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Abstract

In reinforcement learning, universal successor features (SFs) are a
way to provide zero-shot adaptation to new tasks at test time: they
provide optimal policies for all downstream reward functions lying in the
linear span of a set of base features. But it is unclear what constitutes
a good set of base features, that could be useful for a wide set of
downstream tasks beyond their linear span. Laplacian eigenfunctions
(the eigenfunctions of A + A* with A the Laplacian operator of some
reference policy and A* that of the time-reversed dynamics) have been
argued to play a role, and offer good empirical performance.

Here, for the first time, we identify the optimal base features based on
an objective criterion of downstream performance, in a non-tautological
way without assuming the downstream tasks are linear in the features.
We do this for three generic classes of downstream tasks: reaching
a random goal state, dense random Gaussian rewards, and random
“scattered” sparse rewards. The features yielding optimal expected
downstream performance turn out to be the same for these three
task families. They do not coincide with Laplacian eigenfunctions in
general, though they can be expressed from A: in the simplest case
(deterministic environment and decay factor -y close to 1), they are the
eigenfunctions of A= + (A71)*.

We obtain these results under an assumption of large behavior
cloning regularization with respect to a reference policy, a setting
often used for offline RL. Along the way, we get new insights into
KL-regularized policy gradient, and into the lack of SF information in
the norm of Bellman gaps.

1 Introduction and Related Work

The successor features (SFs) framework holds the promise of solving any new
reinforcement learning task in a fixed environment in an almost zero-shot
manner, without extensive learning or planning for each new task (see e.g.,
[ , , ] and the references therein). At train time, the
agent observes reward-free transitions in an environment, and learns some
features and a parametric family of policies. At test time, the agent is faced
with a new task specified via a reward function r. The function r is linearly
projected onto the set of features, and then a suitable pre-trained policy is
applied. At test time, the linear projection requires no learning or planning,



and only uses a relatively small number of reward values (or knowledge of
the reward function itself, e.g., for goal-reaching).

A good choice of features is crucial for successor features, and several
approaches to select relevant features for SFs have been proposed. Given
a finite number of features ¢, SFs can produce policies within a family of
tasks directly related to ¢ [ , , , ], but
this often uses hand-crafted ¢ or features ¢ that linearize some known
training rewards. VISR and APS | , | build ¢ automatically
via diversity criteria | , ]. Forward-backward representations
[ , | use successor measures | | to learn features ¢ that
model the main variations of the distribution of visited states depending on
the starting point and policy. In related contexts, further spectral variants
have been proposed to provide a basis of features to express reward functions
and @-functions: the singular value decomposition of the inverse Laplacian,
the singular value decomposition of the transition matrix P, induced by
an exploration policy 7o, the eigenfunctions of Py, + Py , and more (see
[ , | and the references therein).

[ | compared SFs with features built from a number of approaches:
Laplacian eigenfunctions [ , |, forward-backward representa-
tions, APS, auto-encoders, inverse dynamics models, spectral decompositions
of the transition matrix, and more. Forward-backward representations and
Laplacian eigenfunctions were found to perform best on average.

Yet all these choices of features are based on somewhat heuristic argu-
ments and discussions. Here, for the first time, we fully characterize the best
features for SFs mathematically, by directly optimizing expected downstream
performance.

We define three agnostic models of downstream tasks: random Gaussian
reward functions; reaching a random goal state; and “scattered” random
rewards (a random number of sparse rewards placed at randomly located
states, with random signs and magnitudes). We then ask which features
provide the best expected performance on these tasks.

Surprisingly, the conclusions are identical for all three classes: even
though these three models cover very different tasks (dense rewards, single-
state rewards, multiple sparse rewards), the best features are the same. Thus,
the conclusions are robust to the precise choice of a downstream task model.
The existence of clear optimal features for these tasks is itself a nontrivial
result, given the prior-free nature of these reward models.

Overview of results. All along, following previous work for offline rein-
forcement learning (see e.g. the survey | ]), we work with entropy-
regularized policies that stay relatively close to a reference policy mg. We
estimate the regularized return GT of a policy 7 for a reward r, which in-
cludes a Kullback-Leibler penalty for deviating from a g (Definition 1). We



assume that the regularization constant (temperature) T is relatively large,
and derive optimal features up to an error O(1/T?).

Namely, we look for the features ¢ such that, when using the policy
7 estimated by successor features (Definition 4), the expected regularized
return

E,[GT] (1)

of & is maximal. The expectation is over rewards r in three simple models of
downstream tasks (Section 3). Our main findings are as follows. All results
are up to an error O(1/7?) on optimality.

e In deterministic environments, the optimal features for regularized
successor features are the largest eigenfunctions of

AT (AT - (- At (2)

(Theorem 12), where A :=1d —y Py, is the Laplacian operator of the
reference policy 7o, and (A™1)* is the adjoint of A~! acting on L?(p). !
Here p is the stationary distribution of state-actions under the reference
policy.

o For v — 1 this reduces to the largest eigenfunctions of A= + (A=1)*
(Theorem 10), corresponding to long-range (low frequency) information
on the reward function.

e For v — 0 this reduces to the smallest eigenfunctions of Py Pr, (Propo-
sition 11), corresponding to short-range (high-frequency) information
on the reward function.

e For general, non-deterministic environments, we show that the optimal
features are the reward functions r whose advantage functions have
maximal norm for a given norm of r (Theorem 8 and Corollary 9).

Explicitly, the optimal features are the largest eigenfunctions of the
matrix

diag(p) " (A™Y)" (diag(p) — m diag(ps)mo) A", (3)

where again, p is the stationary distribution of state-actions under o,
and pg is its marginal on states. In deterministic environments, this
expression simplifies to the results above.

e We show that, in successor features, the average norm of Bellman gaps
for downstream tasks is uninformative as to which features perform
best: it only depends on the number of linearly independent features
(Proposition 6).

'This adjoint is diag(p) (A ™) diag(p), not (A1)



e As a key intermediate result, we show that for KL-penalized policy
improvement, the optimality gap due to imperfect @Q-function esti-
mation is equal to the norm of the error on the advantage function
(Theorem 2).

Comparison with Laplacian eigenfunctions and forward-backward
representations. These results complement the empirical results in | l,
where forward-backward representations and Laplacian eigenfunctions per-
formed best among the SF methods tested.

The Laplacian operator of a policy mp is A = Id —vyPy,, and Laplacian
eigenfunctions are the smallest eigenfunctions of A + A*. Forward-backward
representations learn a finite-rank approximation of A~! as F'B and then
use B as features. Here we find the optimal features to be the eigenfunctions
of A=t + (A™1* (in the simplest case of a deterministic environment and
v — 1). In general A1 + (A=1)* £ (A + A*)~! except in very specific
environments (see discussion after Theorem 10). So in general, the optimal
features derived here differ from Laplacian eigenfunctions. They also differ
from B in the forward-backward representation: they would be closer to
extracting the symmetric part of the finite-rank approximation F'B.

Still, our results may explain the good empirical performance of forward-
backward representations and Laplacian eigenfunctions for SFs: they are the
methods that come closest to the theoretically optimal features among the
methods tested in [ ).

Limitations and perspectives. A first limitation of these results comes
from the entropy regularization: all the statements about optimality hold
up to an error O(1/T7?). It is not clear how far this approximation extends
in practice. Still, a regularized setup is natural for zero-shot reinforcement
learning based on a fixed foundation model such as successor feature: the
policies deployed at test time only depend on information from the trainset
used to build the model, so it makes sense not to deviate too much from the
states and behaviors explored in the trainset [ ]

Second, in this work, we provide no algorithms to actually learn the
optimal features (either the eigenfunctions of A= + (A~1)*  or the reward
functions r that maximize the norm of the advantage function). This is left
to future work.

Finally, more fundamental limitations come from the setup of succes-
sor features itself. SFs rely on the linear projection of the reward onto a
subspace of features. This method can only be exact in a linear subspace
of reward functions, and the task encoding is linear. Recent works such
as attempt to remove this limitation by defining auto-regressive features
that let finer task encoding features depend on previously computed, coarse
task encoding features, resulting in a fully nonlinear task encoding. SFs are



also limited to tackling new tasks within a given environment and dynamics,
not new environment or different dynamics in the same environment; some
workarounds have been proposed to handle similar enough environments

[ ) I
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2 Preliminaries: Notation, Universal Successor
Features, Regularized Policies

2.1 Setup and Notation

Markov decision processes, matrix notation. Let M = (S, A, P,~)
be a reward-free Markov decision process (MDP) with state space S, action
space A, transition probabilities P(s’|s,a) from state s to s’ given action
a, and discount factor 0 < v < 1| |. We assume that S and A are
finite. 2 A policy 7 is a function 7: S — Prob(A) mapping a state s
to the probabilities of actions in A. Given (sp,a9) € S x A and a policy
m, we denote E[-|sg,ap, 7] the expectations under state-action sequences
(st,at)i=0 starting at (sp,ap) and following policy 7 in the environment,
defined by sampling s; ~ P(s¢|si—1,ai—1) and a; ~ 7(a¢|s;). We define
Pr(s',d'|s,a) := P('|s,a)w(a’|s"), the state-action transition probabilities
induced by m. Given a reward function r: S x A — R, the Q-function
of 7 for r is QF (s0,a0) = Y50 V'E[r(s¢, ar)|s0, ao, 7). The value function
of 7 for 7 is V7(s) 1= Equn(s)@r (8,a), and the advantage function is is
A7 (5,0) = QF (s,a) — V7 ()

For the statements and proofs, it is convenient to view these objects
as vectors and matrices. We treat rewards and @-functions as column
vectors of size #S x #A. We view P as a matrix of size (#S x #A) x #S
with entries Prq) s = P(s'[s,a). A policy 7 is seen as a matrix of size
#S x (##8 x #A) with entries 7y(yq) = 7(als)ls=y. We denote Py := Pr.
With these conventions, the @-function satisfies the Bellman equation

Q: =r+ ’)/PWQ;T. (4)

Reference policy mp, invariant distribution p. Let my be some reference
policy. We assume that mg is ergodic. Let p be the asymptotic distribution
of state-actions induced by 7y (the stationary distribution of Py,). Typically,
7o is an exploration policy used to build some training set for RL algorithms;

2In principle, most of the ideas in this text extend to continuous spaces, but this would
make the statements unnecessarily technical.



in this situation, the distribution of states and actions in the training set is
approximately p. Let pg be the marginal distribution of states under p. We
abbreviate

p:=diag(p),  ps:= diag(ps) (5)

the diagonal matrices of size #S x #A with diagonal entries equal to
P(sa)(sa) = P(s,a), and of size #S with diagonal entries equal to pg, re-
spectively.

L?(p) norm, advantage norm. Two for functions f on S x A will play
an important role: the L?(p) norm, defined as

HfH%Q(p) = E(s,a)wp[f(sv a)Q] - prf (6)

and the advantage norm, defined as

HfHQA e IE(s,a)mp |:(f(37a) - Ea/rvﬂ'()(s) [f(37 a/)]>2:| : (7)

By construction,
1Q7 N4 = 14T 22 (8)

though this does not hold for other policies m # mg, because the expectation
inside || in is with respect to 7.

We denote (-,)12(,) and (-, )4 the inner products associated with these
two norms.

The adjoint of a linear operator M on L?(p) is the unique operator M*
such that (z, My) 2, = (M*x,y)12(, for any z,y € L?(p). It is given by
the matrix M* = p~ ' Mp.

Working in L?(p) rather than the Euclidean metric on rewards and Q-
functions is mathematically the most natural way to have results that still
make sense for general state spaces beyond the finite case. It also links all
metrics to the data: since the distribution of samples in the training set is
approximately p, the norm Hf||%2(p) = IE(&a)Np[f(s,a)Z] can be estimated

empirically. In contrast, the Euclidean norm || f||* would be estimated by
sampling random states uniformly distributed in the full space (or in a given
domain of R™ for continuous states): such states might be irrelevant or even
non-realistic. (See also the discussion of reward models in Section 3.)

Laplacian operator A. For v < 1, we define the Laplacian operator of
T as

A =1d—yPy,. 9)

The Bellman equation rewrites AQ7° = r.
For v < 1 we have A™' = Y7, (~7"PL . For v = 1 (the most standard
definition of the Laplacian), A = Id —Fy, is not invertible, as 1 is an



eigenvalue of Py, associated with the constant eigenvector 1. However, since
mo is ergodic, the multiplicity of this eigenvalue is 1: by the Perron—Frobenius
theorem, A is invertible on the orthogonal of the constant functions.

We denote by L3(p) the subset of functions f on S x A whose average
under p is 0. Thus, for v = 1, A is invertible on L3(p).

2.2 Regularized Policies, Regularized Return

We are only going to consider policies that do not deviate too much from
the reference policy mg. This is often considered in the offline reinforcement
learning setup or to enforce safety [ ].

This can be done by adding a Kullback-Leibler regularization term to
the reward function, as described, for instance, in | , §4.3] (policy
penalty methods), which we follow here.

DEFINITION 1 (REGULARIZED RETURN). Let T' > 0 be a temperature
parameter. We define the regularized reward function for a policy w as

7(s,a) :=r(s,a) — TKL(7w(s) || mo(s)) (10)

where KL(7(s) || mo(s)) is the Kullback—Leibler divergence between the poli-
cies mg and w at s.

We define the regularized return of policy 7 for reward r as its expected
return for the regularized reward, namely,

Gy = Egy~p thf(st,at) | so, ™ (11)

>0
and we say that a policy is regularized-optimal for r if it maximizes G7.

Maximizing G is equivalent to maximizing the expected return Eq., V™ (s)
plus a behavior cloning term that keeps 7 close to my at each state.

For large T', the maximizer 7 is O(1/T')-close to 7, as the penalty term
dominates. This justifies that, in the following, we consider policies that are
parameterized as Boltr,(f) for some f, at temperature T'.

There are several variants of this definition: e.g., we could have considered
the KL divergence in the opposite direction, or we could have estimated the
KL term at states s ~ p visited by g, instead of states s visited by 7« as
n (11). In the regime we consider (large T'), these variants all lead to the
same conclusions, because the differences are O(1/T?). For instance, using
a behavior cloning penalty

Es~p,a~7r0(s) lnﬂ-(a’S) (12)

would provide the same conclusions. For large T, maximizing the BC-
regularized return is also equivalent to performing one step of natural policy



gradient starting at mp, with learning rate 1/7". Thus, for large T, the
regularized return has many different interpretations.

One can check that Boltzmann policies given by the @Q-functions of mg
are approximately regularized-optimal (Corollary 3). But we will need a
finer result, which describes the optimality gap depending on the policy, as
follows.

THEOREM 2 (REGULARIZED RETURN OF BOLTZMANN POLICIES).
Let r be any reward function, and let QQ7° be the (Q-function of the reference
policy for reward r. Let () be any function on S x A, and consider the policy

™ = Bolt, (Q).
When T — oo, the regularized return of policy m satisfies

1

™ __ ™0
GO )

(12515 - @ - @z

i) +0(1/T?). (13)

In particular, at first order, this regularized return is maximal when
Q = Q7°, corresponding to the Boltzmann policy m = Bolt.,(Qr°). (Note
that Boltzmann policies have been defined with respect to mg, so Q@ = 0

corresponds to m = . )

COROLLARY 3. For any reward r, the policy m = Boltr,(QI°) maximizes
GT up to an O(1/T?) error when T — cc.

Policy gradient algorithms such as PPO and TRPO also learn a new
policy m;11 by maximizing expected return subject to a constraint on the KL
divergence between 711 and the current policy 7 | , |. The
KL constraint is implemented in a different way, not directly as a penalty
as in (10), but the intuition is similar, with Boltzmann policies mo exp(Q/T)
corresponding to updating the log-probabilities of the policy 7, with learning
rate 1/T.

Therefore, qualitatively, Theorem 2 stresses that the optimality gap in
KL-regularized policy gradient updates is directly given by the L? error on
the advantage function.

2.3 Successor Features for Zero-Shot RL, Regularized Suc-
cessor Features

Successor features pre-compute the @Q-functions of a number of basic reward
functions @1, ..., @ or their linear combinations. At test time, the reward
function for the test task is projected onto this basis, and a precomputed
policy is applied | , ]. This results in a zero-shot approach
to new RL tasks in a given environment, since no learning or planning is
needed at test time. The only computation at test time is the coefficients z
of the linear projection of the reward r onto the features ¢,

z = (E(s,a)fvp[go(s? a)@(sv a’)T])ilE(s,a)Np [7’(8, a)cp(s, a)] (14)



which only requires to estimate the correlation E 4 4).,[r (s, a)@(s, a)] between
the reward and the features. (The covariance matrix can be precomputed.)
This correlation can be estimated empirically given some reward samples.

In this text, since we are concerned with regularized policies and return,
we will only need the simplest version of successor features, in which we only
compute successor features with respect to the reference policy my. This
plays out as follows.

DEFINITION 4 (REGULARIZED SUCCESSOR FEATURES). Regularized
successor features (RSFs) is the following procedure for regularized zero-shot
RL.

Let ¢: S x A — R? be a fixed d-dimensional feature map. At train time,
compute a successor feature map 1: S x A — R? satisfying

P(s0,a0) =E | Y v'(st,ar) | s0,a0,m0] (15)

t>0

namely, ¢ solves the vector-valued Bellman equation ¢ = ¢ + vPr,p. Also
denote C' := SOTf\)SO = ]E(s,a)wp[gp(sv a)e(s, a)T]'
Then, at test time, given any reward function r, estimate

Z = CilE(s,a)Np[r(&a)‘p(S?a)]? (16)

estimate the Q)-function of my for r by

Q(s,a) = qujJ(s, a) (17)

A

and apply the Boltzmann policy 7 = Bolt,,(Q).
The following proposition is an immediate consequence of Corollary 3.

PROPOSITION 5. If r lies in the linear span of the features ¢, then the
policy # is regularized-optimal for r, up to an error O(1/T?).

The @-functions and policies recovered by SFs only depend on the linear
span of the features ¢. Thus, without loss of generality, we can assume that
the features are linearly independent and apply a change of basis ¢ « C~1/2¢
in feature space, after which C = Id. Thus, in the following, we always
assume C = Id.

Although derived in a different way, the forward-backward (FB) setup

from [ ) | can also be seen as projecting the rewards onto trained
features ¢(s,a) = (Cov, B) "' B(s,a) at test time, where B are the features
learned by the FB model | ]. Therefore, our conclusions also cover
this case.



3 Three Reward Models for Downstream Tasks

We will compute the average performance of successor features for three
families of rewards: random Gaussian rewards (with a white noise continu-
ous limit), random goal-reaching (Dirac rewards), and “scattered random
rewards”. We define each of those in turn.

All the models depend on the distribution p of states in the training data
(the stationary distribution of the exploration policy mp): either via the norm
L?(p), or via putting rewards at random states sampled from p. In practice,
both can be estimated by sampling random states from the training data. 3

These are some of the most agnostic models we can find on an arbitrary
state equipped with an arbitrary probability distribution. These models
do not favor spatial smoothness a priori: white noise is non-smooth and
scale-free, while the goal-reaching and scattered rewards are sparse. In these
models, the Fourier transform of the reward is uniformly spread over all
frequencies. It is interesting that we can reach meaningful conclusions about
optimal features even with such uninformative priors.

All models are built to have well-defined continuous-space limits, and
still make sense in an abstract state space equipped with a measure p. To
avoid excessive technicality, we restrict ourselves to the finite case in this
text.

Gaussian rewards (white noise). For this model, we simply sample a ran-
dom Gaussian reward vector r of size S x A, with density o exp(— [|r||3. () /2)-
Including a variance o2 just rescales the rewards, so we take o = 1 for sim-
plicity.

The corresponding continuous-space limit is a white noise random reward:
a random distribution 7(s,a) such that for any subset X C S x A, the
integral [y 7(s,a)p(ds,da) is a centered Gaussian with variance p(X), and
the integrals on two disjoint subsets X and X’ are independent.

This model naturally places more variance (uncertainty) on the reward
at places less covered by the training set, since the weight from HT||%2( ) will
be smaller where p is small.

Goal-reaching (Dirac rewards). In this model, we first select a random
state-action (s*,a*) ~ p in S x A. Then we put a reward 1/p(s*,a*) at

3We could also have used uniform measures on finite state spaces, or the Lebesgue
measure on continuous states. But, first, this does not extend to an abstract state space
equipped with a policy 7o, for which the L?(p) norm is mathematically the most natural
and the only norm available. Second, in practice, it is much more natural to sample states
from the training data than to sample random states from the Lebesgue measure in a large
domain, which might produce irrelevant or irrealistic states, while p will be supported on
realistic states.

10



(s*,a*), and 0 everywhere else:
1

0= e

L(sa)=(s,a)- (18)

The 1/p factor maintains [ rdp = 1. Without this scaling, all Q-functions
degenerate to 0 in continuous spaces, as discussed in | ]. Indeed, if we
omit this factor, and just set the reward to be 1 at a given goal state
s* € S in a continuous space S, the probability of exactly reaching that state
with a stochastic policy is usually 0, and all @-functions are 0. Thanks to
the 1/p factor, the continuous limit is a Dirac function reward, infinitely
sparse, corresponding to the limit of putting a reward 1 in a small ball
B(s*,¢) of radius € — 0 around s*, and rescaling by 1/p(B(s*,¢)) to keep
J rdp = 1. This produces meaningful, nonzero Q-functions in the continuous
limit | ]

This model combines well with successor features or the FB framework:
indeed, the task representation vector z in (16) can be computed via the
expectation

E(s,a)Np[r(Sa a)@(sv a’)] = 80(5*7 a*) (19)

(both in finite spaces and in the continuous-space limit).

Scattered random rewards. This model amounts to putting Dirac re-
wards at several states instead of one, each with a different random magnitude
and sign. This describes general mixtures of sparse rewards at several random
locations.

This model depends on an intensity parameter x > 0 which controls the
number of states that have a nonzero reward. We also fix some arbitrary
distribution p, over R with some mean p and variance o? > 0, e.g., a
Gaussian.

To build a scattered random reward, we sample a random N-tuple of
state-actions ((s1,a1),...,(sy,an)) by a general Poisson point process on
S x A with intensity xp: namely, we first sample an integer N ~ Poisson(k),
then sample N random state-actions (s;,a;) ~ p, i =1,..., N, independently.
4 At each (s;,a;), we place a Dirac reward as above, but multiply it by some
random weight w; ~ p,,, sampled independently from everything else. The
reward is 0 on the rest of the space. Explicitly,

w;
T(Sa a) = Z ﬁﬂ(s,a):(si,ai)' (20)

i=1 p(8i7 aj

“The Poisson law ensures that the number of states selected in some part of S x A is
independent from the number of states selected in any other part. In this process, the
number of state-actions selected in any part X C S x A follows a Poisson law with parameter
kp(X), with distinct subsets being independent. Once more, this ensures a meaningful
continuous-time limit, as the general Poisson process is well-defined in a continuous space
with measure p.

11



As for Dirac rewards above, the factor 1/p ensures a meaningful limit for
continuous spaces (where r becomes a random distribution, a random sum
of Dirac functions wrt p). In this model, the SF task representation vector z
in (16) is given by

N
z= Cilzwigo(si,ai) (21)
i=1

both in finite spaces and in the continuous-space limit.

4 The Bellman Gap Norm is Uninformative for
Successor Features

We start with a negative result: for the families of rewards above, the size of
expected Bellman gaps of the @Q-functions estimated by SFs is independent of
the choice of features: it only depends on the number of linearly independent
features.

This does not mean that all choices of features perform equally well: as
we will see, regularized returns do depend on the features. It just means that
the squared Bellman gap error is a poor proxy.

PROPOSITION 6 (AVERAGE BELLMAN GAPS DO NOT DEPEND ON
THE FEATURES). Given a reward r, let Q(s,a) := 214(s,a) be the Q-
function (17) estimated by regularized successor features, with z given by
(16). Assume the features are linearly independent.

Then, for either the random Gaussian reward or the random goal-reaching
reward of Section 3, on average for r in the model, the norm of the Bellman
gaps of@ only depends on the number of features d. More precisely,

E,

Q*T*’YPWOQ‘

2
Loy = HE X #A—d (22)

where the expectation is over a random reward r from the model.

So, even if we had access to downstream reward functions r, we could
not learn good features by minimizing the expected Bellman gaps on those
rewards. No meaningful analysis of the performance of a set of features is
possible based on the norm of Bellman errors.

We have expressed this theorem using Bellman gaps with respect to the
reference policy mg: this is what is needed for regularized SFs, thanks to
Theorem 2 and Corollary 3. However, a similar result holds for universal
successor features [ ], with Bellman gaps taken for the estimated
optimal policy 7 for each reward r: the proof in Section 6 directly covers
this case as well.

It might be surprising that the expected norm of Bellman gaps does
not align well with the optimal return, since in practice, @-functions are

12



routinely learned by the TD algorithm based on reducing Bellman gaps.
But TD does not actually minimize the expected norm of Bellman gaps,
due to the “double sampling problem” and updating only the ) in the
left-hand-side of the Bellman equation. In general, TD does not minimize
any norm and can diverge | |, but in certain cases it is known to
minimize the Dirichlet norm ° of the error on Q [ ]. For v close to 1,
the Dirichlet norm is the sum of the Bellman gap norm and the advantage
seminorm (Proposition 16 with v = 1). The advantage seminorm is the one
that matters for KL-regularized policy gradient (Theorem 2). So in the end,
the discrepancy between TD and minimizing expected Bellman gaps might
be a blessing.

5 The Optimal Features for Regularized Successor
Features

We first introduce the advantage kernel, a symmetric matrix that describes
the norm of the advantage function for a given reward function.

DEFINITION 7. Let 7w be a fixed policy with invariant distribution p, and
consider the map that to any reward function r associates the norm || AT H2Lz( »)
of its advantage function. Since the QQ-function is linear in r for a given T,
this is a quadratic function of r for fixed .

Therefore, there exists a symmetric positive semi-definite matrix® A, of

size (#S x #A) x (#S x #A) such that
1AT I 2y = " Asr (23)
for any r. We call this matrix the advantage kernel of policy .

Since the Q-function of reward r for policy 7 is Q™ = A~!r, one can
compute A, in terms of A=, Expressing the norm of the advantage function
as the difference between the norms of the @-function and value function,

2 2 2 N N .
Q7% = 11Q7° 172 — IM0Q7° I 2(pg) = (QF°) (2 — TP5T0) Qs We obtain

Ary = (AT (p — mopsmo) A (24)

The following theorem expresses the expected regularized return for
regularized successor features depending on the features, for each of the
three reward models defined in Section 3, and up to an O(1/T?) error. The
optimal choice of features corresponds to the features that maximize :ETAﬂOx
for a given norm HxHiz(p).

®The Dirichlet (semi)norm of a function f is (f, (Id —YPx)f)r2(p) = 0, also equal to
LE(f(st41,ae41) — f(st,a:))?). We refer to | ]. This is also the objective minimized
in Laplacian eigenfunctions.

Sor positive semi-definite kernel for infinite state spaces S
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THEOREM 8 (EXPECTED REGULARIZED RETURN DEPENDING ON
THE FEATURES). Let ¢ be a set of basic features for successor features.
Without loss of generality, we assume that these features are L?(p)-orthonormal.
Given a rewardr, let Q(s,a) := z'1)(s, a) be the Q-function (17) estimated
by regularized successor features, with z given by (16). Let & = Bolty, (Q)
be the estimated regularized-optimal policy.
Then, for the reward models of Section 3, on average for r in the model,

the regularized return G7 of the estimated policy satisfies:

o For the random Gaussian or random goal-reaching reward models,

N 1

E [GT] = E [G°] + T1-7) Tr(p Ary ) + O(1/T?).  (25)

o For the scattered random reward model with intensity x, mean p and

variance o2,

E.[G]] = E.[GF)+ (K2 + 02) Te( Aryp) — (510)*Plg Ay pest ) +O(1/T?)
(26)

where . is the L?(p)-orthogonal projection of the constant reward

r = 1 onto the span of the features.

T(1—~)

This result allows us to work out which features optimize the gain: those
that maximise Tr(¢" A, ) under the constraint that ¢ is L?(p)-orthonormal,
leading to the following characterization. Scattered random rewards require
a slightly longer proof to handle the extra term in (26), but the conclusion
is the same.

COROLLARY 9 (OPTIMAL FEATURES FOR REGULARIZED SUCCESSOR
FEATURES). For any of the three reward models of Section 3, the features
¢ that bring maximal regularized return up to O(1/T?) are the largest d
eigenvectors of p~' A, or equivalently the largest d extremal directions of
' A/ Hm”%g(p). In that case we have

d
Tr(‘PTAﬂo(p) = Z Ai (27)
i=1
where A1, ..., \q are the largest d eigenvalues of p~ ' Ay,. 7

We now turn to a more explicit characterization of these eigenvectors in
deterministic environments. The results depend on the decay factor v. We
first consider the two extreme cases v = 1 and v = 0, as they lead to the
simplest expressions.

"The operator p~' A, is self-adjoint in L?(p), so it is diagonalizable. Its eigenvalues
are the same as those of the symmetric matrix ﬁfl/Q.A,TOﬁflﬂ.
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Remember that Ay, vanishes for a constant reward (the advantage func-
tion is 0), so we only have to compute it for rewards orthogonal to the
constants, r € L3(p). For such rewards, Q-functions and advantage functions
are defined even for v = 1, and the Laplacian operator is invertible up to

v=1.

THEOREM 10 (OPTIMAL FEATURES FOR 7 = 1 IN A DETERMINISTIC
ENVIRONMENT). Assume the environment is deterministic. For v =1 and
r € L&(p), the advantage kernel is given by

rT Ay = (r, (A7 + (ATH* —1d)r) 12, (28)

where A := Id — Py, is the Laplacian operator of Ty, and where (A™1)* =
p~H(A™YT) is the adjoint of A~! acting on L3(p).
Consequently, for v = 1 in a deterministic environment, the optimal

features are the largest eigenfunctions of A=! 4+ (A~1)*,

Intuitively, the largest eigenfunctions of A~! + (A~1)* correspond to the
lowest frequencies (longest range variations) in the environment: for v = 1,
we want to keep information on the large-scale variations of the reward
function.

For comparison, it has previously been suggested to use as features
the smallest eigenfunctions of A + A* | ], or equivalently, the largest
eigenfunctions of Pr,+ Py . The largest eigenfunctions of Pr,+ Py, also convey
a low-frequency intuition, but in a somewhat different way. Indeed, in general,
symmetrizing does not commute with taking the inverse: A™! 4 (A71)* #£
(A + A*)7! in general. This equality can still happen, for instance if A is
reversible, but reversibility of A is a very specific situation: for instance, this
is never the case in kinematic environments.

Therefore, in general, the optimal features are not the smallest eigenfunc-
tions of A 4+ A*.

In contrast, for small v, what matters are the highest frequencies of the
reward function, as we show now.

PROPOSITION 11 (OPTIMAL FEATURES FOR 7 = () IN A DETERMINIS-
TIC ENVIRONMENT). Assume the environment is deterministic. For v =0
and r € L?(p), the advantage kernel is given by

TTATFOT = (1, (Id =Py Pry)7) 12(p) (29)

8Indeed, reversibility implies that if a transition (s,a) — (s’,a’) is possible, then so is
the reverse transition (s’,a’) — (s,a). This is not the case if speed is part of the state: if
s = (x,v) then the next state has ' &~ x + §twv, so the transition (s’,a’) — (s,a) would
require v’ ~ —v, namely, the ability to fully reverse speed with a single action.

Note that here we deal with reversibility in the language of Markov chain theory, not
reversibility in the language of physics: in a physicist’s language, classical mechanics are
reversible (by changing v to —v).

15



where PZ = p~'P] p is the adjoint of Pr, acting on L*(p).
Consequently, for v = 0 in a deterministic environment, the optimal
features are the smallest eigenfunctions of Py Pr,

For v = 0, the problem is a bandit problem: given an initial state sg, just
pick the action with the highest reward, after which the game ends. This
relies on knowing how to compare the value of r on actions at the same state,
which is high-frequency information about r. °

Finally, we give the general expression for 0 < v < 1 in a deterministic
environment.

THEOREM 12 (OPTIMAL FEATURES FOR 0 <y < 1 IN A DETERMIN-
ISTIC ENVIRONMENT). Assume the environment is deterministic. For
0 <~ < 1, the advantage kernel is given by

where A := Id —vPy, is the Laplacian operator of my, and where (A=1)* =
p~H(A™Y)T) is the adjoint of A~ acting on L?(p).

Consequently, in a deterministic environment, the optimal features are
the largest eigenfunctions of A=1 + (A7H* — (1 — %) (A~H)*A~L,

6 Proofs

LEMMA 13. Abbreviate K (m, s) := TKL(w(s) || mo(s)) for the regularization
term in Definition 1.

Then
1 1 -
Bolte, (£)(s,0) = mo(s,0) (1+ 1 (s,0) = 7.7(s)) +0(/1%) (30
and 1 )
K (Boltr (), 8) = 37Bamm(s) (£(s:0) = F(s))"+0(1/T%)  (31)
and consequently
1
Egp [K (Boltr (f), 5)] = 55 1% +O0(1/T%) (32)
Proor.
These follow from direct Taylor expansions. O

9This conclusion for v = 0 heavily depends on the fact that we have defined rewards
over state-actions all along. If rewards only depend on the state, there is no meaningful
optimal behavior for v = 0. One could study the v — 0 limit for reward models depending
only on the state, but this is beyond the scope of the present work.
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PROOF OF THEOREM 2.
We want to estimate the regularized return GI of m = Bolt,,(Q). By
definition, it is the sum of the ordinary return and a penalty term,

t=>0

GT = EgplVi" (50)] — Egomp [Z’V (7, 5¢) | 80, ] (33)

where K (7, s) := TKL(7(s) || mo(s)) is the penalty term as defined in Lemma 13.
We first estimate the value function V;™, then turn to the penalty term.
By definition of Boltzmann policies, 7 = Boltx, (Q) is O(1/T)-close to

-

For 7 close to mp, the policy gradient theorem provides the expression of
the derivative of V™ with respect to m. Writing the policy gradient theorem
as a Taylor expansion around 7 = 7y, we obtain

VT(50)=V™(50) = E(sy.a0) | 27 A™ (51, a0) (nmw(ag|s) — nmo(aelse)) | so,mo | +O((m—m0)?)
>0
(34)
where A7 is the advantage function of policy 7.
Let us average this over sg ~ p. Since p is the invariant distribution of
o, each s; above is also distributed according to p, and therefore all values
of ¢ make the same contribution:

mwmﬂ@%vw%»:]W&WWM@mm@wmmm@—mmmmmomew

1—

(35)

By Lemma 13, for 7 = Bolty,(Q) we have (1 — m)? = O(1/T?) and
moreover

Inm(s,a) =Inm(s,a) + %(Q(S, a) — é(s)) +0(1/7?) (36)
and therefore

ESONp[Vﬂ(SO) -V (80)]

= T =) Beparmols) [47(s5,0) (Q(s,0) = Q()) | + 01/ T?)
1

T(1—7)<

7,Q)a+0(1/T?) (37)

by definition of the advantage norm.
Let us now turn to the regularization term in G7: we want to estimate

(38)

S AN

t=0
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Let pr: be the distribution of s; under policy m and sg ~ pg. Since
m = Boltr, (f) is O(1/T)-close to mp, the associated transition matrices are
also close: Pr = Pr, + O(1/T), and therefore Pt = Pt + O(1/T). '* So in
turn, prt = prot + O(1/T).

By Lemma 13, K itself is O(1/T"). So when computing the expectation
of K under s; ~ py+, we can replace 7 with my up to an O(1/T?) error:

Eisimpe o [K (7, 80)] = By [ K (7, 50)] + O(| K| [|prs — Proell)  (39)
= Esypry o[ (7, 50)] + O(1/T?). (40)

Since sg ~ p and p is an invariant distribution of m, we have pr,; = p.

Therefore,
1
Z ’VtESthwo,t [K(ﬂ', St)] = GESNP [K(ﬂ-7 3)] (41)

t=0

. Nt
and since m = Bolt,,(Q), this is equal to m HQHA + O(1/T?) by

Lemma 13.
By collecting the return term and the penalty term, we have

1 A2 0
o 1@l +owT?
(42)
— sz (1erI - e - @[},) + otyr?)
2T(1 — ) r A r A
(43)
which ends the proof since GJ° = Eg;,[V ™ (s0)]- O

Gy = Esonp[V™(50)] =

r m< :O,QM—

For the proof of Theorem 8 we need a preliminary result on the reward
models.

PROPOSITION 14 (SECOND MOMENT OF THE REWARD IN THE MOD-
ELS). For the random reward models of Section 3, the second moment E[rr]
satisfies:

o For the random Gaussian reward and random goal-reaching reward,

E[rr’ = p L. (44)

e For the scattered random reward model with intensity x, mean pu and
variance o2,

Elrr] = k(® + 02)p" + (rpn)?11" (45)

where 1 is the constant vector with components equal to 1.

10The constant in O is not uniform in ¢. It grows like ¢, since P — P} = Zf;; Pi(P, —
PQ)PQtflf"7 and P; and P» are stochastic matrices so are non-expanding in sup norm, so
each term is O(P; — P2). So we have P{ — Pi = O(t(P1 — P»)) with uniform constants.
The t factor is absorbed by 7' in the cumulated return.
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PROOF OF PROPOSITION 14.
For the random Gaussian reward, the model is x exp(— H’f’”%g(p) /2) =

exp(—r'pr/2) so the covariance matrix is p~! by construction.

For random goal-reaching, we first sample a state-action (s*,a*) ~ p then

set the reward to r = 14 4+)/p(s*,a*). Therefore, the expectation of rrl is

Lige gy 17,
o * xy o (8%,0%) F(s%,a%) _ 1 T _ a1
E[TT ] - (5*2(;*) p(s ’a ) p(8*7 CL*)2 N (S*EC;*) p(S*, CL*) 1(5*70*)]‘(5*,a*) -7

(46)

Scattered random reward require more computation. We first sample

an integer N ~ Poisson(k), then sample N state-actions (s;,a;) ~ p and
weights w; ~ py, @ =1,..., N, then set the reward to

N

w;
r = 7p(8 a,)]l(shai)' (47)
i=1 2y U
Therefore,
T > w; T 5w wj T
E =K e P | —— 1 — 1
=B | S e et 2 ) M);p@j,a» (e5:0)
(48)

Let us consider the first term. For each i the expectation is the same, and
moreover the sampling of the weights w; is independent from the sampling
of the state-actions, so

N 2
w; T 1 T
E [Z )Qﬂ(si,ai)l(si,ai)‘| = (E[N]) (E[w%]) E |:2]]‘(81,a1)]1(51’a1):|

— p(si,a; p(s1,a1)
(49)
= (i +0%)p" (50)
because the expectation of N ~ Poisson(k) is x, and because E [mﬂ(31,a1) ]IISI al)}

is computed exactly as in the random goal-reaching reward case.
For the second term, each j term is independent from the 7 term. For
each j term, we have

Wi LT — Rl L o7
. lp(s]',aj) H(Sj’aj)] = Blwil B [P(Sj,aj) ]1(31.,%-)] 1)
LT
= 1 2
:u(s - p(saa)p(s’a) (s,a) (5 )
= p1’ (53)

since the probability to sample (s, a) is p(s, a), and since the weights w; are
sampled independently from the state-actions.
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The same computation applies to the ¢ term, which is independent from
the j term. So conditionally to N, each pair (i, ) contributes 211" to the
expectation. Since there are N(IN — 1) pairs (¢, j), we have

N

=E[N(N - 1)] 11", (54
;P(Suaz Sl’al)]z?é:l sj,a] sz“J) [V ( iz (54)

Finally, for a Poisson process with parameter x, we have E[N(N — 1)] =
E[N?] — E[N] = Var[N] + (E[N])? — E[N] = ? since the expectation and
variance of the Poisson distribution are both x. This ends the proof. ]

The following lemma expresses that constant rewards have zero advan-
tages.

LEMMA 15. For any policy w, one has A;1 = 0 where 1 is the constant
vector with components 1.

Proof. By definition, for any reward function r, one has

TT'ATI'T = HQ:HZ = IE(s,a)Np [(Qf(sa CL) - Ea’wwo(S)Qf(S’ a/))ﬂ (55)

and the polar form of this quadratic form is the correlation between advan-
tages,

T—IFAWTQ = E(s,a)wp[(Q;rl (5’ a) _Ea’wwo(s) :1 (57 a/))(Q:Q (87 a) a’~mo (s Qrz (5 a ))]

(56)
When ry = 1, one has Q7, = ﬁﬂ for any policy w. Therefore, Q7 (s,a)—
Ea/ o (s) @1y (5,a") = 0 and 71 Azro = 0 for any 71, so that Ars = 0. O

PROOF OF THEOREM 8.
By Theorem 2, for a reward r, the expected return using policy Boltr, () is

67 =67+ g (1o - e -ep

) +0(1/T?).  (57)

and we want to compute the expectation of this when the reward follows one
of the models in Section 3, and Q is the Q-function estimated by regularized
successor features.

To obtain Theorem 8, we must compute the expectation over r of the
m term.

Let # be the L?(p)-orthogonal projection of the reward r onto the features
. By Definition 4, successor features estimate Q as the Q-function of the

estimated reward 7 for policy 7y, namely,

Q=Qr (58)
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and therefore

A

Q-Qr=Q" -Qr =07, (59)
since @-functions are linear in the reward for a fixed policy.
By definition of the advantage kernel A, the advantage norm of the
Q-function of reward r is r' Ar, so

Q701 = 7" Aryr = Tr(Ag,rr') (60)

and
-~ or
T A r—r

By definition of #, we have r —# = (Id —II)r where II is the L?(p)-orthogonal
projector onto the features. So

S = (1 1) Ay (r—#) = Te(Ary (r— )= #)T). (61)

i] — Tr(An By [rr])

E, [lQx - @ - er

— Tr (A, (Id ~IDE, [rr'](1d ~TD)") * (62)
Since the features ¢ are L?(p)-orthonormal, this projector is given by
IIr = pw where w = E(; 4)~,[7(s,a)¢(s,a)] = ¢'pr is the linear regression

vector of 7 onto the features. Therefore the projector II satisfies IIr = @' pr
SO

T,

IT = pp ' p. (63)

Let us first consider the case of random Gaussian rewards and random
goal-reaching rewards. In both cases, by Proposition 14 we have

E[rr]=p~t (64)

so in that case

E, [lQx - @ - er

2 1
| = T
= Tr (A, (1d ~TD)p~ ' (Id ~11)T) . (65)
Since Id —II is an L?(p)-orthogonal projector, one has
(Id —I1)p~H(Id —IN)" = (Id —1)p~* (66)

which one can also check by a direction computation using IT = p¢'p and
L?(p)-orthonormality of features (¢'pe = Id). Therefore,

B, (10713 - @ - @[} = Trns™) - 1 (Ana-mp~t)  67)
— TH(A T (69)
= Tr(Aro09") (69)
— T An) (70)



This yields the expression of the expected gain in Theorem 8 for the case of
random Gaussian or goal-reaching rewards.

For random scattered rewards, the computation has one more term. Let
us start with (62). By Proposition 14,

E[rr'] = k(u® 4+ 0%)p~ 4 (kp)? 11" (71)
The first term is proportional to p~!, so its contribution to (62) is the same
as for random Gaussian rewards, up to the additional factor x(u? +o2). The
contribution of the second term (ku)211" to (62) is (ku)? times

Tr(Ar117) — Tr( Ay, (Id —I1) 11" (Id —11"))
= 1A, 1 — ((Id —I1)1)" A, (Id —=1I)1
= 2(IT1) A, 1 — (TI1)T A, TIT (72)

Now, by Lemma 15, one has A 1 = 0. Therefore, the above reduces to
—(IT1)" A, IT1, which is the term ¢! Az st in Theorem 8, by definition of
@est- This ends the proof. ]

Proor or COROLLARY 9.
The Poincaré separation theorem states that, given a symmetric matrix A
and a rank-d orthogonal projector II, the i-th largest eigenvalue of IIAII is
at most the i-th largest eigenvalue of A. Consequently, the trace of ITAII is
at most the sum of the largest d eigenvalues of A, which is achieved when II
coincides with the largest d eigendirections of A.

For our case, let us perform a change of basis ¢ = p~'/2¢: the L?(p)-
orthonormality of ¢ is equivalent to Euclidean orthonormality of . Then
I := ¢¢@' is the Euclidean orthogonal projector onto ¢. We can then rewrite

(@72 Amy ™ %p) (73)
(b2 Ar p 7 250T) (74)
= Tr(p~ /2 Agyp~ V/?10) (75)
(p™ 12 Aryp~ /7112 (76)
(TIp~ /2 Am, p~/710). (77)

Therefore, by the Poincaré separation theorem, this is maximal when ¢
are the largest d eigenvectors of p—1/ 2AL, p~1/2, or equivalently, when ¢ are
the largest d eigenvectors of p~1 A, .

Note that p~t Ay, is self-adjoing in L?(p), because Ay, is symmetric.
Therefore, the largest d eigenvectors of p~'A,, are also the extrema of
(r, P AroT) 12(0)/ ||7“Hig(p), and since (r, p~ Az 7) 12, = 7" Az, r, they are
also the extrema of ' A, r/ ||7“||%2( p)- This proves the claim for the case of
random Gaussian and random goal-reaching rewards.
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For the case of random scattered rewards, on top of the Tr(¢" Ay, ) term,
there is an additional term —(IT1)" A, I11 < 0. So, a priori, the maximum is
lower due to this term, and might be obtained with a different choice of ¢.
However, since A, 1 = 0, the main eigendirections above do not include the
constants, and are L?(p)-orthogonal to the constants. Therefore, if we set ¢
to those eigendirections, then II1T = 0 so the additional term is 0. Namely,
the choice of ¢ that maximizes the Tr(p' Ay, ¢) term also sets the extra
negative term to 0, so the maximum is still given by those eigendirections.

This ends the proof of Theorem 8. O

We now turn to the proof of Theorem 10. The first proposition relates
three norms in an MDP: the advantage norm, the Dirichlet form (f, Af),
and the L?(p) norm.

PROPOSITION 16. In a deterministic environment, for any function f on
state-actions, and any decay factor 0 < v < 1,

1% = 1F W2y — [1Pro £l Z2) (78)

and for 0 < v < 1 this is further equal to

1
1715 = =5 (200,80 w20 = 18l = (1 =99 IS le) (79)

where A = 1d —v Py, is the Laplacian operator of m.

PRroOOF.

Let us denote by p the row vector of size S with components given by
ps := p(s), the marginal probability of state s under p. Let f2 denote the
pointwise square applied to a vector f. Using this notation, we have

Hf||,24 = Es~p, a~7r0(s)(f<37 a) - ]Ea’NﬂO(S)f(Sv al))2 (80)
= Es~p, awwo(s)f(sv a)2 - ESN,O(EaNWO(s)f(Sv a’))2 (81)
= prof? — p(mof)? (82)

where we view 1 as an S X (S x A) matrix, as explained in the Notation.
Since p is the invariant distribution of 7y, we have p = pmoP. Therefore,

IfII% = prof? — proP(mof) 2. (83)

An environment is deterministic if and only if the variance of g(s¢11)
knowing (s, a;) is 0 for any function g. In other words, the environment
is deterministic if and only if Pg? — (Pg)? = 0 for any g. Therefore, in a
deterministic environment,

proP(mof)? = pro(Pmof)? = pmo(Pry f) . (84)
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Finally, for any function g, pmog? is just another notation for || gH%Q( )"
Therefore, we find

IF1% = Aot = pmo(Pro ) = 1 720y — 1 Pro fl 72 (85)

as needed. The second statement follows from substituting Py, = %(Id —A)
and expanding. O

Proor or THEOREM 10.
Let r € L3(p). Since r averages to 0, its Q-function Q™ is well-defined for
v = 1. By definition of the advantage kernel, we have

T Aryr = | AT 72y = 1Q7 1% (86)

by definition of ||| 4.
By Proposition 16 for v = 1, we have

Q711 = 2(QF°, AQ) 12y — 1AQFI3(,) - (87)

Now, Q7° satisfies the Bellman equation QI° = r 4+ P, ,Q7° for v = 1. By
definition of A, this rewrites as

Therefore,
1QF 1% = 2(Q7 1) 125y — Irllz2(y)
= <A_1’I",7">L2(p) - ||’I"||%2(p)
= (A7) ) + (r (AT ) () — 7l
= (r, (AT 4+ (ATH = 1d)r) 2
as needed.

Therefore, the functions r € LZ(p) that are the extrema of ' A,/ Hr||%2( »)

are the largest eigenfunctions of A=+ (A~1)* —1Id, or equivalently the largest
eigenfunctions of A™! + (A71)*. O

PROOF OF PROPOSITION 11.
Let r € L?(p). By definition of the advantage kernel, we have

r Aryr = [|AT)|72(,) = Q7 [1% (89)

by definition of ||| 4.
But for v = 0 we have Q7° =r, so

T Azr = 7)1 - (90)

24



By Proposition 16 for v = 0, we have

2 2 2
1714 = Irllz2 o) = 1 ProrllZ2(p) (91)
= (1, 1) 12(p) = (Pro™s ProT) 12(p) (92)
= <7’, (Id _P;OPW())T>L2(p) (93)
as needed.
Therefore, the extrema of 1T A7/ ||7]%2 (p) are the largest eigenfunctions
of Id — Py Pr,, namely, the smallest eigenfunctions of Pr Pr,. O

PRrROOF OF THEOREM 12.
Let r € L?(p). By definition of the advantage kernel, we have

r Aryr = | AT 72y = 1QF 1% (94)

by definition of ||-|| 4.
By Proposition 16 for 0 < v < 1, we have

P NQRI = 2(Q8, AQT) 12 — [AQR 2,y — (1= 72 Q132 - (95)

Now, Q7° satisfies the Bellman equation Q7° = r + vFPr,Q7°. By definition
of A, this rewrites as

AQTo =r, QT =A"lr, (96)
Therefore,
PRI = 2@, )2y — Irllzay — (1= 4" 1QF 172,
= 2AT )2~ Il — (1= 73 A7
= TIL2G0) ~ I E2(0) 7 L2(p)
=, (AT H AT =T =1 = A(ATH AT 1)1,
as needed.

Therefore, the extrema of 7' Ay, r/ Hr||%2( ) are the largest eigenfunc-
tions of A= + (A71)* —1d —(1 — 42)(A~1)*A~L, or equivalently the largest
eigenfunctions of A™! + (A71)* — (1 —42)(A~1)*A~L.

Note that A™! + (A71)* —1d —(1 — v?)(A~1*A~! is a non-negative
operator, since ||Q™||% > 0.

Alternatively, one can start with the first expression in Proposition 16,
namely ||Qf0||124 = HQ;TU||%2(0) — ||P,r0Qf0||%2(p). By a similar derivation, this
leads to a slightly different expression for the same quantities, mixing A and
Pr,:

rT Ayt = (r, (A1) (Id =P, Pry) A7) 12().- (97)

O]
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PROOF OF PROPOSITION 6.
By definition, successor features estimate () as the Q-function of the estimated
reward 7,

Q:f'i")/Pm)QA (98)
where
#(s,a) = 2'p(s, a) (99)

is the L?(p)-orthogonal projection of r onto the features ¢, with z given by
(16). Therefore

[0 r 2P0l

2
() 17 = 71720 = 1(1d =TD)r[|72, (100)

where II is the L?(p)-orthogonal projector onto the features.
Therefore, we have

E @ —r—1PuQ], , = E-I0d-DDril}x, (101)
= E, [((1d =Ty, (1d =T0)r) 12 (,)] (102)
= E, [(r, (1d ~T)r) p2(, | (103)
= E, [r'p(1d ~I)r] (104)
=B, Tr (rr'p(1d ~T1)) (105)
= Tr (B, [rr']p(1d ~ID) ) . (106)

By Proposition 14, we have E,[rr'] = p~! in the random Gaussian reward

and random goal-reaching reward models. Therefore the above is
Tr (B, [rr']p(1d ~T1) ) = Tr (1d ~IT) (107)
=H#S X #A—-d (108)

since II is a projector of rank d. This proves the result.
The same proof works for the universal successor features as in | s
where () satisfies a Bellman equation with respect to 7, instead of mg. [
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