𝑔⟩𝜇,
where 𝑃 acts on a function 𝑓 over states by viewing 𝑃 as a matrix and 𝑓 as
a vector. This is a direct consequence of (9).

We also define the Dirichlet norm depending on the transition matrix 𝑃 :

‖𝑓‖2Dir := 1
2

∑︁
𝑠,𝑠′

𝜇(𝑠)𝑃 (𝑠, 𝑠′)(𝑓(𝑠′)− 𝑓(𝑠))2 (11)

where 𝜇 is the invariant distribution on states resulting from 𝑃 . This
quadratic form is actually a seminorm, since constant functions have norm
0: adding a constant to 𝑓 does not change ‖𝑓‖Dir. If 𝑃 is irreducible then
constant functions are the only such functions: if ‖𝑓1 − 𝑓2‖Dir = 0 then 𝑓1
and 𝑓2 are equal up to an additive constant. This justifies the name norm if
quotienting by constant functions.
‖𝑓‖2Dir is often called the Dirichlet form in the Markov chain literature

[DSC96, LPW09]. It is a discrete Markov chain analogue of the gradient norm∫︀
‖∇𝑓‖2 of a continuous function (the classical “Dirichlet form”): indeed, for

𝑓 a smooth function with compact support in R𝑑, and 𝑃 the nearest-neighbor
random walk on an 𝜀-grid in R𝑑, with 𝜀≪ 1, at any point 𝑥 in the grid one
has ∑︁

𝑥′

𝑃 (𝑥, 𝑥′)(𝑓(𝑥′)− 𝑓(𝑥))2 = 𝜀2

𝑑
‖∇𝑓(𝑥)‖2 + 𝑂(𝜀3) (12)
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by a direct Taylor expansion, and therefore

‖𝑓‖2Dir = 𝜀2

2𝑑

∫︁
R𝑑
‖∇𝑓(𝑥)‖2 d𝑥 + 𝑂(𝜀3) (13)

By elementary computations, the Dirichlet norm satisfies [DSC96, LPW09]

‖𝑓‖2Dir = ⟨(Id−𝑃 )𝑓, 𝑓⟩𝜇 (14)
These two norms control one another up to centering: for any 𝑓 ,

𝛽 ‖𝑓 − E𝜇𝑓‖2𝜇 6 ‖𝑓‖2Dir 6 ‖𝑓 − E𝜇𝑓‖2𝜇 6 ‖𝑓‖2𝜇 (15)

with 𝛽 the spectral gap of the random walk [DSC96]. In practice 𝛽 may be
quite small: e.g., for the simple random walk on a cycle of length 𝑛, one has
𝛽 ≈ 1/𝑛2. Therefore ‖·‖Dir can be significantly smaller than ‖·‖𝜇.

2 Approximate TD for Reversible Policies
We claim that if 𝑃 is reversible with respect to its stationary distribution
𝜇, then approximate TD learning with a class of functions 𝑉𝜃, tries to best
approximate the true function 𝑉 by gradient descent. The quality of the
approximation is defined via a mixed norm of 𝑉𝜃 − 𝑉 ,

𝛾 ‖𝑉𝜃 − 𝑉 ‖2Dir + (1− 𝛾) ‖𝑉𝜃 − 𝑉 ‖2𝜇 (16)

where 𝑉 is the true Bellman function associated with policy 𝑃 .
For 𝛾 close to 1, the Dirichlet norm ‖𝑉𝜃 − 𝑉 ‖Dir dominates, while for

small 𝛾 the 𝜇-norm dominates. (For 𝛾 = 0 the 𝑉 -function is equal to the
expected instantaneous reward.)

Thus, assuming reversibility, approximate TD will usually converge to
a local minimum of this mixed norm of 𝑉𝜃 − 𝑉 . This is independent of the
family of parametric approximations for 𝑉 . For the particular case of a linear
family over 𝜃, the mixed norm is quadratic in 𝜃, therefore convergence will be
to a global minimum of the mixed norm. The equivalence of the norms (15)
can be used to transfer the minimization property to either ‖·‖𝜇 or ‖·‖Dir up
to factors 𝛽.

Theorem 1. Consider a policy in some finite MDP. Assume the policy is
reversible, with stationary distribution 𝜇.

Let 𝑉 be the value function of the policy with decay factor 0 6 𝛾 < 1. Let
(𝑉𝜃(𝑠))𝜃 be a family of functions on the state space, smoothly parameterized
by 𝜃.

Then, on average over the stationary distribution 𝜇, the step Δ𝜃(𝑠, 𝑠′, 𝑟)
made by approximate TD (8) is equal to a gradient descent of a mixed norm
of 𝑉𝜃 − 𝑉 ,

E𝑠∼𝜇 Δ𝜃(𝑠, 𝑠′, 𝑟) = −1
2𝜕𝜃

(︁
𝛾 ‖𝑉𝜃 − 𝑉 ‖2Dir + (1− 𝛾) ‖𝑉𝜃 − 𝑉 ‖2𝜇

)︁
(17)
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where 𝑠′ and 𝑟 are the (random) next state and reward from state 𝑠.

The theorem is in expectation over states 𝑠 from the stationary distribu-
tion. Averaging over a long enough trajectory, with small enough learning
rates, will approximate this expectation. 2

At the core of the proof, TD only takes into account cross-terms between
𝜕𝜃𝑉𝜃 at the current state and the value function at the next state, while the
gradient of the error between 𝑉𝜃 and 𝑉 also comprises cross-terms between
𝜕𝜃𝑉𝜃 at the next state and the value function at the current state. In the
reversible case, the statistics of transitions 𝑠→ 𝑠′ and 𝑠′ → 𝑠 are identical in
the stationary regime, hence TD is indeed a gradient of the error.

Proof.
The expected TD step in the stationary regime is

E𝑠∼𝜇 Δ𝜃(𝑠, 𝑠′, 𝑟) =
∑︁

𝑠

𝜇(𝑠)𝜕𝜃𝑉𝜃(𝑠)E𝑠′|𝑠
[︀
𝑟 + 𝛾𝑉𝜃(𝑠′)− 𝑉𝜃(𝑠)

]︀
(18)

=
∑︁

𝑠

𝜇(𝑠)𝜕𝜃𝑉𝜃(𝑠) (𝑅 + 𝛾(𝑃𝑉𝜃)(𝑠)− 𝑉𝜃(𝑠)) (19)

= ⟨𝜕𝜃𝑉𝜃, 𝑅 + 𝛾𝑃𝑉𝜃 − 𝑉𝜃⟩𝜇 (20)

namely, the expected TD step is the dot product between the Bellman gap 𝑉𝜃,
and the direction of change 𝜕𝜃𝑉𝜃 that can be realized within the parametric
family. (In the linear case, this reduces to, e.g., Lemma 8 in [TVR97], with
𝜕𝜃𝑉𝜃 = Φ.)

Define the difference between the approximated and true 𝑉 functions:

𝑓𝜃 := 𝑉𝜃 − 𝑉 (21)

we want to prove that the expected TD step is the gradient of the mixed
norm of 𝑓𝜃.

Since 𝑉 satisfies the Bellman equation 𝑅 + 𝛾𝑃𝑉 − 𝑉 = 0 one has

𝑅 + 𝛾𝑃𝑉𝜃 − 𝑉𝜃 = 𝛾𝑃𝑓𝜃 − 𝑓𝜃 (22)

and moreover 𝜕𝜃𝑉𝜃 = 𝜕𝜃𝑓𝜃 as 𝑉 does not depend on 𝜃. Therefore, (20)
rewrites as

E𝑠∼𝜇 Δ𝜃(𝑠, 𝑠′, 𝑟) = ⟨𝜕𝜃𝑓𝜃, (𝛾𝑃 − Id)𝑓𝜃⟩𝜇 (23)
= −𝛾 ⟨𝜕𝜃𝑓𝜃, (Id−𝑃 )𝑓𝜃⟩𝜇 − (1− 𝛾)⟨𝜕𝜃𝑓𝜃, 𝑓𝜃⟩𝜇 (24)

Now the last term is the gradient of the 𝜇-norm:

⟨𝜕𝜃𝑓𝜃, 𝑓𝜃⟩𝜇 = 1
2𝜕𝜃⟨𝑓𝜃, 𝑓𝜃⟩𝜇 = 1

2𝜕𝜃 ‖𝑓𝜃‖2𝜇 (25)

2TD is a stochastic update whose noise depends on 𝑠, so that the noise is Markov instead
of iid. The general theory of stochastic algorithms with Markov noise from [BMP90] is
used in [TVR97] to offer a full treatment of TD for linear approximations 𝑉𝜃.
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Likewise, the first term is related to the norm ‖·‖2Dir thanks to (14):

‖𝑓𝜃‖2Dir = ⟨𝑓𝜃, (Id−𝑃 )𝑓𝜃⟩𝜇 (26)

hence
𝜕𝜃 ‖𝑓𝜃‖2Dir = ⟨𝜕𝜃𝑓𝜃, (Id−𝑃 )𝑓𝜃⟩𝜇 + ⟨𝑓𝜃, (Id−𝑃 )𝜕𝜃𝑓𝜃⟩𝜇 (27)

as Id−𝑃 is a linear operator that does not depend on 𝜃.
But the policy is reversible with respect to 𝜇 if and only if 𝑃 is self-adjoint

with respect to ⟨·, ·⟩𝜇. In that case,

⟨𝑓𝜃, (Id−𝑃 )𝜕𝜃𝑓𝜃⟩𝜇 = ⟨(Id−𝑃 )𝑓𝜃, 𝜕𝜃𝑓𝜃⟩𝜇 (28)

and therefore
𝜕𝜃 ‖𝑓𝜃‖2Dir = 2⟨𝜕𝜃𝑓𝜃, (Id−𝑃 )𝑓𝜃⟩𝜇 (29)

Collecting (25) and (29) into (24), we find

E𝑠∼𝜇 Δ𝜃(𝑠, 𝑠′, 𝑟) = −1
2𝛾 𝜕𝜃 ‖𝑓𝜃‖2Dir −

1
2(1− 𝛾) 𝜕𝜃 ‖𝑓𝜃‖2𝜇 (30)

as needed.

In the general, non-reversible case, the gradient descent of ‖𝑉𝜃 − 𝑉 ‖2Dir
differs from TD by

2
∑︁
𝑠,𝑠′

𝜇(𝑠)𝑃 (𝑠, 𝑠′)𝜕𝑉𝜃(𝑠′)
(︀
𝑉𝜃(𝑠′)− 𝑉𝜃(𝑠)− 𝑉 (𝑠′) + 𝑉 (𝑠)

)︀
(31)

which we cannot compute without knowing 𝑉 . At least we would have to
know how to estimate E𝑠|𝑠′𝑉 (𝑠)− 𝑉 (𝑠′) given 𝑠′. That is, we would need to
be able to sample backward transitions leading to 𝑠′, and to evaluate the
reward along these transitions. This is similar to attempting to take the
gradient of the squared Bellman error [SB98, §8.5].

We now turn to the case 𝛾 = 1. The relative value function 𝑈 can
be approximated by using approximate TD with centered rewards, namely,
by removing the stationary expected reward at each step [SB98, §6.7]. In
practice the expected reward is usually unknown and must be approximated
by averaging over the past.

Theorem 2. Consider a policy in some finite MDP. Assume the policy is
reversible, with stationary distribution 𝜇.

Let 𝑈 be the relative value function of the policy (with decay factor
𝛾 = 1). Let (𝑈𝜃(𝑠))𝜃 be a family of functions on the state space, smoothly pa-
rameterized by 𝜃. Let Δ𝜃(𝑠, 𝑠′, 𝑟) be the step made by centered approximate
TD during a transition 𝑠→ 𝑠′ with reward 𝑟, namely

Δ𝜃(𝑠, 𝑠′, 𝑟) :=
(︀
𝑟 − E𝜇𝑅 + 𝑈𝜃(𝑠′)− 𝑈𝜃(𝑠)

)︀
𝜕𝜃𝑈𝜃(𝑠) (32)
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Then, on average over the stationary distribution 𝜇, the step made by
centered approximate TD is equal to a gradient descent of the Dirichlet norm
of 𝑈𝜃 − 𝑈 ,

E𝑠∼𝜇 Δ𝜃(𝑠, 𝑠′, 𝑟) = −1
2 𝜕𝜃 ‖𝑈𝜃 − 𝑈‖2Dir (33)

where 𝑠′ and 𝑟 are the (random) next state and reward from state 𝑠.

Proof.
The proof is strictly identical, replacing 𝑉 with 𝑈 , discarding all (1−𝛾) terms,
and using that 𝑈 satisfies the centered Bellman equation (6). In particular,
the Dirichlet norm is insensitive to adding constants, so the centering of
rewards does not affect the result.

Advantage function over states, and Dirichlet norm. Take 𝛾 = 1.
Given a transition 𝑠→ 𝑠′, define the advantage of 𝑠′ at 𝑠 to be

𝐴(𝑠′|𝑠) := E[𝑟(𝑠, 𝑠′)] + 𝑈(𝑠′)− 𝑈(𝑠) (34)

and likewise the approximate advantage 𝐴𝜃(𝑠′|𝑠) := E[𝑟(𝑠, 𝑠′)]+𝑈𝜃(𝑠′)−𝑈𝜃(𝑠).
This is the “state advantage function”, defined as a function of the next state
𝑠′, as opposed to the usual advantage function which is defined on actions.
Once more, this is relevant mostly in a navigation setting where actions
directly correspond to choosing the next state.

Then the Dirichlet norm of 𝑈𝜃 − 𝑈 is the average square error of the
advantage function:

E𝑠∼𝜇E𝑠′∼𝑃 (𝑠,𝑠′)(𝐴(𝑠′|𝑠)−𝐴𝜃(𝑠′|𝑠))2 = 2 ‖𝑈 − 𝑈𝜃‖2Dir (35)

by direct substitution. Therefore, Theorem 2 can be restated using this
advantage function.

Corollary 3. For 𝛾 = 1 and for reversible policies, centered approximate
TD is a gradient descent of the average square error E𝑠∼𝜇E𝑠′∼𝑃 (𝑠,𝑠′)(𝐴(𝑠′|𝑠)−
𝐴𝜃(𝑠′|𝑠))2 of the state advantage function.

However, for 𝛾 < 1 this correspondence breaks down. Indeed, defining
the state advantage function for 𝛾 < 1 as

𝐴(𝑠′|𝑠) := E[𝑟(𝑠, 𝑠′)] + 𝛾𝑉 (𝑠′)− 𝑉 (𝑠) (36)

and likewise for 𝐴𝜃, one checks that

E𝑠∼𝜇E𝑠′∼𝑃 (𝑠,𝑠′)(𝐴(𝑠′|𝑠)−𝐴𝜃(𝑠′|𝑠))2 = 2𝛾 ‖𝑉 − 𝑉𝜃‖2Dir + (1− 𝛾)2 ‖𝑉 − 𝑉𝜃‖2𝜇
(37)

which is not quite the mixed norm minimized by TD: the weights between
the two norms are different.

9



3 The Dirichlet Norm and Policy Gradient Bias
We have proved that with reversible policies, TD approximates the value
function in the Dirichlet norm. This clarifies the behavior of TD for policy
evaluation, but does this help with policy improvement?

Classical results state that if an approximate value function is 𝜀-close
to the true value function (in sup norm), then greedy policies based on the
approximate value function will have cumulated rewards that are 2𝜀/(1− 𝛾)-
close to the optimal cumulated rewards [Ber12, Prop 2.3.3].

The Dirichlet norm, on the other hand, controls how close policy gradient
based on the true or approximate value functions are to each other: this is
Proposition 4 below. Interestingly, this directly holds with 𝛾 = 1, without
factors 1/(1− 𝛾).

In a non-episodic setting, policy gradient is defined as the gradient of the
expected reward under the stationary distribution of the policy [Ber12, §7.4]:
the goal is to maximize the average reward collected along an infinitely long
trajectory of this policy.

So let 𝜋𝜙 be a policy smoothly parameterized by 𝜙. Let 𝜇𝜙 be the
stationary distribution of 𝜋𝜙. Here we do not assume that policies are
reversible.

The expected reward of the policy with parameter 𝜙 is

ℛ(𝜙) :=
∑︁

𝑠

𝜇𝜙(𝑠)𝑅(𝑠) (38)

with 𝑅(𝑠) the expected instantaneous reward in state 𝑠 (which itself depends
on 𝜙 via the expectation in (4)). The direction of the policy gradient update
is 𝜕𝜙ℛ(𝜙).

The classical policy gradient theorem [Ber12, §7.4.1] provides a way to
compute this gradient: it is an expectation under the stationary distribution,
of the correlation between expected rewards and action probabilities. 3 The
direction of the gradient can be expressed as [Ber12, Eq. (7.120)] 4

Δ𝜙 := 𝜕𝜙ℛ(𝜙)
= E𝑠∼𝜇𝜙, 𝑎∼𝜋𝜙(𝑠,𝑎), 𝑠′∼𝑃env((𝑠,𝑎),𝑠′)

[︀(︀
𝑟(𝑠, 𝑎, 𝑠′) + 𝑈(𝑠′)

)︀
𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)

]︀
(39)

with 𝑈 the relative value function of the current policy, and 𝑟(𝑠, 𝑎, 𝑠′) the
random reward incurred during the transition 𝑠→ 𝑠′.

The policy gradient Δ𝜙 is an expectation over transitions (𝑠, 𝑎, 𝑠′) from
the current policy. As such, an algorithm averaging over long trajectories

3This assumes the environment is independent from the parameter 𝜙 used by the agent.
4Eq. (7.120) in [Ber12] uses centered rewards in the definition of 𝑄̃. This is indifferent:

since
∑︀

𝑎
𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎) = 0, any constant or baseline can be subtracted.
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from this policy would be a stochastic gradient descent with expected step
Δ𝜙. (See also the note after Theorem 1.)

Using an approximation of 𝑈 in (39) would result in a bias; we show that
this bias is controlled by the Dirichlet norm of the approximation of 𝑈 .

Proposition 4. Let 𝑈̂ be any approximation of the relative value function
𝑈 of the policy 𝜋𝜙 (undiscounted, 𝛾 = 1). Let ̂︂Δ𝜙 be the approximate policy
gradient computed from 𝑈̂ , namely

̂︂Δ𝜙 := E𝑠∼𝜇𝜙, 𝑎∼𝜋𝜙(𝑠,𝑎), 𝑠′∼𝑃env((𝑠,𝑎),𝑠′)
[︁(︁

𝑟(𝑠, 𝑎, 𝑠′) + 𝑈̂(𝑠′)
)︁

𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)
]︁

(40)
Then the bias of this approximate policy gradient is at most⃦⃦⃦̂︂Δ𝜙−Δ𝜙

⃦⃦⃦2
6 2

⃦⃦⃦
𝑈 − 𝑈̂

⃦⃦⃦2

Dir
·
(︁
E𝑠∼𝜇𝜙E𝑎∼𝜋𝜙(𝑠,𝑎) ‖𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)‖2

)︁
(41)

As a consequence, if 𝑈 tends to 𝑈̂ in Dirichlet norm then the bias tends
to 0. Of course this is the bias over a single step of policy gradient. [SRB11]
contains a full study of the asymptotic bias produced by a bias at each step
of a stochastic gradient descent, under convexity assumptions (which would
hold close to a nondegenerate local minimum in typical cases); in particular,
under strong convexity, a bounded bias at each step of a gradient descent only
produces a bounded deviation from the true trajectory [SRB11, Prop. 3].

Since ‖·‖Dir 6 ‖·‖𝜇, the inequality also holds with
⃦⃦⃦
𝑈 − 𝑈̂

⃦⃦⃦
𝜇
, but is less

sharp (for instance, ‖·‖Dir is insensitive to adding a constant to 𝑈̂), sometimes
much less so depending on the spectral gap 𝛽 in (15).

The last factor, E𝑠∼𝜇𝜙E𝑎∼𝜋𝜙(𝑠,𝑎) ‖𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)‖2, does not depend on the
way the value function is approximated: it depends only on the way policies
are parameterized. It is equal to the trace of the Fisher information matrix
of the policy 𝜋𝜙(𝑠, 𝑎) with respect to 𝜙. Thus, there is a clear contribution
from value function approximation, and another from the geometry of the
space of policies.

Proof.
The proof is essentially the Cauchy–Schwarz inequality after subtracting a
suitable baseline.

For short, denote

𝜉(𝑠, 𝑎, 𝑠′) := 𝜇𝜙(𝑠)𝜋𝜙(𝑠, 𝑎)𝑃env((𝑠, 𝑎), 𝑠′) (42)

the stationary distribution over transitions (𝑠, 𝑎, 𝑠′) when using policy 𝜋𝜙.
Gradients of log-probabilities have expectation 0, so for any state 𝑠,

E𝑎∼𝜋𝜙(𝑠,𝑎) 𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎) = 0 (43)
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therefore, in the policy gradient formula (39) we can subtract any baseline
depending on 𝑠, as is often done in practice:

Δ𝜙 = E(𝑠,𝑎,𝑠′)∼𝜉

[︀(︀
𝑟(𝑠, 𝑎, 𝑠′) + 𝑈(𝑠′)− 𝑈(𝑠)

)︀
𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)

]︀
(44)

and likewise

̂︂Δ𝜙 = E(𝑠,𝑎,𝑠′)∼𝜉

[︁(︁
𝑟(𝑠, 𝑎, 𝑠′) + 𝑈̂(𝑠′)− 𝑈̂(𝑠)

)︁
𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)

]︁
(45)

therefore

̂︂Δ𝜙−Δ𝜙 = E(𝑠,𝑎,𝑠′)∼𝜉

[︁(︁
𝑈̂(𝑠′)− 𝑈(𝑠′)− 𝑈̂(𝑠) + 𝑈(𝑠)

)︁
𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)

]︁
(46)

so by the Cauchy–Schwarz inequality

⃦⃦⃦̂︂Δ𝜙−Δ𝜙
⃦⃦⃦2

6
(︂
E(𝑠,𝑎,𝑠′)∼𝜉

(︁
𝑈̂(𝑠′)− 𝑈(𝑠′)− 𝑈̂(𝑠) + 𝑈(𝑠)

)︁2
)︂
·(︁

E(𝑠,𝑎,𝑠′)∼𝜉 ‖𝜕𝜙 ln 𝜋𝜙(𝑠, 𝑎)‖2
)︁

(47)

Now marginalizing 𝜉(𝑠, 𝑎, 𝑠′) over 𝑎 yields 𝜇𝜙(𝑠)𝑃𝜙(𝑠, 𝑠′) by definition (2).
So by definition of the Dirichlet norm (11), the first factor above is exactly
2

⃦⃦⃦
𝑈̂ − 𝑈

⃦⃦⃦2

Dir
.

Note that the Dirichlet norm itself depends on the parameter 𝜙, via 𝑃
and 𝜇.

4 Discussion and Conclusion
Advantage function, and Dirichlet norm versus 𝐿2 norm. Converg-
ing to the true value function in 𝐿2 norm emphasizes getting the correct
value at each state. On the other hand, converging to the true value func-
tion in Dirichlet norm emphasizes getting the correct differences of values
between consecutive states: this is clear from the definition (11). Getting
these differences right amounts to being able to compare the values of states.
Proposition 4 formalizes this intuition: the smaller the error in Dirichlet
norm, the smaller the bias in policy gradient. This is also directly related
to the advantage function (Eq. 35) for 𝛾 = 1: for reversible policies and
𝛾 = 1, TD is just a gradient descent of the 𝐿2 error of the state advantage
function (34). Here, advantages are computed on next states 𝑠′, rather than
on actions as is more common; so once more this is mostly relevant for
navigation problems or when a good model of the environment is available.
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On convergence speed when 𝛾 → 1. In Theorem 1, the properties of
TD do not deteriorate when 𝛾 → 1: the Dirichlet norm ‖𝑉𝜃 − 𝑉 ‖Dir will
decrease at a rate that does not depend on 𝛾. More precisely, TD with step
size 𝜂 is a gradient descent of the mixed norm with step size 𝜂/2. On the
other hand, the convergence proof from [TVR97] in the linear case provides
smaller and smaller learning rates when 𝛾 → 1: the rate of decrease of the
error 𝜃 − 𝜃* is given by Lemma 9 from [TVR97], which contains a (𝛾 − 1)
factor (though this can be improved using the spectral gap of the Markov
chain).

Optimizing among reversible policies. The reversibility constraint on
the policy is obviously a major restriction of these results.

Still, the space of reversible policies is quite large. For instance, for
any positive function 𝑓 on any unoriented graph, the celebrated Metropolis–
Hastings construction [LPW09, §3.2.2] provides a reversible random walk on
the edges of the graph, whose stationary distribution is proportional to 𝑓 .
The probability to jump from 𝑠 to 𝑠′ is set to

𝑃𝑓 (𝑠, 𝑠′) = min
(︂ 1

deg(𝑠) ,
𝑓(𝑠′)

𝑓(𝑠) deg(𝑠′)

)︂
(48)

for any adjacent states 𝑠 ̸= 𝑠′ in the graph. Then 𝜇(𝑠) := 𝑓(𝑠)∑︀
𝑠′ 𝑓(𝑠′) is a

reversible stationary distribution of 𝑃𝑓 . More generally, if 𝑃0 is any “default”
Markov chain, then the Markov chain 𝑃𝑓 (𝑠, 𝑠′) = min

(︁
𝑃0(𝑠, 𝑠′), 𝑓(𝑠′)𝑃0(𝑠′,𝑠)

𝑓(𝑠)

)︁
for 𝑠 ̸= 𝑠′, is reversible with respect to this same 𝜇.

Thus, in some cases it would be possible to explicitly keep the policy in a
space of reversible policies. In particular, any navigation problem where the
agent directly selects the next state among a set of neighbors of the current
state, defines an unoriented graph. For such problems, policies targeting any
stationary distribution 𝑓 over states can be obtained by parameterizing a
family of positive functions 𝑓 over the state space in any convenient way,
and setting the family of policies to the Metropolis–Hastings Markov chain
𝑃𝑓 for 𝑓 in this family. A natural candidate would be Gibbs distributions of
the form 𝑓(𝑠) = exp(𝛽𝑉𝜃(𝑠)) where 𝑉𝜃 is the family used to approximate the
value function: for large 𝛽 this targets high-value states.

Conclusion. We have proved that the unmodified approximate TD al-
gorithm is exactly a gradient descent of the Dirichlet norm of the error
between the true and approximate value functions, provided the policy is
reversible. The Dirichlet norm also controls the bias of approximate policy
gradient and the 𝐿2 error on the advantage function over states, even for
non-reversible policies. However, the reversibility condition is restrictive:
only for navigation problems can one easily maintain the policy within a set
of reversible policies.
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Thus, at least for navigation problems, the Dirichlet norm provides a
coherent theoretical picture of what approximate TD does.
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