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Abstract. We try to provide a visual introduction to some objects used in
Riemannian geometry: parallel transport, sectional curvature, Ricci curvature,
Bianchi identities... We then explain some of the strategies used to define ana-
logues of curvature in non-smooth or discrete spaces, beginning with Alexan-
drov curvature and δ-hyperbolic spaces, and insisting on various notions of
generalized Ricci curvature, which we briefly compare.

The first part of this text covers in a hopefully intuitive and visual way some of
the usual objects of Riemannian geometry: parallel transport, sectional curvature,
Ricci curvature, the Riemann tensor, Bianchi identities... For each of those we try
to provide one or several pictures that convey the meaning (or at least one possible
interpretation) of the formal definition.

Next, we consider the problem of defining analogues of curvature for non-
smooth or discrete objets. This is in the spirit of “synthetic” or “coarse” geometry, in
which large-scale properties of metric spaces are investigated instead of fine small-
scale properties; one of the aims being to be impervious to small perturbations of
the underlying space. Motivation for these non-smooth or discrete extensions often
comes from various other fields of mathematics, such as group theory or optimal
transport. From this viewpoint is emerging a theory of metric measure spaces, see
for instance [Gro99].

Thus we cover the definitions and mention some applications of δ-hyperbolic
spaces and Alexandrov curvature (generalizing sectional curvature), and of two no-
tions of generalized Ricci curvature: displacement convexity of entropy introduced
by Sturm and Lott–Villani (following Renesse–Sturm and others), and coarse Ricci

curvature as used by the author. We mention new theorems obtained for the origi-
nal Riemannian case thanks to this more general viewpoint. We also briefly discuss
the differences between these two approaches to Ricci curvature.

Note that scalar curvature is not covered, for lack of the author’s competence
about recent developments and applications in this field.

1. Riemannian curvatures

The purpose of this section is not to give a formal course in Riemannian geome-
try. We will therefore not reproduce formal definitions of the basic objects, but try
to convey some pictorial intuition behind them. For a more formal introduction we
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refer, for instance, to [DC92], or to [Ber03] for a survey of numerous developments
in Riemannian geometry.

Riemannian manifolds. The most basic example of a Riemannian manifold
is a smooth surface embedded in three-dimensional Euclidean space. More gener-
ally, any smooth manifold can be seen as a set X ⊂ R

p for some integer p, such
that, at any point x ∈ X, there exists an N -dimensional affine subspace of Rp which
coincides with X at first order around x. This subspace is the tangent space TxX
at x ∈ X, and N is the dimension of X.

Note that if t 7→ c(t) is a smooth curve inside X, then its derivative dc(t)/dt is
a vector tangent to X at c(t).

A Riemannian manifold is a manifold equipped with a Riemannian metric,
that is, for each x ∈ X, a definite positive quadratic form defined on TxX. For
instance, if X is included in R

p, such a quadratic form might be the restriction to
TxX of the canonical Euclidean structure on R

p. We will assume that the quadratic
form depends smoothly on x ∈ X.

Such a quadratic form, applied to any tangent vector, allows to define the norm
of this vector. By integration, one can then define the length of a curve in X. The
distance (inside X) between two points of X is then defined as the infimum of the
lengths of all curves between these two points. This turns X into a metric space.

We will always assume that X is connected and complete for this metric.
A geodesic is a curve γ in X such that, for any two close enough points on

γ, the distance in X between those two points is obtained by travelling along γ.
Locally, such curves always exist. Moreover, given a tangent vector x ∈ X and a
tangent vector v ∈ TxX at x, there exists exactly one geodesic starting at x such
that its initial velocity is v and which has constant speed. This will be the geodesic

starting along v.
The endpoint of v will be the point, denoted expx v, obtained after following

the geodesic starting along v for a unit time.

Parallel transport. Say we are given two very close points x and y in a
Riemannian manifold. Is there a way to compare a tangent vector at x and a
tangent vector at y, even though they live, a priori, in different vector spaces? This
is done via parallel transport.

So let wx be a tangent vector at x; we are looking for a tangent vector wy at
y which would be “the same” as wx. Since x and y are very close, we may assume
that y is the endpoint of a small tangent vector v at x. For simplicity, we will
assume that wx is orthogonal to v, and that the norm of wx is very small. Then,
there exists a particular tangent vector wy at y: it is the one whose endpoint is
closest to the endpoint of wx, given the restriction that wy be orthogonal to v (if
this orthogonality condition is lifted, then of course there is a tangent vector at y
whose endpoint is exactly the endpoint of wx, but this vector “turns back towards
x”). The vector wy is the best candidate to be “the same” as wx, translated to y
(Fig. 1).

Parallel transport is the operation mapping wx to wy. (More exactly, since we
have assumed that wx is very small, we take the linear component of the map wx 7→
wy for small wx and then extend by linearity to a map between the whole spaces
TxX and TyX. We have also assumed that wx is orthogonal to v; by definition, we



VISUAL INTRODUCTION TO CURVATURES AND GENERALIZATIONS 3

x v
wy

y

wx

Figure 1. Parallel transport of wx along v.
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Figure 2. The sectional curvature K.

define the parallel transport of v from x to y as the velocity at y of the geodesic
starting along v.)

More generally, parallel transport of a vector w along any smooth curve starting
at x can be defined by decomposing the curve into small intervals and performing
successive parallel transports along these subintervals.

Sectional curvature and Ricci curvature. Let us now define various cur-
vatures. The first one we consider is sectional curvature.

Let again x be a point in X, v a small tangent vector at x, y the endpoint
of v, wx a small tangent vector at x, and wy the parallel transport of wx from x
to y along v. If, instead of a Riemannian manifold, we were working in ordinary
Euclidean space, the endpoints x′ and y′ of wx and wy would constitute a rectangle
with x and y. But in a manifold, generally these four points do not constitute a
rectangle any more.

Indeed, because of curvature, the two geodesics starting along wx and wy may
diverge from or converge towards each other. Thus, on a sphere (positive curvature),
two meridians starting at two points on the equator have parallel initial velocities,
yet they converge at the North (and South) pole. Since the initial velocities wx and
wy are parallel to each other, this effect is at second order in the distance along the
geodesics (Fig. 2).

Thus, let us consider the points lying at distance ε from x and y on the geodesics
starting along wx and wy, respectively. In a Euclidean setting, the distance between
those two points would be |v|, the same as the distance between x and y. The
discrepancy from this Euclidean case is used as a definition of a curvature.

Definition 1.1 (Sectional curvature). Let (X, d) be a Riemannian manifold.
Let v and wx be two unit-length tangent vectors at some point x ∈ X. Let ε, δ > 0.
Let y be the endpoint of δv and let wy be obtained by parallel transport of wx from



4 YANN OLLIVIER
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Figure 3. The Ricci curvature Ric.

x to y. Then

d(expx εwx, expy εwy) = δ

(

1− ε2

2
K(v, w) +O(ε3 + ε2δ)

)

when (ε, δ) → 0. This defines a quantity K(v, w), which is the sectional curvature

at x in the directions (v, w).

In contrast, Ricci curvature only depends on one tangent vector v; it is obtained
by averaging K(v, w) over all the directions w (Fig. 3).

Definition 1.2 (Ricci curvature). Let x be a point in an N -dimensional Rie-
mannian manifold. Let v be a unit tangent vector at x. The Ricci curvature along v
is the quantity Ric(v) defined as N times the average of K(v, w), where the average
is taken over w running over the unit sphere in the tangent space TxX.

The scaling factor N comes from the traditional definition of Ricci curvature
as the trace of a linear map, which results in a sum over a basis rather than an
average over the unit sphere. Actually Ric(v) is a quadratic form in v and is usually
denoted Ric(v, v); the Ricci tensor is the corresponding bilinear form Ric(v, v′).

This definition can be rephrased as follows, due to the fact that we used parallel
transport wx 7→ wy in the definition of curvature.

Corollary 1.3. Let v be a unit tangent vector at a point x in a Riemannian

manifold. Let ε, δ > 0 and let y be the endpoint of δv.
Let Sx be the set of endpoints of all tangent vectors at x with norm ε, and

likewise let Sy be the set of endpoints of the sphere of radius ε in the tangent space

at y. Then, if Sx is mapped to Sy using parallel transport, the average distance

between a point of Sx and its image is

δ

(

1− ε2

2N
Ric(v, v) +O(ε3 + ε2δ)

)

when (ε, δ) → 0.

If balls are used instead of spheres, the scaling factor is ε2

2(N+2) instead of ε2

2N .

Thus, Ricci curvature is positive when “balls are closer than their centers are”.
We will see that this property is well suited as a definition in more general, non-
smooth spaces.

Let us mention another, more dynamical way to visualize Ricci curvature. Let
again v be a unit tangent vector at some point x in the Riemannian manifold X.
Let C be any small neighborhood of X, having an arbitrary shape. For each point
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Figure 4. Curvature and volume change under geodesic flow.

z in C, let us consider the geodesic t 7→ zt starting at z and whose initial velocity is
v (we implicitly use parallel transport to identify v with a tangent vector at z). On
average, the geodesics starting from various choices of z get closer or further apart
depending on the sign of curvature. Now let us have C “slide along” these geodesics;
more exactly, let Ct be the set {zt, z ∈ C}. In particular C0 = C (Fig. 4).

Then we have

volCt = volC (1− t2

2 Ric(v) + smaller terms)

(note that the derivative of volCt is 0 for t = 0 because we choose geodesics with
parallel initial speeds). Thus Ricci curvature controls the evolution of volumes
under the geodesic flow.

Signs of curvature. Positive curvature and negative curvature are very dif-
ferent worlds; we refer to [Gro91] for a thorough discussion of the “sign and geo-
metric meaning of curvature”. It is often the case, in Riemannian geometry, that
theorems in negative curvature assume that all sectional curvatures K(v, w) are
negative, whereas theorems in positive curvature assume that the Ricci curvatures
Ric(v, v) is positive for any v (which is weaker than having all sectional curvatures
K(v, w) > 0).

We give here two basic theorems of Riemannian geometry illustrating each
of these situations. When Ricci curvature is positive, the Bonnet–Myers theorem
states that if a Riemannian manifold is more positively curved than a sphere, then
its diameter is smaller.

Theorem 1.4 (Bonnet–Myers). Let X be an N -dimensional Riemannian man-

ifold. Let inf Ric(X) be the infimum of the Ricci curvature Ric(v, v) over all unit

tangent vectors v.
Let SN ⊂ R

N+1 be the unit sphere of the same dimension as X. Then, if

inf Ric(X) > inf Ric(SN ) then diamX 6 diamSN .

Several other theorems about positive Ricci curvature follow this pattern of a
comparison with the sphere of the same dimension.
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Figure 5. The Riemann curvature R(v, w)u.

As for negative curvature, let us mention the Cartan–Hadamard theorem, which
implies that all topological information about a negatively curved manifold is con-
tained in its fundamental group. This is obviously false in positive curvature, since,
for instance, a sphere is simply connected.

Theorem 1.5 (Cartan–Hadamard). Let X be an N -dimensional Riemannian

manifold and assume that K(v, w) 6 0 for any pair of tangent vectors v, w at the

same point. Then the universal cover of X is homeomorphic to R
N .

The Riemann curvature tensor. The next object in our journey through
curvatures is the Riemann curvature tensor. It depends on three tangent vectors
u, v, w at a given point x, and its output is another tangent vector at x, denoted
R(v, w)u. Before we define this tensor, we need to say more about parallel transport.

Given two tangent vectors v and w at point x, we may parallel-transport w
along v; this yields a tangent vector w′ at the endpoint of v. Likewise, we may
also parallel-transport v along w, getting a tangent vector v′ at the endpoint of w.
In Euclidean space, the vectors v, w, v′, w′ make up a parallelogram; in particular,
the endpoints of v′ and of w′ coincide. But we could expect that, in a general Rie-
mannian manifold, the endpoints of v′ and w′ may not coincide anymore. Actually
things are not so bad: for small v and w, the endpoints of v′ and w′ do coincide at
the first order at which this is non-trivially true (more precisely, up to o(|v| |w|)).
This property of parallel transport is called torsion-freeness and expresses the fact
that “parallelograms close up”.

Actually this property was used implicitly before: when we defined curvature,
we had to look at a phenomenon of order O(|v| |w|2).

Let us now consider three vectors u, v, w instead of two. Let us keep the par-
allelogram built from u and v, and let us parallel-transport u along the path vw,
or along the path wv. This time, we obtain two different results; their difference is
the Riemann curvature R(v, w)u, which is again a tangent vector (Fig. 5).

This proves that, in contrast to parallelograms, cubes don’t close up in Rie-
mannian geometry.

Let us take a further look at this. Given three directions u, v, w for the sides
of a cube whose base corner is x, there are several ways to build the farthest corner
of the cube: we saw that the paths vwu and wvu do not end up at the same point,
and that the difference is R(v, w)u. (When we say “the path vwu”, it means: follow
the tangent vector v to its endpoint, parallel-transport w along this path, follow
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Figure 6. The first Bianchi identity.

the obtained vector to its endpoint, parallel-transport u along the whole path, and
follow the obtained vector to its endpoint.)

All in all, given u, v and w, there are six possible paths to the farthest corner,
hence six possible ways to define this farthest corner. However, these six paths
define only three distinct endpoints: indeed, torsion-freeness guarantees that vw =
wv, but torsion-freeness at the endpoint of u also guarantees that uvw = uwv. The
latter equality just expresses that “lateral faces of the cube close up”.

These three distinct endpoints form a triangle. We saw that, by definition, one
of the sides of this triangle is R(v, w)u; by symmetry the other sides are R(w, u)v
and R(u, v)w. Since the three sides of any triangle add up to 0 we get

R(u, v)w +R(v, w)u+R(w, u)v = 0

which is the first Bianchi identity and was discovered by Ricci.
With Bruno Sévennec (unpublished work), we turned this heuristic argument

into a very short formal proof along the same lines, by interpreting expressions such
as uvw in a suitable quotient of a jet space of curves in X starting at the base point
x.

Riemannian volume measure. Another notion we will use from Riemannian
geometry is that of Riemannian volume measure. This is a measure on an N -
dimensional Riemannian manifolds which gives volume εN to a small cube made
of N tangent vectors at the same point, each of length ε and orthogonal to each
other.

This informal definition yields a volume n-form associated with a Riemannian
manifold. This volume form can be denoted

√
det g where g is the bilinear form

defining the metric. The reason is as follows: At a given point x, the metric g is
a bilinear form on the tangent space E = TxX. A bilinear form is an application
from E to its dual E∗. Thus, from g : E → E∗ we can apply the textbook definition
of the determinant of a linear map, passing to the exterior product: det g =

∧

Ng is
a map from

∧

NE to
∧

NE∗ ≃
(∧

NE
)∗

. That is to say, det g is a bilinear form on
∧

NE (which is a 1-dimensional space since N = dimE). Moreover det g is definite
positive whenever g is. The square root

√
det g is thus a norm on

∧

NE, that is, a
volume form.
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2. Discrete curvatures

Let us now consider some generalizations of these notions to more general spaces
than smooth manifolds. This is motivated by the consideration of “synthetic” ge-
ometry: a geometry that focuses on “large-scale” instead of “small-scale” properties,
and uses mainly metric comparisons, avoiding local properties such as differentia-
bility, with the goal of being invariant under small perturbations of the underlying
space. We refer for instance to Gromov’s influential book [Gro99].

Two types of spaces can be considered. Geodesic spaces are continuous spaces in
which the distance between points is always realized by the length of a continuous
curve; important examples are piecewise smooth objects, or objects obtained as
limits of smooth manifolds, which can be thought of as manifolds with singularities.

Just as important are truly discrete spaces; typical examples are discrete groups
equipped with a Cayley graph metric, or spaces of configurations of discrete statis-
tical physics systems, for instance.

We will briefly mention sectional curvature, the generalizations of which are now
well understood especially in negative curvature, with deep connections for instance
with group theory. We will focus on generalizations of Ricci curvature, which were
developed more recently. In passing we will mention new results obtained thanks to
a discrete viewpoint on Ricci curvature, both in the original setting of Riemannian
manifolds and in a surprisingly diverse array of discrete settings.

2.1. Non-smooth and discrete sectional curvature: Alexandrov cur-

vature and Gromov-hyperbolicity. There are at least two notions of metric
spaces having bounds on their sectional curvature. The first one is restricted to ge-
odesic spaces and is that of spaces with curvature bounds in the sense of Alexandrov

(also termed locally CAT(k) spaces for curvature bounded above, locally CAT+(k)
spaces for curvature bounded below). The second is that of δ-hyperbolic spaces (or
Gromov-hyperbolic spaces) and applies to any metric space, but only for negative
curvature “at large scale”.

Both notions have been extremely successful, in particular in negative curva-
ture, as δ-hyperbolic spaces and CAT(0) spaces have deep connections to geometric
group theory, for instance. We cannot list all the relevant work and we refer the
reader to [BH99] or [BBI01] for a more extensive treatment.

Curvature bounds in the sense of Alexandrov go as follows. Let X be a geodesic
space. A triangle in X is a triplet of points (a, b, c) ∈ X3, together with three curves
from a to b, b to c and c to a, respectively (the sides of the triangle), such that the
lengths of these curves realize the distances d(a, b), d(b, c) and d(c, a), respectively.

The curvature criterion of Alexandrov (also called CAT criterion, for Cartan–
Alexandrov–Topogonov), states that triangles become “thinner” in negative cur-
vature and “fatter” in positive curvature. This will be measured by the distance
between a vertex of the triangle, and a point on the opposite side, compared to
that expected in the Euclidean situation (Fig. 7).

For any triangle in X, there exists a comparison triangle (A,B,C) in the Eu-
clidean plane whose sides have the same lengths. More generally, let Sk is the
standard 2-dimensional space of constant curvature k (Euclidean plane if k = 0,
Euclidean sphere of radius 1/

√
k with its intrinsic metric when k > 0, and hyper-

bolic plane with curvature k if k < 0), and let rk be the diameter of diamSk (which
is infinite if k 6 0). Then, for any triangle in X with perimeter at most 2rk, there
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Figure 7. Comparison triangles and Alexandrov curvature.

exists a comparison triangle (Ak, Bk, Ck) in Sk, whose sides have the same lengths
as (a, b, c). Such a comparison triangle is unique up to isometry, and will be called
the comparison triangle of (a, b, c) in curvature k.

Definition 2.1. Let X be a geodesic space and k a real number. X is a space

of curvature 6 k in the sense of Alexandrov if, for any small enough triangle (a, b, c)
in X, and for any point x on the side bc of this triangle, the following holds:

d(a, x) 6 dSk
(Ak, Xk)

where (Ak, Bk, Ck) is the comparison triangle of (a, b, c) in curvature k, and Xk is
the point on the side BkCk corresponding to x, i.e. such that d(Xk, Bk) = d(x, b).
Likewise, X is a space of curvature > k in the sense of Alexandrov if, in the same
situation, the reverse inequality

d(a, x) > dSk
(Ak, Xk)

holds.

This definition is compatible with the Riemannian notion of sectional curvature.
For instance, we have the following ([BH99], Theorem II.1A.6).

Theorem 2.2. Let X be a complete smooth Riemannian manifold and k ∈ R.

Then X has curvature at most k in the sense of Alexandrov if and only if for any

two tangent vectors v, w at the same point, with unit length and orthogonal to each

other, one has K(v, w) 6 k.

The terminology CAT(k) space, for curvature 6 k, applies to the case when
all triangles, not only small ones, satisfy the comparison criterion. For complete
smooth Riemannian manifolds this is equivalent to negative sectional curvature
and being simply connected. On the other hand, for spaces of curvature bounded
below, imposing the condition on small triangles implies the same for all triangles
(Topogonov’s theorem, Theorem 10.5 in [BBI01]).

Spaces with curvature bounds in the sense of Alexandrov keep a number of
properties of Riemannian manifolds with controlled sectional curvature. For in-
stance, the Cartan–Hadamard theorem (Theorem 1.5) in this context states that
any CAT(0) space is contractible ([BH99], Corollary II.1.5).

The Bonnet–Myers theorem (Theorem 1.4) applies as well: a space with curva-
ture at least k > 0 in the sense of Alexandrov has diameter at most π/

√
k ([BBI01],

Theorem 10.4.1); otherwise, triangles would get too big with respect to their com-
parison triangle in the sphere. Note that here, contrary to Theorem 1.4, we do not
work with a Ricci curvature bound but with a (stronger) sectional curvature bound
instead.
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Figure 8. A δ-hyperbolic quadrilateral.

Spaces with curvature bounds in the sense of Alexandrov do not stray too far
from smooth manifolds. For instance ([BBI01], Theorem 10.8.3), an Alexandrov
space with Hausdorff dimension n contains an open dense subset which is an n-
dimensional manifold.

For discrete spaces, there is a very successful notion of negative sectional cur-
vature, namely δ-hyperbolicity (also called Gromov-hyperbolicity). This notion is
usually attributed to Rips and was thoroughly developed by Gromov [Gro87], es-
pecially in the context of geometric group theory, where it led to the notion of
hyperbolic groups.

δ-hyperbolicity states that, at large scales, a space behaves metrically almost
like a tree. It disregards any phenomena occurring at small scales; in particular, a
bounded metric space X is always δ-hyperbolic with δ = diamX.

The simplest definition of δ-hyperbolicity involves triangles, and thus assumes
that the space is geodesic. For non-necessarily geodesic metric spaces, the condition
is expressed in terms of quadrilaterals, as follows.

The underlying idea is that large n-gons in the hyperbolic plane look almost
like trees, their sides clinging to each other. Let us pass to the ideal limit case
and consider four points w, x, y, z in a tree. Assume the general situation where
no branch of the subtree joining these points is degenerate: this subtree is made of
five segments, one of which lies in the middle.

Let us consider the three pairwise sums of distances d(w, x)+d(y, z), d(w, y)+
d(x, z) and d(w, z) + d(x, y). Of these three sums, only one (the smallest one) does
not involve the length of the middle segment of the tree; the other two are equal.
This can be summed up by the ultrametric-like inequality

d(w, x) + d(y, z) 6 max (d(w, y) + d(x, z), d(w, z) + d(x, y))

for all points w, x, y, z in a metric tree. By permuting the roles of the points, we
get that, among the three sums involved, the largest two must be equal (because
the largest is bounded by the max of the smallest and second-largest).

Now we just perturb this inequality by an additive term. This means that, in
a hyperbolic space, the metric relations between any four points are the same as in
a tree up to a small error (Fig. 8).

Definition 2.3. Let δ > 0. A metric space X is δ-hyperbolic if

d(w, x) + d(y, z) 6 max (d(w, y) + d(x, z), d(w, z) + d(x, y)) + 2δ

for any points w, x, y, z in X.
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This does not imply any local topological property when δ > 0: indeed, any-
thing can happen at scales smaller than δ. One key feature of this definition is its
invariance under quasi-isometries [BH99], which makes it very robust.

This notion is an extension of negative sectional curvature “at large scales”
in the sense that any Riemannian manifold with negative sectional curvature and
which is simply connected, is δ-hyperbolic. Moreover CAT(−k) spaces for k > 0 are
δ-hyperbolic, so that δ-hyperbolicity is compatible with global negative curvature in
the sense of Alexandrov. Finally, δ-hyperbolic groups (groups whose Cayley graph
is δ-hyperbolic) are important objects and keep many of the features of fundamental
groups of negatively curved manifolds. Interestingly, these groups turn out to be,
in some sense, “generic” among discrete groups [Gro87, Oll05].

2.2. Discrete Ricci curvature: the coarse Ricci curvature approach.

Let us now turn to generalizations of Ricci curvature. The survey [Lot07] contains
a discussion of the geometric interest of bounds on Ricci curvature, and the need
for a generalized notion of positive Ricci curvature for metric measure spaces.

This time, let us begin with the discrete case, and the notion of coarse Ricci

curvature used by the author [Oll07, Oll09]. Another approach introduced by
Sturm [Stu06] and Lott–Villani [LV09], based on displacement convexity of en-

tropy, is also presented below. Coarse Ricci curvature keeps fewer properties from
Riemannian manifolds, but is somewhat simpler to present and has a wider range
of examples.

Consider the following motivation: From a statistical physics viewpoint, at
a macroscopic level there should not be much difference between a system of n
particles whose total energy is exacly E, and a system of n particles whose energies
are chosen independently with average E/n, when n is large. For free particles, the
energy E is (proportional to) the sum of square velocities; so in the first situation
the configuration space is a sphere of radius

√
E in speed space R

3n, while for the
case of independent particles, the configuration space for speeds is the whole of R3n,
but equipped with a Gaussian measure (the Gaussian measure being the Maxwell–
Boltzmann distribution exp(−E/kT ) for this energy E). If we pick a large number
of points according to this latter Gaussian distribution, a set will emerge which is,
in some sense, close to a sphere. A third model for our particles of average energy
E would be, for each particle, to choose at random an energy either 0 or 2E/3n
along each axis; in this third model, the configuration space would be the discrete
hypercube {0, 2E/3n}3n.

One can wonder whether these three macroscopically similar viewpoints have
anything in common from a geometric point of view. Since the sphere (in the first
example) is the archetypical space of positive curvature, one can wonder whether the
last two examples (Euclidean space with a Gaussian measure, and discrete hyper-
cube) somehow have positive curvature. For instance, Gromov argues in [Gro99]
that the discrete hypercube shares a lot of geometric properties with a sphere.

A successful approach in that direction, with a rich progeny over the years, is
Bakry–Émery theory [BE84, BE85]. It allows to define a notion of Ricci curvature
for a manifold equipped with a measure (more exactly, for a manifold equipped
with a diffusion process whose invariant measure is the measure considered). This
way, the Euclidean space endowed with a Gaussian measure acquires positive Ricci
curvature. However, the use of diffusions make its adaptation to a discrete setting
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delicate, and this theory is not stable if we replace the space considered with a
“close enough” space.

Thus it would be nice to have at hand a notion of Ricci curvature, which would
be valid “at a certain scale” and thus robust and insensitive to the local structure,
discrete or continuous. Ideally, this should be compatible with the Bakry–Émery
approach, be easy to check on examples, capture some common features for our
three examples above, and allow to generalize some of the properties of Riemannian
manifolds with positive Ricci curvature.

Coarse Ricci curvature directly transposes Definition 1.2, or more precisely the
Corollary 1.3. The point is to compare the distances between two small balls, with
the distance between their centers. Ricci curvature will be positive if small balls

are closer than their centers are.
For this we need to define what the distance between balls is. It will be

practical to think of a ball as a measure of mass 1 around some point (in line
with Definition 1.2 which involves an average over the sphere). Then we can use
the well-known transportation distance (also called Wasserstein distance, Monge–
Kantorovich–Rubinstein distance, or earth-mover distance), defined as follows [Vil03].

Definition 2.4 (Transportation distance). Let µ1, µ2 be two measures with
mass 1 in a metric space (X, d). A transference plan (or coupling) from µ1 to µ2

is a measure ξ on X ×X such that
∫

y
dξ(x, y) = dµ1(x) and

∫

x
dξ(x, y) = dµ2(y).

(Thus dξ(x, y) represents the amount of mass travelling from x to y.)
The L1 transportation distance between µ1 and µ2, denoted W1(µ1, µ2), is the

best average travelling distance that can be achieved:

W1(µ1, µ2) = inf
ξ∈Π(µ1,µ2)

∫∫

d(x, y) dξ(x, y)

where Π(µ1, µ2) is the set of transference plans from µ1 to µ2.

The transportation distance between small balls can then be used to define a
Ricci curvature at some scale. The revelant notion of a “small ball” depends on the
situation at hand: for instance, in a graph it is natural to use balls of radius 1,
whereas in manifolds, arbitrarily small balls are used.

Let us assume that, for each point x in space X, we have chosen a measure bx
to play the role of “small ball around x”. The basic example is when X itself comes
with a global measure µ (such as the Riemannian volume measure on a manifold,
or the counting measure on a graph) and we have chosen a scale parameter ε > 0;
then we can define bx by restricting the measure to the ε-ball around x and scaling:

bε,µx =
µ|B(x,ε)

µ(B(x, ε))

where B(x, ε) is the closed ball of radius ε around x. This is a very common choice
for bx but is not the only one; thus, we will keep full generality in the definition.

We are now ready to transpose Corollary 1.3.

Definition 2.5 (Coarse Ricci curvature). Let (X, d) be a metric space. We
assume that, for each x ∈ X, a probability measure bx on X is given. Let x and y
be two distinct points in X. The coarse Ricci curvature along xy is the quantity
κ(x, y) defined by the relation

W1(bx, by) = (1− κ(x, y)) d(x, y)

(see Fig. 9).
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(1− κ) d(x, y)
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on average

x

y
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w′

<d(x, y)

x

y

Figure 9. In positive curvature, balls are closer than their centers are.

Compared to the Riemannian case, note that we chose not to apply the ε2

2N
scaling factor. Also, in the Riemannian case Ricci curvature was defined along a
tangent vector. Here, in a metric setting, the best we can do for tangent vectors is
to have a pair of close points. A simple but key feature of coarse Ricci curvature is
that it is enough to compute it for pairs of points which are close enough [Oll07].

The technical assumptions implicit in this definition are basically the ones
needed for good behavior of the Wasserstein distance: the space X should be
Polish (metric, separable, complete), and the measures bx should all have a finite
first moment [Vil03]. Moreover the map x 7→ bx should be measurable.

This kind of condition appears in [RS05] as one among several ways to char-
acterize a lower Ricci bound on manifolds. It was proposed in [Oll07, Oll09] (see
also [Jou07]) as a possible definition of Ricci curvature extending to metric spaces
several results known for positively curved manifolds.

The data (bx)x∈X exactly define a Markov chain on X: the point x is sent to a
point chosen at random according to the measure bx. The condition W1(bx, by) 6
(1 − κ) d(x, y) actually has quite a long history in the Markov chain literature,
under various names: Dobrushin–Shlosman criterion [Dob70, DS85, Dob96],
or [CW94], or path coupling [BD97]; though, without the link to curvature. It
appears in some recent Markov chain textbooks [Che04, LPW09]. It is most often
used to prove fast convergence of the measure of the Markov chain to its invariant
distribution. It is operational in a number of settings: to name just a few, the
Ising model of ferromagnetism [DS85], graph colouring [BD97], fast generation of
random orthogonal matrices [Oli09], sampling of paths with constraints [Ger10]
(see also [Wil04]), simulations of waiting queues [Jou09, JO10]...

The definition also works well if one replaces the Markov chain bx with a
continuous-time Markov process (e.g., [CW94]). In this setting, a lower bound K
on Ricci curvature for a Markov process (P t) states that W1(P

t
x, P

t
y) 6 exp−Kt d(x, y),

and it is enough to check this for close enough points x, y and small enough time t
(see [Vey-b] for details). Note an interesting connection: in the manifold case, if
the distance d happens to change with time according to the backwards Ricci flow,
then the transportation distance between P t

x and P t
y (measured using the distance

at time t) will stay bounded, because the two effects compensate [MT10]. This
could lead to notions of Ricci flow in metric spaces [MT10, Oll10].



14 YANN OLLIVIER

x y

by

bx

Figure 10. Coarse Ricci curvature of the cube.

As examples, let us illustrate how coarse Ricci curvature applies, first, to the
original case of Riemannian manifolds, and, second, to the discrete hypercube
{0, 1}N mentioned above.

Example 2.6 (Riemannian manifolds). Let (X, d) be a smooth Riemannian
manifold and let vol be the Riemannian volume measure. Let ε > 0 small enough
and consider the ball of radius ε around each point x, i.e., set bx = bε,volx as above.
Let x, y ∈ X be two close enough points. Let v be the unit tangent vector at x
directed towards y. Then the coarse Ricci curvature along xy is

κ(x, y) =
ε2 Ric(v, v)

2(N + 2)
+O(ε3 + ε2d(x, y))

This is basically a reformulation of Corollary 1.3. (Actually the latter only
yields an inequality, as there might be better transference plans than parallel trans-
port. But parallel transport gives the exact value of the Wasserstein distance at
this order [Oll09].)

The next example is the discrete hypercube.

Example 2.7 (Discrete hypercube). Let X = {0, 1}N be the N -dimensional
discrete hypercube, equipped with its graph (L1) metric, and let µ be the uniform
measure on X. Let bx = b1,µx be the uniform probability measure on the 1-ball
around x (i.e., on x and its N neighbors). Then the coarse Ricci curvature along
two adjacent points x, y is κ(x, y) = 2

N+1 .

This is quite clear on Figure 10: indeed, to move bx to by, out of the N + 1
points in bx, N − 1 of them have to move by one edge, and 2 of them do not have
to move at all.

Note that we have computed κ(x, y) only for adjacent points x and y; but, as
mentioned before, this is enough to imply the same lower bound on curvature for
all pairs of points, by the triangle inequality for W1 [Oll07, Oll09].

The inclusion of x in bx, i.e., the use of balls rather than spheres, is identical
to the well-known need to use lazy random walks on bipartite graphs: otherwise,
points located at an odd distance never meet each other. In general metric spaces,
spheres may be empty and balls are preferable.

Other very simple examples include the grid Z
n in R

n with its graph metric,
or R

n itself equipped with any arbitrary Euclidean or non-Euclidean norm: these
have 0 curvature as expected. We mentioned above numerous more sophisticated
examples from Markov chains or statistical physics; see also the examples in [Oll09].
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Since Ricci curvature is an average of sectional curvature, bounds on sectional
curvature imply the same bounds on Ricci curvature, at least for ordinary curvature.
One can wonder whether the same holds for the generalized notions used here.

This is indeed the case. For δ-hyperbolic groups, for instance, with bx the
uniform measure on a ball of radius ≫ δ around x, one can check [Oll09] that coarse
Ricci curvature is indeed negative (and actually takes the smallest possible value).
For spaces with curvature bounded below in the sense of Alexandrov, equipped
with their (continuous-time) canonical diffusion semigroup (see e.g. [GKO]), a
result of Gigli, Kuwada and Ohta [GKO, Oht09a] (combined with [Pet, ZZ10])
implies that if Alexandrov curvature is bounded below, then coarse Ricci curvature
is bounded below by the corresponding value.

Let us review some of the theorems obtained thanks to this approach. They
are of two kinds: extensions of known theorems about Ricci curvature to a more
general setting, and, more interestingly, new theorems proven thanks to the insight
provided by the coarse viewpoint. We will say a few words about the former and
insist on the latter.

Coarse Ricci curvature does not keep too many topological or metric properties
from the manifold case: this can be seen from the discrete examples listed above.
For instance, the Bonnet–Myers theorem is true only in a very weak sense [Oll09].
The kind of properties kept from manifolds relate mostly to functional inequalities
or concentration of measure inequalities, i.e. various inequalities involving measures.

A metric space satisfies a concentration of measure property if every real-valued
1-Lipschitz function on the space is “almost constant”, that is to say, if there exists
a value such that the function is close to that value on most of the space. The
basic example is that of the function “proportion of tails” on the space of length-
N sequences of heads and tails: it is very close to 1/2 on most sequences, with
fluctuations of order 1/

√
N . Concentration of measure asserts that this is not a

property of this particular function, but of the underlying space. In this case the
underlying space is the hypercube {H,T}N , and the Lipschitz functions are those
for which the influence of any single symbol in the sequence on the value of the
function is at most 1/N ; any such function will be almost constant. We refer to
[Led01] for more on this topic, or to [Gro99] for a geometric viewpoint.

Thus the hypercube exhibits this concentration phenomenon. A theorem of
Gromov [Gro86] implies that manifolds with positive Ricci curvature also share
this property, using a method very different from that used for the hypercube. It
is shown in [Oll09] that concentration follows from positive coarse Ricci curvature.
This allows to put both examples in a common framework with a unified and simple
proof (though with some small loss in the numerical constants).

Last, let us give examples of new theorems proven using the technique or in-
tuition of coarse Ricci curvature. Some deal with non-Riemannian settings such as
waiting queues or statistical physics [JO10], but it is interesting that new results
have been obtained even in the original Riemannian case, as follows.

First, let us give a result for the empirical average of a function over a trajectory
of the Brownian motion. When time grows, this empirical average converges to the
average of the function over the manifold, since the invariant law of Brownian
motion is uniform. The following is a concentration result for the variations of this
quantity around its mean.
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Theorem 2.8 ([JO10]). Let (Yt)t>0 be a trajectory of the Brownian motion

starting at a fixed point x0 on a smooth, compact N -dimensional Riemannian man-

ifold X with Ricci curvature at least K > 0. Let

f̄t =
1

t

∫ t

s=0

f(Ys) ds

be the empirical mean of the 1-Lipschitz function f : X → R under the diffusion

process (Yt) starting at some point x ∈ X. Then, for any fixed x0 one has

Pr(
∣

∣f̄t − Ef̄t
∣

∣ > r) 6 2e−
tK

2
r
2

32 .

[GLWY09] contains related results and a beautiful characterization of this
kind of property in terms of transportation-information inequalities.

Our second example deals with the spectral gap of a manifold. Let ∆ be
the Laplace(–Beltrami) operator on the compact Riemannian manifold X. It is a
negative operator on L2; its spectral gap λ1 is the smallest non-zero eigenvalue of
−∆. Alternatively, λ1 can be defined as the best constant in either one of those
inequalities: the norm of the Poisson equation operator

∥

∥∆−1f
∥

∥

L2
6

1
λ1

‖f‖L2 , the

rate of smoothing by the heat equation ‖ft‖L2 6 Cf e
−λ1t ‖f0‖L2 with ft solving

∂ft/∂t = ∆ft, or the Poincaré(–Sobolev) inequality ‖f‖2L2 6
1
λ1

‖∇f‖2L2 , all these
inequalities applying for functions in L2 whose integral over X is 0. Thus, for
instance, 1/λ1 is the characteristic decay time for the heat equation.

A classical theorem of Lichnerowicz (see e.g. [Ber03]) asserts that if X is an
N -dimensional manifold with positive Ricci curvature, then 1/λ1 is controlled by
the largest radius of curvature:

1

λ1
6

N − 1

N
sup
x∈X

1

Ric(x)

where Ric(x) is the infimum of Ric(v, v) for v a unit tangent vector at x ∈ X. This
was improved by Veysseire as follows.

Theorem 2.9 ([Vey10, Vey-a]). Let X be a smooth, compact N -dimensional

manifold with positive Ricci curvature and let λ1 be the spectral gap of the Laplace

operator on X. Then
1

λ1
6

∫

x∈X

1

Ric(x)

d vol(x)

vol(X)

Thus we get a harmonic mean of Ricci curvature over the manifold, instead of
the worst value. A slightly more complicated formula in [Vey10, Vey-a] allows to
recover the Lichnerowicz theorem with the (N − 1)/N factor.

The proof given in [Vey10] is very short and purely computational; it was found
afterwards. The original intuition [Vey-a] was to couple two Brownian motions
starting at very close points and using curvature, an approach used in [Ken86]
(see [ACT11] for a new elegant viewpoint). If Brownian motion is seen as a large
number of small steps, using parallel transport of the trajectory (xt) starting at x
provides a Brownian trajectory (yt) starting at y close to x; since, at each step,
the distance between xt and yt decreases by a factor depending on Ricci curvature,
the distance after time t decreases exponentially fast: Ricci curvature is a kind of
“Lyapunov exponent along Brownian trajectories”. This is turned into a spectral
gap estimate using the correspondance between Brownian motion and the heat
kernel. The new idea here is that the exponential rate at which the trajectories
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A0

A1/2

A1

Figure 11. In negative curvature, midpoints contract.

(xt) and (yt) get closer only depends on curvature at the current point (xt), and
that, since xt covers the whole manifold with uniform measure, an averaging effect
over the value of curvature should occur, instead of using only the worst curvature.
This proof is longer than the short computational proof in [Vey10], but may be
more adapted to generalization, e.g. for discrete settings.

Finally, let us mention that [Oll10] lists a number of questions about coarse
Ricci curvature. Some have been solved (e.g., the relationship with Alexandrov
curvature), but most remain open.

2.3. Non-smooth Ricci curvature: the displacement convexity of en-

tropy approach. The other main approach to Ricci curvature for non-smooth
spaces is displacement convexity of entropy. It is introduced in [Stu06] and [LV09],
following a characterization of Ricci curvature for manifolds presented in [RS05]
(elaborating on [OV00, JKO98, McC97]). It is also based on the use of Wasser-
stein distances.

This approach allows to define a property CD(K,N) which, for Riemannian
manifolds, is equivalent to having Ricci curvature at least K and dimension at most
N . We will only present here the case N = ∞; the case N < ∞ involves very precise
metric comparisons with N -dimensional manifolds. The property CD(K,N) in this
sense will be an extension of Bakry–Émery’s CD(K,N) property [BE84, BE85],
though from a different viewpoint.

The idea is that, in positive Ricci curvature, “midpoints spread out”: if we take
two sets or measures in the manifold X, and consider the set of points that lie
“halfway” between the two sets (in a sense to be made precise below), then the set
of midpoints is wider than expected from the Euclidean case. For instance, on a
sphere, for any reasonable notion of what a midpoint is, the set of midpoints of the
two poles will be the whole equator. The reverse is true in negative Ricci curvature.
This intuition, illustrated in Figures 11 and 12, was formalized in various ways in
[CMS01, RS05, CMS06].

Once more, we will use probability measures instead of sets. So let A0 and
A1 be two probability measures in the geodesic space X. The extent to which
they are spread will be evaluated using the relative entropy (or Kullback–Leibler

divergence) with respect to the uniform measure µ on X (µ can actually be any
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A0

A1/2

A1

Figure 12. In positive curvature, midpoints spread out.

reference measure of particular interest; in general there is no notion of “uniform
measure” on arbitrary spaces). Namely, for a probability measure A define

H(A|µ) =
∫

A(dx) log
A(dx)

µ(dx)

assuming the density A(dx)/µ(dx) exists and the integral makes sense (and +∞
otherwise). This quantity is well-known in information theory [CT91]; the lower
it is, the more “uniform” or “spread out” the measure A is (w.r.t. the reference
measure µ).

Next, given two probability measures A0 and A1, we need to define the “measure
of midpoints” A1/2 of A0 and A1. We will define A1/2 as a measure that lies midway
between A0 and A1 in L2 Wasserstein distance. The latter is defined like the L1

Wasserstein distance introduced above [Vil03].

Definition 2.10. Let µ1, µ2 be two measures with mass 1 in a metric space
(X, d). The L2 transportation distance (or L2 Wasserstein distance) between µ1

and µ2, denoted W2(µ1, µ2), is the best average travelling distance that can be
achieved:

W2(µ1, µ2) = inf
ξ∈Π(µ1,µ2)

√

∫∫

d(x, y)2 dξ(x, y)

where Π(µ1, µ2) is the set of transference plans from µ1 to µ2, as introduced in
Definition 2.4.

Assume for simplicity that the geodesic space X is compact. Then, given
any two probability measures A0 and A1, there exists a (not necessarily unique)
probability measure A1/2 such that

W2(A0, A1/2) = W2(A1/2, A1) =
1

2
W2(A0, A1)

where W2 is the L2 Wasserstein distance. We will call such an A1/2 a midpoint

measure of A0 and A1.
Curvature will be positive when the relative entropy of a midpoint measure

A1/2 is smaller than the average of the relatives entropies of A0 and A1. The
difference is used to define (a lower bound on) curvature.
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Definition 2.11. Let (X, d) be a metric space and µ be a reference measure
on X, with µ(X) finite. Then (X, d, µ) satisfies the CD(K,∞) if, for any two
probability measures A0 and A1 with finite entropy with respect to µ, there exists
a midpoint measure A1/2 of A0 and A1 such that

H(A1/2|µ) 6
1

2
(H(A0|µ) +H(A1|µ))−

K

8
W2(A0, A1)

2

The reason for the name displacement convexity of entropy [McC97] is clear:
the inequality above states that entropy is a convex function on the space of prob-
ability measures, where the convex interpolation between two measures is obtained
by transportation. (Actually, we used convexity only for one midpoint measure, not
for all of them, hence the qualification of weak convexity sometimes encountered.)

The restriction that µ(X) is finite is not essential; it only makes for a slightly
less technical definition. The K/8 scaling factor reproduces what happens in Rie-
mannian manifolds with Ricci curvature equal to K.

This defines only a global lower bound for curvature; but this definition can
be localized by taking A0 and A1 in the neighborhood of some point. Then, under
various technical assumptions, the global lower bound on curvature is the infimum
of the local lower bounds (Theorem I.4.17 in [Stu06], extended in [BS10]). This is
analogous to the property mentioned above, that it is enough to check coarse Ricci
curvature κ(x, y) for close pairs of points x and y.

Let us describe examples of spaces known to have Ricci curvature bounds in
this sense.

First, this definition is a consistent extension of Ricci curvature: For Riemann-
ian manifolds with µ the Riemannian volume measure, the CD(K,∞) condition is
satisfied exactly when Ricci curvature is at least K ([Stu06], Theorem I.4.9), and
likewise for the refined CD(K,N) curvature-dimension condition.

Second, spaces with a lower bound on sectional curvature in the sense of Alexan-
drov (Definition 2.1) have a corresponding lower bound on Ricci curvature in the
present sense [Pet, ZZ10].

Another source of examples are Gromov–Hausdorff limits [Gro99, BBI01]
of Riemannian manifolds with positive Ricci curvature. These limits can have
singularities or exhibit collapsing (reduction of dimension) of some parts. One of
the main results here is that CD(K,∞) and CD(K,N) lower bounds on curvature
are preserved when passing to these limits [Stu06, LV09]. Actually, the study of
the phenomena arising when taking Gromov–Hausdorff limits of manifolds was a
strong motivation for the search of generalized notions of Ricci curvature [Lot07],
especially in view of Gromov’s precompactness theorem (see e.g. [Gro99]) which
states that the set of all Riemannian manifolds of a given dimension, with diameter
bounded above and Ricci curvature bounded below, is precompact in Gromov–
Hausdorff topology. This line of thought led to sustained research, for example a
series of results by Cheeger and Colding [CC]. An elegant way to incorporate the
measured aspect in these limits is provided by a “Gromov–Wasserstein” distance
[Stu06].

Displacement convexity of entropy has also been successfully applied to man-
ifolds equipped with non-Riemannian metrics (where an arbitrary non-Euclidean
norm is used on each tangent space), i.e. Finsler manifolds [Oht09b, OS09, OS],
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allowing to prove new results such as Poincaré-like inequalities on some of these
spaces.

This approach has also been conducted on the Heisenberg group [Jui09]: no
Ricci curvature lower bound CD(K,N) with K > −∞ holds in this space. On the
other hand, in [Jui09] it is shown that a related but weaker property holds, the
measure contraction property [Stu06, Oht07].

Let us now quickly mention some of the theorems from Riemannian manifolds
that carry out to spaces with positive Ricci curvature in the present sense. We refer
to [Stu06, LV09, Vil08] for more details.

The condition CD(K,∞) entails several powerful functional inequalities, in
particular the logarithmic Sobolev inequality, which in turn implies other properties
such as Gaussian concentration of measure (as discussed above) or spectral gap
(Poincaré) inequalities.

The condition CD(K,N) is stronger and closer to the Riemannian situation.
It implies, for instance, the Bishop–Gromov volume growth inequality, which is
essentially a restatement of the definition of CD(K,N) with the sets A0 and A1

taken to be concentric balls. The Bonnet–Myers theorem also holds (keep in mind,
though, that the definition of CD(K,N) is precisely modeled after the Riemann-
ian situation, and explicitly uses functions such as sin(d(x, y)

√

K/(N − 1))). The
Brunn–Minkowski inequality (similar to the pictures above, but with a larger set of
midpoints A1/2) is another consequence. This illustrates the power implicit in the
CD(K,N) condition, for various choices of A0 and A1; the difficult part, of course,
being to prove that the condition holds.

The constants obtained in these various inequalities are often sharp compared
to the Riemannian case; for comparison, using coarse Ricci curvature leads to a
numerical loss in the constants (even if the order of magnitude stays the same).

It is impossible to mention the displacement convexity approach without hinting
at the deep context from which it arose, especially, the important relationship
between the heat equation and entropy on metric spaces. The fundamental idea
is that “the heat equation is the best way to increase entropy while moving the
particles as least as possible” [JKO98]. More precisely, if a measure µt on the
base space X evolves according to the heat equation ∂µt/∂t = ∆µt, this evolution
can be thought of in the space of all measures on X in the following way: start
with µ0, consider the entropy function around µ0, and follow the gradient of this
entropy function. Here, to define gradients, the (infinite-dimensional) space of
measures is equipped with a formally Riemannian metric for which the distance
between two very close measures is defined as their W2 transportation distance
[JKO98, OV00]. This approach can be used to define a heat equation in metric
measured spaces [AGS05, Gig10] and has been very successful.

Let us finally discuss displacement convexity of entropy in relation with coarse
Ricci curvature.

First, there is no analogue to CD(K,N) with N < ∞ for coarse Ricci curvature;
the latter appears more comparable to CD(K,∞).

Second, the CD condition was not designed for discrete spaces; moreover good
technical behavior of the CD condition requires that the geodesic space be non-

branching, i.e. that two geodesics cannot coincide for some time then part away, as
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typically happens in graphs. On the other hand, coarse Ricci curvature bypasses
any local topological structure. An easy way to discretize displacement convexity of
entropy is to use approximate midpoints for the set A1/2, instead of exact midpoints.
This approach yields partial results: in [BS10] it is applied to homogeneous planar
graphs, and in [OV] to the discrete hypercube. The case of the discrete hypercube
is not fully solved: only a weaker property, the Brunn–Minkowski inequality, is ob-
tained in [OV] (though intriguing possible connections with combinatorics appear).

Another recent and promising approach to displacement convexity of entropy in
discrete spaces has been proposed independently in [Maa11, CHLZ, EM, Mie]:
these authors introduce a new metric on the space of probability measures on a
discrete space, such that the [JKO98] interpretation of the heat equation holds,
namely, such that a given Markov kernel on the underlying space coincides with
the gradient of the entropy functional on the space of probability measures. Such
an approach gives positive curvature to the discrete hypercube [EM], as expected.
The functional inequalities proven in [EM] under discrete positive curvature in
this sense are comparable to those obtained from CD(K,∞): logarithmic Sobolev
inequalities and Gaussian concentration of measure, for instance, with optimal nu-
merical constants recovered for the hypercube.

Coarse Ricci curvature, on the other hand, is based on a simpler criterion and
may apply in a wider range of situations. For instance, no reversibility assumption
is needed. More, it allows for non-Gaussian concentration: discrete examples in
significant applications exhibit, e.g., Poissonian behavior. This is not compatible
with CD(K,∞).

Another situation in which CD(K,∞) and coarse Ricci curvature differ is
Finsler spaces. For instance, consider R

n equipped with a non-Euclidean norm,
e.g. the ℓ1 norm. It is immediate to check that such a space has vanishing coarse
Ricci curvature, by translation invariance. These spaces are also known to satisfy
the CD(0,∞) property; yet the natural heat equation defined by the [JKO98] in-
terpretation is nonlinear (hence non-Markovian, so that the setting of coarse Ricci
curvature does not apply to it), and does not satisfy the contraction in transporta-
tion distance appearing in the definition of coarse Ricci curvature [OS09, OS].

Finally, let us mention three variants around the CD(K,∞) condition, each
with independent interest. The nineteenth-century-old Brunn–Minkowski inequality

(see e.g. [Gar02] for an introduction) can be seen in geodesic spaces as a weaker
version of CD(K,N), using a larger set of midpoints A1/2; the equivalence with
Ricci curvature in the Riemannian case is proven in [CMS06, CMS01]. As a
general property of geodesic spaces, it is weaker than CD(K,N) but already has
a number of the same geometrical consequences [Stu06]. It has been studied in,
e.g., Finsler spaces [Oht09b], discretizes well [Bon09] and is known to hold in
the discrete hypercube [OV]. See also [Bac10, Hil] for a functional inequality
version. The property RCD(K,∞), introduced in [AGS], is a reinforcement both
of CD(K,∞) and of coarse Ricci curvature. It allows for an elegant control of fine
properties of the heat equation and related problems. The measure contraction

property [Stu06, Oht07] is weaker than the CD condition and can be thought of
as the particular case when the measure A0 in the pictures above is a Dirac mass
and A1 is the uniform measure on the whole space. Any of those properties is yet
another reasonable contender for the title of generalized Ricci curvature.
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This closes this tour of some possible generalizations of sectional and Ricci
curvature, and their connections to various other areas of mathematics. The field
is still very active.
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