
Unbiased Online Recurrent Optimization

Corentin Tallec, Yann Ollivier

Abstract

The novel Unbiased Online Recurrent Optimization (UORO) algorithm allows
for online learning of general recurrent computational graphs such as recurrent
network models. It works in a streaming fashion and avoids backtracking through
past activations and inputs. UORO is computationally as costly as Truncated
Backpropagation Through Time (truncated BPTT), a widespread algorithm for online
learning of recurrent networks [Jae02]. UORO is a modification of NoBackTrack
[OTC15] that bypasses the need for model sparsity and makes implementation easy
in current deep learning frameworks, even for complex models.

Like NoBackTrack, UORO provides unbiased gradient estimates; unbiasedness is
the core hypothesis in stochastic gradient descent theory, without which convergence
to a local optimum is not guaranteed. On the contrary, truncated BPTT does not
provide this property, leading to possible divergence.

On synthetic tasks where truncated BPTT is shown to diverge, UORO converges.
For instance, when a parameter has a positive short-term but negative long-term
influence, truncated BPTT diverges unless the truncation span is very significantly
longer than the intrinsic temporal range of the interactions, while UORO performs
well thanks to the unbiasedness of its gradients.

Current recurrent network learning algorithms are ill-suited to online learning via a
single pass through long sequences of temporal data. Backpropagation Through Time
(BPTT [Jae02]), the current standard for training recurrent architectures, is well suited
to many short training sequences. Treating long sequences with BPTT requires either
storing all past inputs in memory and waiting for a long time between each learning step,
or arbitrarily splitting the input sequence into smaller sequences, and applying BPTT to
each of those short sequences, at the cost of losing long term dependencies.

This paper introduces Unbiased Online Recurrent Optimization (UORO), an online
and memoryless learning algorithm for recurrent architectures: UORO processes and
learns from data samples sequentially, one sample at a time. Contrary to BPTT, UORO
does not maintain a history of previous inputs and activations. Moreover, UORO is
scalable: processing data samples with UORO comes at a similar computational and
memory cost as just running the recurrent model on those data.

Like most neural network training algorithms, UORO relies on stochastic gradient
optimization. The theory of stochastic gradient crucially relies on the unbiasedness
of gradient estimates to provide convergence to a local optimum. To this end, in the
footsteps of NoBackTrack (NBT) [OTC15], UORO provides provably unbiased gradient
estimates, in a scalable, streaming fashion.

1



Unlike NBT, though, UORO can be easily implemented in a black-box fashion on
top of an existing recurrent model in current machine learning software, without delving
into the mathematical structure and code of the model.

The framework for recurrent optimization and UORO is introduced in Section 2. The
final algorithm is reasonably simple (Alg. 1), but its derivation (Section 3) is more complex.
In Section 4, UORO is shown to provide convergence on a set of synthetic experiments
where truncated BPTT fails to display reliable convergence. An implementation of
UORO is provided here.

1 Related work
A widespread approach to online learning of recurrent neural networks is Truncated
Backpropagation Through Time (truncated BPTT) [Jae02], which mimics Backpropaga-
tion Through Time, but zeroes gradient flows after a fixed number of timesteps. This
truncation makes gradient estimates biased; consequently, truncated BPTT does not
provide any convergence guarantee. Learning is biased towards short-time dependencies.
1. Storage of some past inputs and states is required.

Online, exact gradient computation methods have long been known (Real Time
Recurrent Learning (RTRL) [WZ89, Pea95]), but their computational cost discards them
for reasonably-sized networks.

NoBackTrack (NBT) [OTC15] also provides unbiased gradient estimates for recurrent
neural networks. However, contrary to UORO, NBT cannot be applied in a blackbox
fashion, making it extremely tedious to implement for complex architectures.

Other previous attempts to introduce generic online learning algorithms with a
reasonable computational cost all result in biased gradient estimates. Echo State Networks
(ESNs) [Jae02, JLPS07] simply set to 0 the gradients of recurrent parameters. Others,
e.g., [MNM02, Ste04], introduce approaches resembling ESNs, but keep a partial estimate
of the recurrent gradients. The original Long Short Term Memory algorithm [HS97]
(LSTM now refers to a particular architecture) cuts gradient flows going out of gating
units to make gradient computation tractable. Decoupled Neural Interfaces [JCO+16]
bootstrap truncated gradient estimates using synthetic gradients generated by feedforward
neural networks. The algorithm in [MMW02] provides zeroth-order estimates of recurrent
gradients via diffusion networks; it could arguably be turned online by running randomized
alternative trajectories. Generally these approaches lack a strong theoretical backing,
except arguably ESNs.

1 Arguably, truncated BPTT might still learn some dependencies beyond its truncation range, by a
mechanism similar to Echo State Networks [Jae02]. However, truncated BPTT’s gradient estimate has a
marked bias towards short-term rather than long-term dependencies, as shown in the first experiment of
Section 4.

2

https://github.com/ctallec/uoro


2 Background
UORO is a learning algorithm for recurrent computational graphs. Formally, the aim is
to optimize θ, a parameter controlling the evolution of a dynamical system

st+1 = Fstate(xt+1, st, θ) (1)
ot+1 = Fout(xt+1, st, θ) (2)

in order to minimize a total loss L :=
∑

0≤t≤T
`t(ot, o∗t ), where o∗t is a target output at time

t. For instance, a standard recurrent neural network, with hidden state st (preactivation
values) and output ot at time t, is described with the update equations Fstate(xt+1, st, θ) :=
Wx xt+1+Ws tanh(st)+b and Fout(xt+1, st, θ) := Wo tanh(Fstate(xt+1, st, θ))+bo; here the
parameter is θ = (Wx,Ws, b,Wo, bo), and a typical loss might be `s(os, o∗s) := (os − o∗s)2.

Optimization by gradient descent is standard for neural networks. In the spirit of
stochastic gradient descent, we can optimize the total loss L =

∑
0≤t≤T

`t(ot, o∗t ) one term

at a time and update the parameter online at each time step via

θ ← θ − ηt
∂`t
∂θ

>
(3)

where ηt is a scalar learning rate at time t. (Other gradient-based optimizers can also be
used, once ∂`t

∂θ is known.) The focus is then to compute, or approximate, ∂`t∂θ .
BPTT computes ∂`t

∂θ by unfolding the network through time, and backpropagating
through the unfolded network, each timestep corresponding to a layer. BPTT thus
requires maintaining the full unfolded network, or, equivalently, the history of past inputs
and activations. 2 Truncated BPTT only unfolds the network for a fixed number of
timesteps, reducing computational cost in online settings [Jae02]. This comes at the cost
of biased gradients, and can prevent convergence of the gradient descent even for large
truncations, as clearly exemplified in Fig. 1a.

3 Unbiased Online Recurrent Optimization
Unbiased Online Recurrent Optimization is built on top of a forward computation of
the gradients, rather than backpropagation. Forward gradient computation for neural
networks (RTRL) is described in [WZ89] and we review it in Section 3.1. The derivation
of UORO follows in Section 3.2. Implementation details are given in Section 3.3. UORO’s
derivation is strongly connected to [OTC15] but differs in one critical aspect: the sparsity
hypothesis made in the latter is relieved, resulting in reduced implementation complexity
without any model restriction.

2Storage of past activations can be reduced, e.g. [GMD+16]. However, storage of all past inputs is
necessary.

3



3.1 Forward computation of the gradient

Forward computation of the gradient for a recurrent model (RTRL) is directly obtained
by applying the chain rule to both the loss function and the state equation (1), as follows.

Direct differentiation and application of the chain rule to `t+1 yields

∂`t+1
∂θ

= ∂`t+1
∂o

(ot+1, o
∗
t+1) ·

(
∂Fout
∂s

(xt+1, st, θ)
∂st
∂θ

+ ∂Fout
∂θ

(xt+1, st, θ)
)
. (4)

Here, the term ∂st/∂θ represents the effect on the state at time t of a change of
parameter during the whole past trajectory. This term can be computed inductively from
time t to t+1. Intuitively, looking at the update equation (1), there are two contributions
to ∂st+1/∂θ:

• The direct effect of a change of θ on the computation of st+1, given st.

• The past effect of θ on st via the whole past trajectory.

With this in mind, differentiating (1) with respect to θ yields

∂st+1
∂θ

= ∂Fstate
∂θ

(xt+1, st, θ) + ∂Fstate
∂s

(xt+1, st, θ)
∂st
∂θ

. (5)

This gives a way to compute the derivative of the instantaneous loss without storing
past history: at each time step, update ∂st/∂θ from ∂st−1/∂θ, then use this quantity to
directly compute ∂`t+1/∂θ. This is how RTRL [WZ89] proceeds.

A huge disadvantage of RTRL is that ∂st/∂θ is of size dim(state) × dim(params).
For instance, with a fully connected standard recurrent network with n units, ∂st/∂θ
scales as n3. This makes RTRL impractical for reasonably sized networks.

UORO modifies RTRL by only maintaining a scalable, rank-one, provably unbiased
approximation of ∂st/∂θ, to reduce the memory and computational cost. This approx-
imation takes the form s̃t ⊗ θ̃t, where s̃t is a column vector of the same dimension as
st, θ̃t is a row vector of the same dimension as θ>, and ⊗ denotes the outer product.
The resulting quantity is thus a matrix of the same size as ∂st/∂θ. The memory cost
of storing s̃t and θ̃t scales as dim(state) + dim(params). Thus UORO is as memory
costly as simply running the network itself (which indeed requires to store the current
state and parameters). The following section details how s̃t and θ̃t are built to provide
unbiasedness.

3.2 Rank-one trick: from RTRL to UORO

Given an unbiased estimation of ∂st/∂θ, namely, a stochastic matrix G̃t such that
E G̃t = ∂st/∂θ, unbiased estimates of ∂`t+1/∂θ and ∂st+1/∂θ can be derived by plugging
G̃t in (4) and (5). Unbiasedness is preserved thanks to linearity of the mean, because
both (4) and (5) are affine in ∂st/∂θ.

4



Thus, assuming the existence of a rank-one unbiased approximation G̃t = s̃t ⊗ θ̃t at
time t, we can plug it in (5) to obtain an unbiased approximation Ĝt+1 at time t+ 1

Ĝt+1 = ∂Fstate
∂θ

(xt+1, st, θ) + ∂Fstate
∂s

(xt+1, st, θ) s̃t ⊗ θ̃t. (6)

However, in general this is no longer rank-one.
To transform Ĝt+1 into G̃t+1, a rank-one unbiased approximation, the following

rank-one trick, introduced in [OTC15] is used:

Proposition 1. Let A be a real matrix that decomposes as

A =
k∑
i=1

vi ⊗ wi. (7)

Let ν be a vector of k independent random signs, and ρ a vector of k positive numbers.
Consider the rank-one matrix

Ã :=
(

k∑
i=1

ρiνivi

)
⊗
(

k∑
i=1

νiwi
ρi

)
(8)

Then Ã is an unbiased rank-one approximation of A: EνÃ = A.

The rank-one trick can be applied for any ρ. The choice of ρ influences the variance
of the approximation; choosing

ρi =
√
‖wi‖ / ‖vi‖ (9)

minimizes the variance of the approximation, E
[
‖A− Ã‖22

]
[OTC15].

The UORO update is obtained by applying the rank-one trick twice to (6). First,
∂Fstate
∂θ (xt+1, st, θ) is reduced to a rank one matrix, without variance minimization. 3

Namely, let ν be a vector of independant random signs; then,

∂Fstate
∂θ

(xt+1, st, θ) = Eν
[
ν ⊗ ν> ∂Fstate

∂θ
(xt+1, st, θ)

]
. (10)

This results in a rank-two, unbiased estimate of ∂st+1/∂θ by substituting (10) into (6)

∂Fstate
∂s

(xt+1, st, θ) s̃t ⊗ θ̃t + ν ⊗
(
ν>

∂Fstate
∂θ

(xt+1, st, θ)
)
. (11)

Applying Proposition 1 a second time to this rank-two estimate, with variance minimiza-
tion, yields UORO’s estimate G̃t+1

G̃t+1 =
(
ρ0
∂Fstate
∂s

(xt+1, st, θ) s̃t + ρ1 ν

)
⊗
(
θ̃t
ρ0

+ ν

ρ1

> ∂Fstate
∂θ

(xt+1, st, θ)
)

(12)

3 Variance minimization is not used at this step, since computing
√

‖wi‖
‖vi‖ for every i is not scalable.

5



which satisfies that Eν G̃t+1 is equal to (6). (By elementary algebra, some random signs
that should appear in (12) cancel out.) Here

ρ0 =

√√√√ ‖θ̃t‖
‖∂Fstate

∂s (xt+1, st, θ) s̃t‖
, ρ1 =

√√√√‖ν> ∂Fstate
∂θ (xt+1, st, θ)‖
‖ν‖

(13)

minimizes variance of the second reduction.
The unbiased estimation (12) is rank-one and can be rewritten as G̃t+1 = s̃t+1 ⊗ θ̃t+1

with the update

s̃t+1 ← ρ0
∂Fstate
∂s

(xt+1, st, θ) s̃t + ρ1 ν (14)

θ̃t+1 ←
θ̃t
ρ0

+ ν>

ρ1

∂Fstate
∂θ

(xt+1, st, θ). (15)

Initially, ∂s0/∂θ = 0, thus s̃0 = 0, θ̃0 = 0 yield an unbiased estimate at time 0.
Using this initial estimate, as well as the update rules (14)–(15), an estimate of ∂st/∂θ
is obtained at all subsequent times, allowing for online estimation of ∂`t/∂θ. Thanks to
the construction above, by induction all these estimates are unbiased. 4

We are left to demonstrate that these update rules are scalably implementable.

3.3 Implementation

Implementing UORO requires maintaining the rank-one approximation and the corre-
sponding gradient loss estimate.

UORO’s estimate of the loss gradient ∂`t+1/∂θ at time t+ 1 is expressed by plugging
into (4) the rank-one approximation ∂st/∂θ ≈ s̃t ⊗ θ̃t, which results in(

∂`t+1
∂o

(ot+1, o
∗
t+1) ∂Fout

∂s
(xt+1, st, θ) · s̃t

)
θ̃t + ∂`t+1

∂o
(ot+1, o

∗
t+1) ∂Fout

∂θ
(xt+1, st, θ).

(16)

Backpropagating ∂`t+1/∂ot+1 once through Fout returns
(∂`t+1/∂ot+1 · ∂Fout/∂xt+1, ∂`t+1/∂ot+1 · ∂Fout/∂st, ∂`t+1/∂ot+1 · ∂Fout/∂θ), thus pro-
viding all necessary terms to compute (16).

Updating s̃ and θ̃ requires applying (14)–(15) at each step. Backpropagating the
vector of random signs ν once through Fstate returns

(
_,_, ν> ∂Fstate(xt+1, st, θ)/∂θ

)
,

providing for (15).
Updating s̃ via (14) requires computing (∂Fstate/∂st) · s̃t. This is computable numer-

ically through

∂Fstate
∂s

(xt+1, st, θ) · s̃t = lim
ε→0

Fstate(xt+1, st + ε s̃t, θ)− Fstate(xt+1, st, θ)
ε

(17)

4 In practice, since θ changes during learning, unbiasedness only holds exactly in the limit of small
learning rates. This is not specific to UORO as it also affects RTRL.

6



computable through two applications of Fstate. This operation is referred to as tangent
forward propagation [SVLD91] and can also often be computed algebraically.

This allows for complete implementation of one step of UORO (Alg. 1). The cost of
UORO (including running the model itself) is three applications of Fstate, one application
of Fout, one backpropagation through Fout and Fstate, and a few elementwise operations
on vectors and scalar products.

The resulting algorithm is detailed in Alg. 1. F.forward(v) denotes pointwise
application of F at point v, F.backprop(v, δo) backpropagation of row vector δo through
F at point v, and F.forwarddiff(v, δv) tangent forward propagation of column vector
δv through F at point v. Notably, F.backprop(v, δo) has the same dimension as v>,
e.g. Fout.backprop((xt+1, st, θ), δot+1) has three components, of the same dimensions
as x>t+1, s>t and θ>.

The proposed update rule for stochastic gradient descent (3) can be directly adapted
to other optimizers, e.g. Adaptative Momentum (Adam) [KB14] or Adaptative Gradi-
ent [DHS10]. Vanilla stochastic gradient descent (SGD) and Adam are used hereafter.
In Alg. 1, such optimizers are denoted by SGDOpt and the corresponding parameter
update given current parameter θ, gradient estimate gt and learning rate ηt is denoted
SGDOpt.update(gt, ηt, θ).

3.4 Memory-T UORO and rank-k UORO

The unbiased gradient estimates of UORO come at the price of noise injection via ν.
This requires smaller learning rates. To reduce noise, UORO can be also used on top of
truncated BPTT so that recent gradients are computed exactly.

Formally, this just requires applying Algorithm 1 to a new transition function F T
which is just T consecutive steps of the original model F . Then the backpropagation
operation in Algorithm 1 becomes a backpropagation over the last T steps, as in truncated
BPTT. The loss of one step of F T is the sum of the losses of the last T steps of F , namely

`t+Tt+1 :=
t+T∑
k=t+1

`k. Likewise, the forward tangent propagation is performed through F T .

This way, we obtain an unbiased gradient estimate in which the gradients from the last
T steps are computed exactly and incur no noise.

The resulting algorithm is referred to as memory-T UORO. Its scaling in T is similar
to T -truncated BPTT, both in terms of memory and computation. In the experiments
below, memory-T UORO reduced variance early on, but did not significantly impact
later performance.

The noise in UORO can also be reduced by using higher-rank gradient estimates
(rank-r instead of rank-1), which amounts to maintaining r distinct values of s̃ and θ̃ in
Algorithm 1 and averaging the resulting values of g̃. We did not exploit this possibility
in the experiments below, although r = 2 visibly reduced variance in preliminary tests.

7



Algorithm 1 — One step of UORO (from time t to t+ 1)
Inputs:

– xt+1, o∗t+1, st and θ: input, target, previous recurrent state, and parameters
– s̃t column vector of size state, θ̃t row vector of size params such that E s̃t ⊗ θ̃t =
∂st/∂θ

– SGDOpt and ηt+1: stochastic optimizer and its learning rate

Outputs:

– `t+1, st+1 and θ: loss, new recurrent state, and updated parameters
– s̃t+1 and θ̃t+1 such that E s̃t+1 ⊗ θ̃t+1 = ∂st+1/∂θ
– g̃t+1 such that E g̃t+1 = ∂`t+1/∂θ

/* compute next state and loss */
st+1 ← Fstate.forward(xt+1, st, θ), ot+1 ← Fout.forward(xt+1, st, θ)
`t+1 ← `(ot+1, o

∗
t+1)

/* compute gradient estimate */
(_, δs, δθ)← Fout.backprop

(
(xt+1, st, θ),

∂`t+1
∂ot+1

)
g̃t+1 ← (δs · s̃t) θ̃t + δθ

/* prepare for reduction */
Draw ν, column vector of random signs ±1 of size state
s̃t+1 ← Fstate.forwarddiff((xt+1, st, θ), (0, s̃t, 0))
(_,_, δθg)← Fstate.backprop((xt+1, st, θ), ν>)

/* compute normalizers */

ρ0 ←

√
‖θ̃t‖

‖s̃t+1‖+ ε
+ ε , ρ1 ←

√
‖δθg‖
‖ν‖+ ε

+ ε with ε = 10−7

/* reduce */

s̃t+1 ← ρ0 s̃t+1 + ρ1 ν, θ̃t+1 ←
θ̃t
ρ0

+ δθg
ρ1

/* update θ */
SGDOpt.update(g̃t+1, ηt+1, θ)

8



4 Experiments illustrating truncation bias
The set of experiments below aims at displaying specific cases where the biases from
truncated BPTT are likely to prevent convergence of learning. On this test set, UORO’s
unbiasedness provides steady convergence, highlighting the importance of unbiased
estimates for general recurrent learning.

Influence balancing. The first test case exemplifies learning of a scalar parameter
θ which has a positive influence in the short term, but a negative one in the long run.
Short-sightedness of truncated algorithms results in abrupt failure, with the parameter
exploding in the wrong direction, even with truncation lengths exceeding the temporal
dependency range by a factor of 10 or so.

Consider the linear dynamics

st+1 = Ast + (θ, . . . , θ,−θ, . . . ,−θ)> (18)

with A a square matrix of size n with Ai,i = 1/2, Ai,i+1 = 1/2, and 0 elsewhere; θ ∈ R is
a scalar parameter. The second term has p positive-θ entries and n− p negative-θ entries.
Intuitively, the effect of θ on a unit diffuses to shallower units over time (Fig. 2a). Unit i
only feels the effect of θ from unit i+ n after n time steps, so the intrinsic time scale of
the system is ≈ n. The loss considered is a target on the shallowest unit s1,

`t = 1
2(s1

t − 1)2. (19)

Learning is performed online with vanilla SGD, using gradient estimates either from
UORO or T -truncated BPTT with various T . Learning rates are of the form ηt = η

1+
√
t

for suitable values of η.
As shown in Fig. 1a, UORO solves the problem while T -truncated BPTT fails to

converge for any learning rate, even for truncations T largely above n. Failure is caused
by ill balancing of time dependencies: the influence of θ on the loss is estimated with the
wrong sign due to truncation. For n = 23 units, with 13 minus signs, truncated BPTT
requires a truncation T ≥ 200 to converge.

Next-character prediction. The next experiment is character-level synthetic text
prediction: the goal is to train a recurrent model to predict the t+ 1-th character of a
text given the first t online, with a single pass on the data sequence.

A single layer of 64 units, either GRU or LSTM, is used to output a probability vector
for the next character. The cross entropy criterion is used to compute the loss.

At each time t we plot the cumulated loss per character on the first t characters,
1
t

∑t
s=1 `s. (Losses for individual characters are quite noisy, as not all characters in the

sequence are equally difficult to predict.) This would be the compression rate in bits
per character if the models were used as online compression algorithms on the first t
characters. In addition, in Table 1 we report a “recent” loss on the last 100, 000 characters,
which is more representative of the model at the end of learning.

9



1× 10−12

1× 10−10

1× 10−8

1× 10−6

1× 10−4

1× 10−2

1× 100

1× 102

1× 104

1× 106

0 20000 40000 60000 80000 100000

Lo
ss

Epoch

UORO
1-truncated BPTT

10-truncated BPTT
100-truncated BPTT
200-truncated BPTT

(a)

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

10000 100000 1× 106 1× 107

Av
er
ag
e
lo
g-
lo
ss

(b
its

pe
r
ch
ar
ac
te
r)

Epoch

UORO, GRU
4-truncated BPTT, GRU

4-truncated BPTT, LSTM
UORO, LSTM

True entropy rate
Entropy rate no memory

(b)

Figure 1: (a)Results for influence balancing with 23 units and 13 minus; note the vertical
log scale. (b)Learning curves on distant brackets (1, 5, 5, 10).

Optimization was performed using Adam with the default setting β1 = 0.9 and
β2 = 0.999, and a decreasing learning rate ηt = γ

1+α
√
t
, with t the number of characters

processed. As convergence of UORO requires smaller learning rates than truncated BPTT,
this favors UORO. Indeed UORO can fail to converge with non-decreasing learning rates,
due to its stochastic nature.

`t

`t+1

θ

θ

1
2

θ

θ

1
2

1
2

−θ

−θ

1
2

1
2

−θ

−θ

1
2

1
2

−θ

−θ

1
2

1
2

layers

time

(a) Influence balancing, 4 units, 3 minus.

[a]eecbe[a]
[j]fbfjd[j]
[c]bgddc[c]
[d]gjhai[d]
[e]iaghb[e]
[h]bigaj[h]

(b) Distant brackets (1, 5, 10).

aaaaaa
bbbbbb
aaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbb
aaaaaaaa
bbbbbbbb
(c) anbn(1, 32).

Figure 2: Datasets.

Distant brackets dataset (s, k, a). The distant brackets dataset is generated by
repeatedly outputting a left bracket, generating s random characters from an alphabet
of size a, outputting a right bracket, generating k random characters from the same
alphabet, repeating the same first s characters between brackets and finally outputting a
line break. A sample is shown in Fig. 2b.

UORO is compared to 4-truncated BPTT. Truncation is deliberately shorter than the
inherent time range of the data, to illustrate how bias can penalize learning if the inherent
time range is unknown a priori. The results are given in Fig. 1b (with learning rates
using α = 0.015 and γ = 10−3). UORO beats 4-truncated BPTT in the long run, and
succeeds in reaching near optimal behaviour both with GRUs and LSTMs. Truncated
BPTT remains stuck near a memoryless optimum with LSTMs; with GRUs it keeps
learning, but at a slow rate. Still, truncated BPTT displays faster early convergence.

10



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1× 106 1× 107

Av
er
ag

e
lo
g-
lo
ss

(b
its

pe
r
ch
ar
ac
te
r)

Epoch

UORO, GRU
UORO, LSTM

16-truncated BPTT, GRU
16-truncated BPTT, LSTM

True entropy rate
Entropy rate no memory

(a)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1× 106 1× 107

Av
er
ag

e
lo
g-
lo
ss

(b
its

pe
r
ch
ar
ac
te
r)

Epoch

UORO, GRU
Memory-2 UORO, GRU
Memory-16 UORO, GRU
1-truncated BPTT, GRU
2-truncated BPTT, GRU

16-truncated BPTT, GRU
True entropy rate

Entropy rate no memory

(b)

Figure 3: Learning curves on anbn(1,32)

anbn(k, l) dataset The anbn(k, l) dataset tests memory and counting [GS01]; it is
generated by repeatedly picking a random number n between k and l, outputting a string
of n a’s, a line break, n b’s, and a line break (see Fig. 2c). The difficulty lies in matching
the number of a’s and b’s.

Table 1: Averaged loss on the 105 last iterations on anbn(1, 32).

Truncation LSTM GRU

UORO
No memory (default) 0.147 0.155
Memory-2 0.149 0.174
Memory-16 0.154 0.149

Truncated BPTT
1 0.178 0.231
2 0.149 0.285
16 0.144 0.207

Plots for a few setups are given in Fig. 3. The learning rates used α = 0.03 and
γ = 10−3.

Numerical results at the end of training are given in Table 1. For reference, the true
entropy rate is 0.14 bits per character, while the entropy rate of a model that does not
understand that the numbers of a’s and b’s coincide would be double, 0.28 bpc.

Here, in every setup, UORO reliably converges and reaches near optimal performance.
Increasing UORO’s range does not significantly improve results: providing an unbiased
estimate is enough to provide reliable convergence in this case. Meanwhile, truncated
BPTT performs inconsistently. Notably, with GRUs, it either converges to a poor
local optimum corresponding to no understanding of the temporal structure, or exhibits
gradient reascent in the long run. Remarkably, with LSTMs rather than GRUs, 16-
truncated BPTT reliably reaches optimal behavior on this problem even with biased
gradient estimates.

11



Conclusion
We introduced UORO, an algorithm for training recurrent neural networks in a streaming,
memoryless fashion. UORO is easy to implement, and requires as little computation time
as truncated BPTT, at the cost of noise injection. Importantly, contrary to most other
approaches, UORO scalably provides unbiasedness of gradient estimates. Unbiasedness
is of paramount importance in the current theory of stochastic gradient descent.

Furthermore, UORO is experimentally shown to benefit from its unbiasedness, con-
verging even in cases where truncated BPTT fails to reliably achieve good results or
diverges pathologically.

12



References
[DHS10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Technical Report UCB/EECS-
2010-24, EECS Department, University of California, Berkeley, Mar 2010.

[GMD+16] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and
Alex Graves. Memory-efficient backpropagation through time. CoRR,
abs/1606.03401, 2016.

[GS01] Felix A Gers and Jürgen Schmidhuber. Long short-term memory learns
context free and context sensitive languages. In Artificial Neural Nets and
Genetic Algorithms, pages 134–137. Springer, 2001.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[Jae02] Herbert Jaeger. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the “echo state network” approach, 2002.

[JCO+16] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals,
Alex Graves, and Koray Kavukcuoglu. Decoupled neural interfaces using
synthetic gradients. CoRR, abs/1608.05343, 2016.

[JLPS07] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Op-
timization and Applications of Echo State Networks with Leaky-Integrator
Neurons. Neural Networks, 20(3):335–352, April 2007.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

[MMW02] Javier R. Movellan, Paul Mineiro, and R. J. Williams. A Monte Carlo EM
approach for partially observable diffusion processes: Theory and applications
to neural networks. Neural Comput., 14(7):1507–1544, July 2002.

[MNM02] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time
computing without stable states: A new framework for neural computation
based on perturbations. Neural Comput., 14(11):2531–2560, November 2002.

[OTC15] Yann Ollivier, Corentin Tallec, and Guillaume Charpiat. Training recurrent
networks online without backtracking. CoRR, abs/1507.07680, 2015.

[Pea95] Barak A Pearlmutter. Gradient calculations for dynamic recurrent neural
networks: A survey. IEEE Transactions on Neural networks, 6(5):1212–1228,
1995.

13



[Ste04] Jochen J. Steil. Backpropagation-decorrelation: online recurrent learning
with O(N) complexity. In Neural Networks, 2004. Proceedings. 2004 IEEE
International Joint Conference on, volume 2, pages 843–848 vol.2. IEEE,
July 2004.

[SVLD91] Patrice Y. Simard, Bernard Victorri, Yann LeCun, and John S. Denker.
Tangent prop - a formalism for specifying selected invariances in an adaptive
network. In John E. Moody, Stephen Jose Hanson, and Richard Lippmann,
editors, NIPS, pages 895–903. Morgan Kaufmann, 1991.

[WZ89] Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Comput., 1(2):270–280, June
1989.

14


	Related work
	Background
	Unbiased Online Recurrent Optimization
	Forward computation of the gradient
	Rank-one trick: from RTRL to UORO
	Implementation
	Memory-T UORO and rank-k UORO

	Experiments illustrating truncation bias

