Tackling the Zero-Shot RL Loss Directly

Yann Ollivier

Abstract

Zero-shot reinforcement learning (RL) methods aim at instantly
producing a behavior for an RL task in a given environment, from a
description of the reward function. These methods are usually tested
by evaluating their average performance on a series of downstream
tasks. Yet they cannot be trained directly for that objective, unless
the distribution of downstream tasks is known. Existing approaches
either use other learning criteria [, , , 1,
or explicitly set a prior on downstream tasks, such as reward functions
given by a random neural network |].

Here we prove that the zero-shot RL loss can be optimized directly,
for a range of non-informative priors such as white noise rewards, tem-
porally smooth rewards, “scattered” sparse rewards, or a combination
of those.

Thus, it is possible to learn the optimal zero-shot features algorith-
mically, for a wide mixture of priors.

Surprisingly, the white noise prior leads to an objective almost
identical to the one in VISR [], via a different approach. This
shows that some seemingly arbitrary choices in VISR, such as Von Mises—
Fisher distributions, do maximize downstream performance. This also
suggests more efficient ways to tackle the VISR objective.

Finally, we discuss some consequences and limitations of the zero-
shot RL objective, such as its tendency to produce narrow optimal
features if only using Gaussian dense reward priors.

1 Introduction

Zero-shot reinforcement learning (RL) methods aim at instantly producing a
behavior for an RL task in a given environment, from a description of the
reward function. This is done after an unsupervised training phase. Such
methods include, for instance, universal successor features (SFs, [D
and the forward-backward framework (FB, | ,).

Zero-shot RL is usually tested by reporting average performance on a
series of downstream tasks: a reward function r is sampled from a distribution
Biest of tasks, a reward representation z = ®(r) is computed, ! and a policy

'A requirement of zero-shot RL is that this computation should be scalable, with z
of reasonable size. Without a computational constraint, one could just pre-compute all
optimal policies of all possible downstream tasks up to some degree of approximation.

is applied, starting at some initial state sg. Thus, the reported performance
is the expectation

ETN/Btest]ESONPO ‘/’I‘ﬂ—z (80) (1)

where the value function V™= (sg) is the performance of policy 7, on the
reward function r when starting at so (Section 2.1).

Yet zero-shot RL methods are usually not trained by maximizing the
performance (1), because the distribution of downstream tasks Siegt is un-
known. Other training criteria have to be introduced, such as a finite-rank
representation of long-term transition probabilities in FB [|, or an
information criterion on policies 7, in VISR |].

Alternatively, it is possible to explicitly set a prior 5 on downstream
tasks, and optimize the criterion (1) using that prior instead of the true task
distribution Btest. This follows the machine learning philosophy of “follow
the gradient of what you are actually doing”, rather than made-up criteria.

For instance, | | use random neural networks as a prior for the
downstream reward function . This prior is parametric (it is parameterized
by the weights of a network), and it is unclear how sensitive performance is
to this choice.

Here:

e We show that the zero-shot RL performance can be maximized directly
for a wide mixture of nonparametric, uninformative priors. This in-
cludes dense reward priors such as white noise rewards, temporally
smooth rewards with a “Dirichlet norm” prior related to Laplacian
eigenfunctions, and sparse priors such as mixtures of a number of target
states with random weights.

Arguably, a mixture of such uninformative priors has the best chance
of covering the unknown test distribution Siest. Note that learning
meaningful representations does not require informative priors on down-
stream tasks: environment dynamics lead to informative representations
even with non-informative priors.

This makes it possible to compute the best possible representations for
zero-shot RL by following the gradient of the criterion (1). Notably, we
can do this for dense reward priors without explicitly sampling a reward
from the prior, which would not be possible for infinite-dimensional
priors such as white noise.

e We clarify the implicit priors on rewards in SFs: the SF strategy
implicitly relies on a white noise prior on rewards (Section 3.2).

Doing so, we extend the SF framework to other priors, such as a prior
based on the Dirichlet norm, which introduces temporal smoothness
related to Laplacian eigenfunctions (Section 2.3).

o We show a surprising connection with VISR |]: VISR “almost”
computes the optimal zero-shot features for a white noise prior (Sec-
tion 3.3). (The “almost” comes from a minor change in the way the
features are normalized.)

This is unexpected, as VISR was not defined to maximize downstream
zero-shot performance. Instead, VISR was defined as a feedback loop
between a diversity method |] and successor features, by training
a family of policies 7, that maximize the rewards o'z for some features
¢, and learning ¢ in turn by increasing ¢'z at the places visited by 7,
thus creating specialization.

This newfound connection between VISR and downstream performance
for a white noise prior may justify some seemingly arbitrary choices in
VISR, such as its use of Von Mises—Fisher distributions.

The analysis also suggests more efficient ways to tackle the VISR
objective, notably, relying on occupation measures rather than Monte
Carlo sampling.

o We derive further theoretical properties of the zero-shot RL loss. No-
tably, the Bayesian viewpoint has no regularizing effect on the policies
learned: these policies are “sharp” in that they are necessarily optimal
policies for some particular task r (Proposition 2).

This has some consequences for exploration in settings where the reward
is not exactly known: indeed, the zero-shot RL setting assumes that
the reward function is fully specified at test time (such as reaching a
particular goal or maximizing a particular quantity).

This can also produce unexpectedly narrow optimal features (Sec-
tion 4.1) for some particular priors.

e We discuss some limitations of the zero-shot RL setting, and possible
extensions.

2 Setup, Notation, and Some Reward Priors

2.1 General Notation

Markov decision process. We consider a reward-free Markov decision
process (MDP) M = (S, A, P,~) with state space S, action space A, transi-
tion probabilities P(s'|s,a) from state s to s’ given action a, and discount
factor 0 < v < 1]]. A policy 7 is a function 7: S — Prob(A) mapping a
state s to the probabilities of actions in A. Given (sg, ag) € S x A and a policy
7, we denote Pr(-|sg, ap,) and E[-|sg, ag, 7| the probabilities and expecta-
tions under state-action sequences (s, a;)i>0 starting at (s, ag) and following
policy 7 in the environment, defined by sampling s; ~ P(s¢|s;—1,a;—1) and

a; ~ m(a¢|sy). Given any reward function r: S — R, the Q-function of 7 for
ris QT (s0,a0) := Y_y50 V'E[r(st)|s0, a0, 7). The value function of 7 for r is
VE(S) = Ym0 Bl (s1) 0, 7.

We assume access to a dataset consisting of reward-free observed transi-
tions (8¢, at, S¢+1) in the environment. We denote by p the distribution of
states s; in the training set.

Occupation measures. We let pg be some distribution of initial states in
the environment; if no such distribution is available, we just take py := p.

Occupation measures will pop up repeadtedly in our analysis. The
occupation measure d, of policy 7 is a probability distribution over S,
defined for each X C S as

dr(X) == (1 = 7)Egympo th Pr(s; € X|so, 7). (2)

t20

In particular, by construction,
Esvd. () = (1 = 7)Esgmpo Vi (50)- (3)

2.2 The Zero-Shot RL Objective: Optimize Expected Down-
stream Performance

Existing zero-shot RL procedures proceed as follows: after an unsupervised,
reward-free pretraining phase, the agent is confronted with a reward r (either
via reward samples or via an explicit reward formula), computes a task
representation z = ®(r) in a simple, fast way, then apply an existing policy
7,. The map ® from reward to task representation, as well as the policies
7, are learned during pretraining.

Such methods are evaluated by running the policies 7, on a number of
downstream tasks, and reporting the cumulated reward. Thus, if Sieg is the
distribution of downstream tasks, the reported loss is, in expectation,

eteSt ((I)7 7T) = _ETNBtestESONPO ‘/Tﬂ—q)(r) (80> (4)

where pg is the distribution of initial states used for testing. This corresponds
to sampling a downstream task r ~ Siest, computing z = ®(r), and running
7, on reward r.

Usually the downstream task distribution Siegt is unknown. Still, if we
have a prior 5 on rewards, a natural objective for the pretraining phase is to
minimize the loss

gﬁ((pv 77) = _ErwﬁEsowpgwﬂq)(T)(SO) (5)

over ® and 7. The prior 5 should ideally encompass the unknown actual
distribution Siest of downstream tasks.

Without computational constraints, this problem is theoretically “easy”

to solve: just precompute all optimal policies for all possible rewards. This
corresponds to ® = Id, namely, a reward function r is representated by z = r
itself, and then 7, should just be the optimal policy for r. If the state space
is continuous, r and z are infinite-dimensional.

In practical methods, the task representation z will be finite-dimensional.
This means some reward functions r are necessarily lumped together via ®,
and determining the best way to do this (e.g., for a fixed dimension of z)
becomes a nontrivial mathematical question. This is what we address in the
rest of the text.

2.3 Some Uninformative Priors on Reward Functions

We now introduce some priors on downstream tasks. Ideally, the prior should
cover the true distribution of tasks at test time. Since this distribution is
unknown, we try to consider the most uninformative priors we could handle,
in the hope this results in more generic zero-shot performance.

We consider both dense and sparse reward priors. For dense rewards, we
include white noise, and a Gaussian process based on the Dirichlet norm,
which imposes more spatial smoothness on the rewards than white noise,
related to Laplacian eigenfunctions. For sparse rewards, we consider random
goal-reaching (reaching a target state specified at random), and mixtures of
several goals with random weights.

These are some of the most agnostic models we can find on an arbitrary
state equipped with an arbitrary probability distribution. All models are
built to have well-defined continuous-space limits, and still make sense in
an abstract state space equipped with a measure p. To avoid excessive
technicality, we restrict ourselves to the finite case in this text.

Importantly, these priors rely on quantities that can be estimated from
the dataset (such as expectations under p). This is why we use norms related
to the dataset distribution p.

We will also use mixtures of these priors.

2.3.1 Dense Reward Priors

White noise prior. This is defined as
B(r) o< exp(— 7|2 /2) (6)

2
where ||| i= Equpf(s)2
This prior is very agnostic: the reward at every state is assumed to be
independent from every other state.

Dirichlet prior. This is defined as

B(r) oc exp(— |7l /2) (7)

where
Hf”]2)1r = E(st,at7st+1)~p (f(st) - f(3t+1))2 +a Hf”;z) (8)

where some « > 0 is used because the first term vanishes on constant f.
Contrary to white noise, this prior enforces some smoothness over func-
tions: the values at related states are closer.
The Dirichlet norm is directly related to Laplacian eigenfunctions. Indeed,
when p is the invariant distribution of the policy in the dataset 2, one has

1F11Bie = 2(f, Af)p + I £ (9)

where A := Id—PF, is the Laplace operator of the transition operator
Py(s¢+1]s¢) of the policy implicitly defined by the dataset.

General Gaussian priors. To avoid proving the same results separately
for white noise and Dirichlet priors, we will more generally use priors of the
form

B(r) o exp(— |Irll%) (10)
where || f||§< denotes an arbitrary symmetric positive-definite quadratic form
on reward functions.

On a finite state space, this is equivalent to exp(—r'Kr/2) for some p.s.d.
matrix K of size #5 x #S5. For instance, on a finite state space, the white
noise prior corresponds to K = diag(p), and the Dirichlet prior is given by
the matrix K = E(s g1 [(1s — 15) (15 — 1) + aEgup[11]).

On infinite state spaces, this is an “infinite-dimensional Gaussian” whose
formal definition involves having a consistent set of Gaussian distributions
in every finite-dimensional projection.

We will also use the associated dot product (f,g)x. For instance,

(£, 9)Dir = E(sp ar,5001)~p (F(56) = f(8641))(9(st) —g(se41)) +af(st)g(se). (11)
Like || f||p;,, this can be estimated from the dataset.

REMARK 1. In general, the optimal features are not directly related to the
largest eigenvectors or singular vectors of K. For instance, the white noise
prior corresponds to K = diag(p), whose eigendecomposition is independent
of the dynamics of the environment, while optimal features depend on the
dynamics.

2More precisely, it is sufficient that the distributions of s; and s¢+1 under the distribution
p in the dataset are the same. This does not require the existence of a specific policy that
produced the dataset. For instance, if a dataset is a mixture of long trajectories from
several policies, then the laws of s; and of s¢11 in the dataset will be almost the same (up
to neglecting the first and last state of each trajectory).

2.3.2 Sparse Reward Priors

Random goal-reaching prior. A goal-reaching reward is a reward that
is nonzero only at a particular state, and 0 everywhere else.

If the prior S on downstream tasks only includes goal-reaching tasks
(with some distribution of goals g), then arguably zero-shot RL is not needed:
it is better to just do goal-reaching, namely, directly use z = g as the task
representation for goal g, and learn Q(s,g) via algorithms such as HER
[I

But we want to mix goal-reaching with other priors, and find zero-shot
RL methods that can work in a mixture of different priors, hence the interest
of a general setup. So we formally define here a goal-reaching prior.

In this model, we first select a random state s* ~ p in S. Then we put a
reward 1/p(s*) at s*, and 0 everywhere else:

1

= ——— Tgg. 12

T(S) p(S*) §=$§ ()

The 1/p factor maintains [rdp = 1. Without this scaling, all Q-functions
degenerate to 0 in continuous spaces, as discussed in | |. Indeed, if we

omit this factor, and just set the reward to be 1 at a given goal state
s* € S in a continuous space S, the probability of exactly reaching that state
with a stochastic policy is usually 0, and all @Q-functions are 0. Thanks to
the 1/p factor, the continuous limit is a Dirac function reward, infinitely
sparse, corresponding to the limit of putting a reward 1 in a small ball
B(s*,¢) of radius € — 0 around s*, and rescaling by 1/p(B(s*,¢)) to keep
J rdp = 1. This produces meaningful, nonzero Q-functions in the continuous
limit |].

This model combines well with successor features or the FB framework:
indeed, this model satisfies

Esvplr(s)e(s)] = ¢(s7) (13)

(both in finite spaces and in the continuous-space limit). This is useful in
conjunction with the SF formulas such as (18) in Section 3.2.

Scattered random reward prior. We extend the random goal-reaching
prior to rewards comprising several goals with various weights, where the
weights may be random and may be positive or negative.

Generally speaking, we will call scattered random reward prior any prior
which consists in first choosing an integer k > 0 according to some probability
distribution, then choosing k goal states (s})1<i<k ~ p and k random weights

W;, . . ., wi according to some fixed probability distribution on R, and setting
Eoows
r(s) =cp Y — Dy (14)
2 o) 1o

7

namely, a sum of k goal-reaching rewards (12).

A suitable scaling factor ¢, can sometimes produce more meaningful
behavior for large k. For instance, if we take w; ~ N(0,1) and ¢; = 1/Vk,
and let k& — oo, then this prior tends to the white noise prior above.

Therefore, scattered random reward priors can be seen as interpolating
between the pure goal-reaching and white noise priors.

3 Algorithmic Tractability of the Zero-Shot RL
Loss

3.1 The Optimal Policies Given a Representation ¢

Here we work out half of the objective (5): what are the optimal policies 7,
if the task representation ® is known?

PROPOSITION 2 (POLICIES MUST BE OPTIMAL FOR THE MEAN POS-
TERIOR REWARD KNOWING z). For each z, define

Tz =]E’r‘\@(’/‘):z[r] (15)

the mean reward function knowing ®(r) = z under the prior . Let also (3,
be the distribution of z = ®(r) when sampling r ~ .
Then
65(@, ﬂ) = _Ezfvﬁz ESoNﬂOVr‘Zz (30)' (16)

Consequently, given the representation ®, for every z, the best policy
is the optimal policy ;. for reward r..

So, in this model, the optimal zero-shot policies have no induced stochas-
ticity to account for uncertainties. This holds even if there is noise in the
computation of z. The full point of zero-shot RL is to decide which rewards
to lump together under the same policy.

This does not hold if one includes variance over r in the main loss (5)
(Section B).

The value of 7, can be derived explicitly for some priors (Gaussian priors
and linear ®), which we now turn to. Other priors (goal-oriented or scattered
random rewards) require a slightly different approach (Section 3.5).

3.2 Linear Task Representations ¢

We now emphasize the case of linear task representations ®, because it corre-
sponds to successor features and to the forward-backward framework, which
are the most successful zero-shot RL approaches to date. (See Section 4.2
for nonlinear ®.)

The easiest-to-compute task representations z = ®(r) are linear functions
of r. Any such finite-dimensional function ® is given by integrating the
reward against some features ¢ = (;(s))i=1,...k:

z = (Cov @)_IESNPT(S)QO(S) (17)

where we include a preconditioning by (Cov)~! as in SFs. * Here all

covariances are expressed with respect to the state distribution p: Cov ¢ :=

Esp p(s)(s)".

By Proposition 2, given the features ¢, the best policies are the optimal
policies for the rewards r,. So we have to compute r,. Then the policies can
be learned, e.g., via (J-learning for each z.

The following result specifies the value of r, and hence the optimal policies
given the features, but does not yet say how to choose the features ¢: this is
covered in the next sections.

PROPOSITION 3 (LINEAR TASK REPRESENTATIONS AND WHITE NOISE
PRIOR). Assume the reward representation z = ®(r) is given by the succes-
sor feature model

2 = (Cov) ' Esnpr(s)p(s) (18)

using some linearly independent features p: S — RY.
Then, for the white noise prior on rewards, the posterior mean reward 7,
(15) is
r2(s) = 2Tp(s). (19)

Therefore, by Proposition 2, for a given o, the policies w, that optimize the
zero-shot RL loss (5) are the optimal policies for reward z'¢, for each z.

Moreover, under these assumptions, the distribution 3, of z is a centered
Gaussian with covariance matrix (Cov)7L

This proposition gives a justification for part of the strategy behind
successor features, namely, projecting the reward onto the features and
applying the optimal policy for the projected reward. This is optimal on
average under an implicit white noise prior on rewards.

In the forward-backward framework (FB), the task representation z is
computed as z = E,-,r(s)B(s) with features B. This is the same as (18)
up to the change of variables by (Cov)~!. Therefore, this result strongly
suggests to train policies 7, for the rewards z'(Cov B)~!B. This contrasts
with the FB framework, in which the policies w, are defined through the
forward function F. The two coincide only if the training of F is perfect.

3Including (Cov ¢)~! from the start (as opposed to z = Esv,r(s)p(s) as in FB) is
more adapted to distribution shifts. Indeed, for rewards in the span of ¢, then the reward
representation z is independent of the distribution p of states used for the computation.

“because in that case, F' contains the successor features of (Cov B)™' B, by one of the
results in []

In general, the proposition is not true for other reward priors, such as
random goal-reaching. ® Still, (19) also holds for any Gaussian prior on
rewards such that the components of r along ¢ and its L?(p)-orthogonal are
independent, namely, r(s) = 0]p(s) + 03£(s) where £ are any features such
that Es,[¢(s)&(s)"] = 0 and 6y, 65 are independent Gaussian vectors with
any covariance matrix. But this cannot be used to optimize the features ¢,
because this condition depends on ¢ itself so it does not represent a fixed
prior for the loss (5).

This result extends to the more general case of arbitrary Gaussian priors
given by a metric ||-|| : we just have to compute z by a formula involving
this norm, instead of the SF formula (18).

This is especially relevant if K can be computed from expectations over
the dataset, as with the Dirichlet prior: this results in an SF-like approach,
but relying on a different implicit prior instead of the white noise prior on
rewards.

PROPOSITION 4 (LINEAR REPRESENTATIONS WITH ARBITRARY GAUS-
SIAN PRIOR). Assume that the prior on rewards is

B(r) o exp(—3 [|rll%) (20)

for some Euclidean norm ||-||; on the space of rewards.
Assume the reward representation z = ®(r) is computed as

2=C"r o)k (21)

using some linearly independent features ¢: S — R%, where C is the k x k
matrix with entries Cj; = (i, ¢j) k. Namely, z contains the weights of the
L%(||-|| ¢)-orthogonal projection of r onto the features .

Then the posterior mean reward r, given z is

r2(s) = ' (s) (22)

Therefore, by Proposition 2, for a given ¢, the policies w, that optimize the
zero-shot RL loss (5) are the optimal policies for reward z'p, for each z.
Moreover, the distribution 3, of z is Gaussian with covariance matrix

(e, o))"

For instance, with the Dirichlet prior, we have

(s 1)Dir = Bsys01)mp (1(58) = 7(s641))(0(s51) = @(s141)) + aBsnpr(s)p(5)
(23)

®For instance, take any set of features such that ¢: S — R? is injective, such as ¢ = Id.
Take for 8 the goal-reaching prior. Then for reaching a goal g, the reward r is a Dirac at g
so that E[rg] = p(g) and z = C~'g with C the covariance matrix. Since the map g — z is
bijective, it conveys full knowledge of the task for this prior, and the posterior mean r, is
just the single reward for reaching g.

10

and

(@, @)D = E(oy 01 mp (9(50) = 0(5041)) (0(50) = 9(5041)) "+ @By () (s)
(24)
and so z can be estimated from samples. This gives rise to a Dirichlet-prior-

based version of successor features. ©

REMARK 5. It is also possible to train a Gaussian exp(— ||7||%) prior while
using features z = (Ep") "'Ere that do not use the K-norm. But in that
case the expression for the posterior mean 7, is much more complex and
requires inverting K.

3.3 The Zero-Shot Loss is Tractable for Linear Representa-
tions

These results for fixed ¢ pave the way to computing the gradient of the
zero-shot loss (5) with respect to ¢: putting together all the ingredients
yields the following result.

THEOREM 6 (ZERO-SHOT RL LOSS FOR LINEAR TASK REPRESEN-
TATIONS). Assume that the prior on reward functions r is [(r)
exp(—3 ||7“||§<) for some Euclidean norm |-||,. Assume that the reward
representation z = ®(r) is computed as in successor features (21) using the
norm ||-||x, namely,

2=C"r o)k (25)

where ¢: S — R? are linearly independent features, and where C is the
matrix with entries Cij = (pi,) K-
Then the zero-shot RL loss (5) is

1
lg(®,m) = —ﬁEZNN(o,(Jfl) ESNdMW(S)TZ (26)
where d_ is the occupation measure (2) of policy .

Moreover, the optimal 7, given ® is the optimal policy for reward r,(s) :=

o(s)"z.

Relationship with VISR |]: VISR almost optimizes ex-
pected downstream performance under a white noise prior. Sur-
prisingly, the loss (26) is very close to the loss optimized in VISR, although
VISR was built in a different way with no formal connection to expected
downstream task performance.

5Depending on how the reward is specified for zero-shot RL, in some situations, we
might not have access to both r(s¢) and r(s¢+1). And for goal-oriented tasks, we usually
don’t have access to ¢(s¢+1), the state visited one step after reaching the goal.

This contrasts with basic successor features, for which setting a goal state s* just gives
z o (Cov) " Lp(s*).

11

VISR is a criterion to build features ¢ for successor features. It works
with a set of features ¢ and policies 7m,. Each policy 7, is the optimal policy
for reward function ¢'z. The features ¢ are chosen to maximize the mutual
information between z and the states s visited by 7,; more exactly, the states
s are assumed to be observed only through ¢(s), and the distribution of z
knowing ¢(s) is assumed to follow a Von Mises-Fisher distribution exp(p'z)
(this is chosen for convenience so that the log-likelihood 'z matches with
the reward). The features ¢ attempt to maximize the mutual information
under this model of z given s; this mutual information is estimated via a

variational lower bound. We refer to the VISR paper | | for further
details.
Yet it turns out Algorithm 1 in | | optimizes the loss (26) above,

except for a difference in the way z and ¢ are normalized. More precisely,
the VISR algorithm consists in:

1. Sampling a hidden vector z (denoted w in |).

2. Training the policy 7, to optimize the reward ¢'z. This is done in
VISR via the computation of the successor features i of .

3. Running the policy 7, to get a sequence of states s;, whose distribution
is thus d, .

4. Updating the features ¢ to minimize —¢(s;) 2.

VISR “almost” optimizes the loss (26): the only difference between VISR
and Theorem 6 lies in the normalization of z and ¢. In Theorem 6, we
sample 2 from N(0,C~!) where C is the covariance matrix of ¢, and we have
no constraint on ¢. In VISR, z is sampled from N (0,Id) then normalized
to unit length, and the features ¢ use a normalized output layer so that
llp(s)]| =1 for any state s.

Normalization is necessary in VISR: otherwise, the loss of ¢ can be
brought to 0 by downscaling ¢. On the other hand, in Theorem 6, if we
downscale ¢, the distribution z ~ N (0, C~!) gets upscaled by the same factor
s0 o'z is unchanged. This emphasizes the role of sampling z with covariance
matrix C~!. Also note that the normalization [|p(s)|| = 1 in VISR does
not imply that the covariance matrix of ¢ is C' = Id. So there is a slight
mismatch between the VISR objective and the zero-shot RL loss.

Still, Theorem 6 proves that VISR “almost” optimizes the expected down-
stream performance of . under a white noise prior on reward functions,
where the “almost” accounts for the difference in normalization and covari-
ance of z. This is surprising, as expected downstream performance was not
explicitly used to derive VISR.

12

3.4

Algorithms for Optimizing the Representation ¢

A generic VISR-like algorithm to optimize the zero-shot RL loss (26) in
Theorem 6 may have the following structure:

1.

2.

3.
4.

d.

Sample a minibatch of z values.

Do a policy optimization step to bring 7, closer to the optimal policy

for reward ¢(s)'z.

Estimate the occupation measures d, of 7.
Do a gradient step on ¢ using the loss (26).

Iterate.

We present one possible such algorithm in Algorithm 1. It departs from
VISR in three ways:

« Fixing normalization and influence of C: sampling z from N(0,C~1).

An extra complication occurs: since C' depends on ¢, it is necessary to
estimate the gradients coming from C~! = ({¢, ¢)x)~! when taking
gradients with respect to ¢.

This ensures we exactly optimize te zero-shot RL loss (26).

Estimating a model of the occupation measures d,,. VISR obtains
sample states s ~ dr_ by running trajectories of 7, and using a Monte
Carlo estimate by averaging over these trajectories. This both suffers
from high variance and limits applicability to the online RL setup,
since interactions with the environment are needed during training.

Instead, learning a model of d,, allows Algorithm 1 to run in an offline
RL setting. It should also result in larger bias but smaller variance
with respect to Monte Carlo sampling from d,.

Simplifying the learning of 7,: this can be done using any @-learning
algorithm with z-dependent Q-function Q(s, a, z) for reward o(s)'z. It
does not have to use the successor features of ¢ as in VISR.

Let us further discuss two of these points (gradients coming from C, and
estimating d,,). The exact derivations are included in Appendix A.

Learning the occupation measures d,,. Instead of explicitly running
the policy 7, as in VISR, a number of techniques allow for direct estimation
of the density of dr,.

Indeed, d._(s) is the average over sy ~ py of the successor measures
M7= (sg, ap, s), multiplied by (1 —). We refer to | | or to Appendix A

13

Algorithm 1 One possible algorithm to optimize the zero-shot RL loss (26)

Input:

Dataset of transitions (s¢, at, S¢4+1) with distribution p.

Norm |-||; on features (default: H(pHi(=]ESNp|cp(s)\2)7 and associated dot
product.

Weights A¢ € {0,1}, Aortn = 0 for auxiliary losses.

Online EMA weights 8; € (0,1) to estimate C.

Output:

Trained features ¢1, ..., pq with their covariance matrix C.

Trained policies .

while not done do
Update covariance matrix C' via EMA: C;; < 5,Cij + (1 — B1){¢s, ¢j) K
Sample a minibatch of values of z: z ~ N(0,C™1)
Update a Q-function Q(s,a, z) and policy 7. (a|s) for reward o(s)"z, using any
RL algorithm
Update the occupation measure model d(s, z) via one step of Algorithm 2
Sample a minibatch of states s from the dataset, and update ¢ with the loss

£{p) = —d(s, 2)p() 2 + Ao L (25, 2) + Aorih Lorin ()

where Lo and Loyen are the auxiliary losses (30) and (27) respectively

end while

Deployment:

Once the reward function r is known:

Estimate (r,01)k, ... (r, pd) K

Set z=C~r,p)k

Apply policy 7,

for successor measures: intuitively, M™(sg,ag,s) encodes the expected
amount of time spent at s if starting at (sg, ag) and running 7.

Algorithm 2 first learns a model m(sp, ag, s, z) of the successor mea-
sure, using one of the methods from [] (the measure-valued Bell-
man equation satisfied by successor measures). Then it averages the result
over sop and ag to obtained the model d(s,z) of the occupation measure
dr.. The mathematical derivations are given in Appendix A. The model
m(so, ag, s, z) may take any form; a particular case is a finite-rank approxi-
mation m(sg, ao, s, z) = F(sg, ag, 2) ' B(s, z) similar to the forward-backward
representation from |], except that here B can be z-dependent. ”

Dealing with the covariance matrix C. In the loss (26), the variable z
is sampled from z ~ N(0,C~1). Since C' depends on ¢, this produces extra
terms when attempting to optimize the loss over .

Here a reparameterization trick z < C'/2z is inconvenient, because it
still requires computing the gradient of C~'/2 with respect to C, and this

TA model m(so, a0, s, z) = F(s0,a0,2) B(s), with B independent of z, would be too
restrictive here: in this model, everything is projected onto the span of B, and the optimal
p is just B.

14

Algorithm 2 One possible algorithm to estimate occupation measures d(s, z)

Input: Dataset of transitions (s¢, a, $¢+1) with distribution p.
Distribution of initial states py (default: pg = p).
Policies 7, (als).
Covariance matrix C' for sampling z.
Output: Trained occupation model d(s, 2).
while not done do
Sample a minibatch of values of z: z ~ N(0,C~1)
Sample a minibatch of transitions (s, at, $¢41) ~ p
Sample actions azy1 ~ 7, (ar41]S41)
Sample a minibatch of states s’ ~ p
Update the successor measure model m(sy, as, s', z) with the loss
L(m) = (m(s¢,ae, 8, 2) — ym(ses1, a1, 8 z))2 —2m(s, ag, 8¢, 2) with m a
target network version of m (using EMA of parameters of m and a stop-grad)
Sample a minibatch of initial states sy ~ po and actions ag ~ 7. (ag|so)
Update the occupation measure model d(s, z) with the loss
L(d) = (d(s', 2) = (1 = y)m(s0, a0, ', 2))*
end while

requires inverting a d? x d? matrix, not just a d x d matrix.
Instead, two other strategies are possible:

1. Only work with orthonormal features, i.e., impose C' = Id at all times.
This is possible without loss of generality, because zero-shot RL with
linear features only depends on the linear span of the features.

In practice, this can be done by imposing a Lagrange multiplier for the
constraint C' = Id. This means adding a loss term Agpth Lorth () in the
algorithm, where A\y¢p, is a large weight, and where

£0rth(90) = H<()07()0>K - Id”%‘robenius (27)
=23 ll@illk + Y (i, 05)K)* + cst (28)

is the loss associated with violating the constraint C' = Id. This option
corresponds to Ac = 0 in Algorithm 1.

With ||| = |||l ,» this loss simplifies to

Lorth($) = Esnp,srmp [(wsﬂo(s’)Y — ()l = [l ()] | + st (29)

similarly to the orthonormalization loss for B in |].

Even with a large weight Aotn, the condition C' = Id will be satisfied
only approximately. Thus we still include C in the algorithm.

When using the orthonormalization loss Lot with a large weight, it is
better if ¢ is initialized so that C' is not too far from Id.

15

2. The second option provides an exact estimation of the gradient of C.
This is carried out in Appendix A, and results in the following loss L¢
included in Algorithm 1:

Lo(p,s,2) = 3d(5,2) (2()72) 32 ((C71ij = 22) (i 0i)ic (30)
]
where ¢ and C are stop-grad versions of ¢ and C, respectively.

If [|-[l g = [l ,» this can be estimated as

Lo(p,5,2) = 3d(s,2) (2(5)'2) Bany [0(5) C0(s) = (0()2)?]
(31)
Even if using the loss L, we still recommend to include a loss Lon,
for numerical reasons to keep ¢ within a reasonable numerical range.

These results make it possible to optimize the features ¢ for a Gaussian
prior on downstream tasks. We now turn to other priors.

3.5 Learning the Optimal Features for Sparse Reward Priors

We now turn to the sparse reward priors from Section 2.3.2. Since goal-
reaching is a special case of scattered random rewards (with k£ = 1), we only
deal with the latter. Namely, we consider sparse rewards of the form

k
r=cy Zwi Osz (32)
i=1
where 04+ (5) := ls—s/p(s*) is the Dirac sparse reward ? at s* as defined

in Section 2.3.2, k is an integer following some probability distribution,
(s7)1<i<k are goal states sampled from the data distribution p, the w; are
weights sampled from some distribution on R, and ¢ is a scaling factor. A
typical example is w; ~ N(0,1) and ¢, = 1/Vk.

Arguably, with such a model, we could just send the full reward description
(s7,wi)1<i<k to a Q-function or policy model. However, our goal is to be
able to mix several types of priors on rewards (Section 3.6): we want to
find zero-shot RL methods that work both for dense and sparse rewards.
Therefore, we describe a method whose structure is closer to that of the
previous sections, by learning optimal features (.

8When L is included, mathematically Loren has no effect since everything only depends
on the span of ¢ and not ¢ itself. But numerically it will be more convenient to keep ¢
well-conditioned.

Dirac with respect to the measure p, namely, E,[f.0s«] = f(s*). In particular, E,ds+ =
1.

16

PROPOSITION 7. Let 8 be a prior on sparse rewards of the type (32), for
some distribution of (k, (w;), c) and where each (s}, a}) has distribution p.
Assume that the reward representation z = ®(r) is computed as in

successor features (21) using the norm ||| -, namely,

z2=C(p) Hr, o)k (33)

where p: S — R? are linearly independent features, and where C(y) is the
matrix with entries Cyj = (pi, ;) K-
Then the zero-shot RL loss {3(®,) satisfies

1 b i
lp(®,m) = —1— ’YEk’ srow Y crwi d (s7, 2(p)) (34)
=1
where
z(p) = ZCWJC(SD)A@;,) K (35)
j

and where d(s, z) is the density of d,_(s) with respect to the data distribution
p-

The density d(s, z) is the same as in Algorithm 1, and can be learned via
Algorithm 2.

Algorithm 3 instantiates this result for the case where ||| = [|-|| .. In
that case, we have

(057, 0)p = ©(s7) (36)

which simplifies the expression for z.
Two points in Algorithm 3 are tricky. The first is how to compute the
gradient of z(p) with respect to ¢, and in particular the gradient of C/(¢)~L.

In Algorithm 3, we have used that C = Eg(s')p(s')| when |||, = [[[l,,- We
have included an extra term
C (@(s)p(s) = () (s)T) C1p(s7) (37)

which evaluates to 0 in the forward pass (since ¢ = ¢) but provides the
correct gradients with respect to C()~! in the backward pass.

The second tricky point is how to update the Q-function for the sparse
reward. Here we have directly applied the results from | | for @-learning
with Dirac rewards such as (32). This point is important when mixing
different priors (Section 3.6): the Q-functions for different priors should be
updated in a consistent way, (e.g., all updated using the Bellman loss for
their respective rewards).

17

Algorithm 3 One possible algorithm to optimize the zero-shot RL loss with
sparse rewards (32)

Input:
Dataset of transitions (s, at, s¢41) with distribution p.
Online EMA weights 8; € (0,1) to estimate C'.
Probability distribution on k € N, the number of goals in the sparse rewards.
Probability distribution on weights w; (default: N(0,1)), scaling factor ¢ (default:
1/VEk).
Output:
Trained features @1, ..., pq with their covariance matrix C'.
Trained policies 7.
while not done do
Update covariance matrix C' via EMA: Cj; < 8;Cij + (1 — B)Esp0(s)p(s)"
Sample a value of k. Sample k goal state-actions (s}, a}) from the dataset
distribution p. Sample weights w;.
Sample a state s’ ~ p
Compute
2(¢) = 3, earwiC 7l o(s) + exwi O (9(s)@(s)T = () p(s)T) C~1p(s7)
where C' and @ are stop-grad versions of C' and ¢
Update a Q-function Q(s,a, z) at z = z(¢) with the Bellman loss

UQ) = Qst,ar,2)* =23, cew;Q(sF, al, z) — 2vQ(s¢, ar, 2)Q(S141, 1, 2)
where (s, at, s¢11) is sampled from p, where a;y; is sampled from 7, (s¢41),
and where Q is a target version of Q.

Update a policy 7. (als) based on Q(s, a, z), using any RL policy algorithm
Update the occupation measure model d(s, z) via one step of Algorithm 2
Update ¢ with the loss

Llp) = — X, cxw; d(st, (%))
where the gradients w.r.t. ¢ are backpropagated through d and z.

end while

Deployment:

Once the reward function r is known:
Estimate (r, 1)k, ... (", 0d) K

Set z=C~(r, o)k

Apply policy 7,

3.6 Mixing Priors

The zero-shot RL loss (5) is linear in the prior 5. Therefore, if two priors (51
and (9 are amenable to gradient descent for this loss, one can deal with a
mixture prior just by mixing the losses for 5; and (2, using a single set of
features ¢, Q-functions, and policies .

In practice, this just means choosing at random, at each step, between
doing an optimization steps for one of the priors, e.g., alternating between
Algorithms 1 and 3.

Of course, this requires using consistent optimization methods for both
priors: the same optimizer, but also similar Bellman losses and policy updates
for 81 and Bs. For instance, 81 and 2 may both use the standard Bellman

18

loss (Q(st,at,z) — (s, 2) —’y@(st+1,at+1,z))2 where 7(s,z) is the mean
reward knowing z for a given prior. Then if 5; has posterior mean reward
r1(s,) knowing z and likewise for 35, optimizing the Q-function alternatively
between (31 and (9 effectively optimizes for the mean posterior reward of the
mixture.

4 Discussion

4.1 What Kind of Features are Learned? Skill Specialization
and the Zero-Shot RL Loss

The features learned are influenced by the prior, and this is one reason why
mixing priors may be appealing.

For a pure goal-oriented prior, it is enough to learn a feature that
represents different goals by different values of z, so, it is enough for ¢ to
be injective (e.g., with dim ¢ = dim s and ¢ = Id). On a discrete space, a
one-dimensional ¢ may solve the problem just by sending every state to a
different value. Of course, this will not work when mixed with other types of
rewards.

For dense Gaussian priors, on the other hand, learning may produce
narrow features ¢, resulting in overspecialized skills. Indeed, conceptually,
from Theorem 6, gradient descent of ¢ for 7, and ¢ amounts to:

 Learn 7, to optimize reward ¢'z for each z;
« Learn ¢ by increasing o'z at the states visited by ..

The above is related to diversity methods [| and has a “rich-get-
richer” dynamics: this is good for diversifying and specializing, but might
overspecialize. We illustrate this phenomenon more precisely in the next
paragraph.

Understanding overspecialization: Analysis with only one feature,
and influence of the prior. This is best understood on a “bandit” case
(we can jump directly to any state) and with only one feature. In this case, a
full analysis can be done, and the optimal one-dimensional feature has only
two non-zero values: a large positive value at a state s; and a large negative
value at a state sg. 10

10Tndeed, take a finite state space S = {1,...,n} and assume that at any state, there’s
an action directly leading to any other state: this makes the MDP into a bandit problem.
Take 1-dimensional ¢. Then from Theorem 6, the gradient with respect to ¢ is dr, .z
where 7, is the policy to maximize reward z.p. If z > 0 then 7, goes to the maximum
of ¢, and dr, = (1 — 7)U 4 YLlargmax, where U is the uniform distribution. If z < 0
then dr, = (1 — ¥)U 4+ Ylargmin . Since the distribution of z is symmetric, on average
the gradient w.r.t. ¢ is proportional to Larg max ¢ — largmine. Gradient ascent on ¢ will

19

Is this specific to the “bandit” case? If the environment has full reach-
ability (the agent can reach any state and stay there), and if the discount
factor v is close to 1, then the problem is essentially a bandit problem. The
transient dynamics before reaching a target state will contribute O(1 —) to
occupation measures d,, any the analysis done on the bandit case will hold
up to O(1 — 7).

Using a smoother prior on rewards (such as the Dirichlet prior, which
favors spatially smooth rewards) does not change this: this applies to any
Gaussian prior including the Dirichlet prior. The prior will influence the
location of the two states s; and sy at which the feature is nonzero. !

Yet such features are optimal for the zero-shot RL loss with a Gaussian
prior. In an environment with full reachability and v close to 1, the optimal
zero-shot behavior with one feature consists in measuring the reward at two
states and going to whichever of those two states has the largest reward. This
applies to any Gaussian prior on rewards, including priors whose covariance
matrix produces spatial smoothness on rewards.

So, if these features are considered undesirable, this reflects a mismatch
between the prior § and the true distribution of test tasks in the test loss
(1). This pushes towards mixing different types of priors, such as Gaussian
and sparse reward priors.

Sparse reward priors such as goal-oriented (Dirac) rewards correspond to
smoother features such as ¢ = Id. This illustrates the mathematical duality
between ¢ and r when estimating z via E[r.¢]: smoother priors on r may lead
to less smooth features ¢ (the dual of a space of smoother functions contains
less smooth functions). Intuitively, with sparse rewards r, the features ¢
must be able to “catch” the location of the reward anywhere in the space,
and cannot be zero almost-everywhere.

Does the Bayesian viewpoint regularize the optimal features? One
might have expected that the Bayesian flavor of the zero-shot RL objective
would result in regularized policies. But this is not the case: by Proposition 2,
every policy 7, is a “sharp” policy, in the sense that it is optimal for some
reward r,. Uncertainty on the reward does not induce noise on the policy: if
the maximum of r, is reachable, 7, will go straight to it and stay there. This
contrasts with the effect of regularizations such as an entropy regularization,
which adds noise to the policy.
Yet this is the “correct” (optimal) answer given the zero-shot RL loss.

converges to a ¢ that has only two nonzero values, one positive and one negative. (The
cases where there are ties between the values of o at several states are numerically unstable.)
This applies to any Gaussian prior on rewards.

"ntuitively, the feature ¢ only looks at the reward at states s; and so before choosing
and applying a policy. With a Dirichlet prior, nearby states have correlated rewards, so
looking at the reward at s2 does not bring much information if sz is close to s1: it brings
more information to measure the reward at distant states s1 and sa.

20

This overspecialization tendency has already been observed for diversity
methods: for instance, |] also find that skills learned must be optimal
for some particular downstream task, although they work from an information
criterion and not from the zero-shot RL loss. This seems to be an intrinsic
property of this general approach.

This illustrates the main assumption in the zero-shot RL framework: at
test time, the reward function is fully known and one can compute z = ®(r).
This leaves no space for uncertainties on r, or any fine-tuning based on further
reward observations. The model estimates z, then applies a policy that will
maximize the mean posterior reward r,, e.g., by going to the maximum of
r, and staying there if possible.

This optimal only if no uncertainty exists on r and no fine-tuning of the
policies is possible.

Comparison with the Forward-Backward framework. The results in
this text shows that forward-backward representations | , | have
no reason to be optimal: If the prior 8 on tasks is known, then one shold
optimize the features for that prior.

However, the discussion above shows that the priors for which we can
compute optimal features may not necessarily reflect the kind of features we
expect to learn. Mixing different priors should mitigate that effect, but to
what extent is currently unclear.

Forward-backward representations aim at learning features that can
faithfully represent the long-term dynamics (successor measures) of many
policies. This is a different kind of implicit prior, closer in spirit to a world
model, and with no explicit distribution over downstream tasks.

4.2 Future Directions

Avoiding overspecialized skills. The zero-shot RL loss can lead to very
narrow optimal features with a Gaussian prior, as we have seen. This is
optimal for the loss (5), but not what we want in general, possibly reflecting
a mismatch between a Gaussian prior and “interesting” rewards.

One possible solution is to mix different priors.

Another possible solution is to account for variance over downstream
tasks in the zero-shot loss: we not only want the best expected performance,
but we don’t want performance to be very bad for some tasks. For the white
noise prior, a full analysis is possible (Appendix B): incorporating variance is
equivalent to penalizing the L? norm of the occupation measures d, (this will
minimize spatial variance, thus “spreading” d.). However, it is not obvious
how to exploit this algorithmically (since d, is computed from 7 and not the
other way around, adding a penalty on d, will just make the computation of
d, wrong). Things are actually simpler if we add a downstream task variance
penalty to the FB framework (Appendix B).

21

Other solutions are to explicitly regularize the features (e.g., minimize
their spatial variance, or their Dirichlet norm to impose temporal smoothness)
or the policies (e.g., by entropy regularization). But since the overspecialized
features actually optimize the zero-shot RL loss (for some priors), it is more
principled to regularize the loss itself.

Nonlinear task representations. In this text, we have covered linear
task representations, as these are the ones in the main zero-shot frameworks
available (successor features and forward-backward). However, a linear task
representation r — z clearly limits the expressivity of zero-shot RL.

One way to get nonlinear reward representations, introduced in [],
is to iterate linear reward representations in a hierarchical manner:

z1 = Er(s)pi(s), zo = Er(s)pa(s, 21), 23 =... (38)

namely, z; provides a rough first reward representation, which can be used
to adjust features 9 more precisely to the reward function. [| prove
that two such levels already provides full expressivity for the correspondence
r +— z. This is amenable to a similar analysis as the one performed in
this text. The sparse reward case looks largely unchanged, but the case of
Gaussian priors is more complex: the covariance matrix C' now depends on
z1, so it would have to be represented via a learned model or estimated on a
minibatch. We leave this for future work.

Another way to bypass the linearity of the task representation would be
to kernelize the norm ||r||, used in the definition of Gaussian reward priors.

Incorporating fine-tuning and reward uncertainty at test time.
Finally, the analysis here relies the main hypothesis behind the zero-shot RL
framework: that at test time, the reward function is instantly and exactly
known. This is the case in some scenarios (eg, goal-reaching, or letting a user
specify a precise task), but not all. In such situations, some fine-tuning of the
policies will be necessary. Which features provide the best initial guess for
real-time fine-tuning is out of the scope of this text. Zero-shot RL assumes
the reward function is fully specified at test time: if it is not, then meta-RL
approaches | | probably provide a better solution.

5 Conclusions

The zero-shot RL loss is the expected policy performance of a zero-shot RL
method on a distribution of downstream tasks. We have shown that this
loss is algorithmically tractable for a number of uninformative priors on
downward tasks, such as white noise, other Gaussian distributions favoring
spatial smoothness, and sparse reward priors such as goal-reaching or random
combinations of goals. We recover VISR as a particular case for the white

22

noise prior. We have also illustrated how dense Gaussian reward priors
can lead to very narrow optimal features, which suggests that a mixture of
different priors could work best.

A Additional Proofs

PROOF OF PROPOSITION 2.

This is because @-functions are linear in r for a given policy. Intuitively, all
rewards represented by z will share policy 7., and so the average return over
rewards is the return of the average reward among those represented by z.
More precisely, by definition of 5., and by (3), the loss rewrites as

EB((I), ﬂ-) = _EZNBZ IE7~|<I>(r):2 ESO"‘PO ‘/'rﬂz (‘90) (39)
1
= _:Ez"/ﬁz Erjo(r)y=z Es~d.,, r(s) (40)
1
= _EEZNBZ Es~d-,rz (Er|<1>(7“):z 7”(8)) (41)
1
= _EEZNBZ IE‘fswd-,rz Tz(s) (42)
= —E.p. Esonpo Vrzz (s0) (43)
as needed. O

PROOF OF PROPOSITIONS 3 AND 4.
Since Proposition 3 is a particular case of Proposition 4, we only prove the
latter.

By definition, the reward r is a centered Gaussian vector with probability
density exp(— ||7]|% /2).

The posterior mean reward r, is the expectation of r knowing

2=C"Hr, o)k (44)

where (-,)k is the dot product associated with the quadratic form H||§<,
and C = (p,)k is the K-covariance matrix of the features ¢,namely
Cij = {pi, Pj) K-

Without loss of generality, by the change of variables ¢ «— C~%/2¢p (which
yields z + C/ 2%), we can assume that C' = Id, namely, the features ¢ are
K-orthonormal. So we must compute the mean of r knowing z = (r,) k.

Since ¢ is k-dimensional, this is a set of k constraints (r,p1)x =
Zlyeees <7“,g0d>K = Zd-

These k constraints define a codimension-k affine hyperplane in the space
of reward functions. We have to compute the expectation of r conditioned
to 7 lying on this hyperplane.

For any Euclidean norm |||, the restriction of a centered Gaussian distri-
bution exp(— ||z||* /2) to an affine subspace is again a Gaussian distribution,

23

whose mean is equal to the point of smallest norm in the subspace. (This can
be proved for instance by applying a rotation so the affine subspace aligns
with coordinate planes, at which point the result is immediate.)

Therefore, the posterior mean r, is the reward function that minimizes
72|13 given the constraints (r, 1)k = 21,..., (r,@a) Kk = zq4. Since the ¢;
are K-orthonormal, this is easily seen to be z1p1 + - - - + 24¢4. This proves
the claim about the posterior mean reward r,.

For the claim about the distribution of z, assume again that the set of
features ¢ is K-orthonormal (C' = Id). Completing ¢ into a K-orthonormal
basis, the Gaussian prior exp(— Hr||§{) means that all components of r onto
this basis are one-dimensional standard Gaussian variables. So z = (r, ¢)k is
a k-dimensional standard Gaussian. Undoing the change of variables with C,
namely, ¢ < C/2¢ and z < C~1/2z, results in z having covariance C~1. [

PROOF OF THEOREM 6.

Theorem 6 is a direct consequence of Proposition 4, Proposition 2, the
definition of ¢g, and the expression (3) of V-functions using the occupation
measures dy.]

Derivation of Algorithm 2. The successor measure | | of a policy
7 is a measure over the state space S depending on an initial state-action
pair (sg,ap). It encodes the expected total time spent in any part X C S, if
starting at (so,ao) and following 7. The formal definition is

M7 (so, a0, X) = ZPF(St € X|so,ag,) (45)
t>0
for each X C S.
By definition, the occupation measure (2) is the average of the successor
measure over the initial state and action:

dr(X) = (1 = 7)Eg)~po, ag~r(ac)so) M (50, a0, X). (46)

A parametric model of M™ can be learned through various measure-
valued Bellman equations satisfied by M. For instance, TD learning for M
is equivalent to the following.

Represent M by its density with respect to the data distribution p,
namely

MW(S()va‘OvdS) = m”(so,ao,s)p(ds) (47)
where we want to learn m™(sg, ag, s). This can be done using one of the
methods from | |. For instance, M™ satisfies a measure-valued Bellman

equation, which gives rise to a Bellman-style loss on m™ with loss
L, = E(

5t,0t,5¢+1)~P, A1~z (8¢41), 8'~p

[(m“(st, at,s') — ym™(St41, ari1, s'))2 —2m" (s, at, st)} . (48)

24

This is the loss £(M) used in Algorithm 2, where an additional z parameter
captures the dependency on 7.

In turn, the relationship (46) between d and M can be used to learn a
parametric model of d from a parametric model of M. Let us parameterize
d by its density with respect to p as we did for M, namely

dy. (ds) = d(s, 2)p(ds) (49)

we find
d(S, Z) = (]' - V)ESQNpo,aowﬂ(ao‘SO)m(S()) ap, S, Z) (50)
which provides the loss for d in Algorithm 2.

Derivation of Lc. This is essentially an application of the log-trick
OB o opy f(2) = Eop, [f(2)0g Inpg(2)], as follows.

LEMMA 8. Let f: R — R be a bounded function and let C be a d x d
matrix. Then the derivative with respect to C of B,y c-1)f(2) satisfies

0B (0.0~ f(2) = 300E. .01 [f(2) (-2'C2 + T(C710))] (51)
taken at C' = C' (namely, C' is a stop-grad version of C).
Applying this to C' = (p, p) i yields

awEZNN(O,Cfl)f(Z) = %awEZNN(o,C*—l) f(z) E ((é_l)z’j - Zizj) (@i, i) K
ij
(52)
as needed for L¢.

PROOF OoF LEMMA 8.
For any smooth parametric probability distribution py and any bounded
function f, one has the log-trick identity

OpBenpy [(2) = By [(2)0p In pp(2)]. (53)

Here we have 0 = C and

Inpy(z) = —% Cz + %ln det C' + cst (54)
and Jacobi’s formula for the derivative of the determinant states that
Oc det C = dc: ((det C) Tr(C10)) (55)
evaluated at C' = C, hence
dcIndet C = d¢ Tr(C~10) (56)
which implies the result.]

25

PROOF OF PROPOSITION 7.
Given a reward function r and policy 7, we have
V= LESNCI r(s) (57)
T 1 _ ,_Y ™
1
= ﬁEsw[d(sﬂ)r(S)] (58)
where d(s,) denotes the density of d, with respect to p.
Applying this to a Dirac reward at s*, namely, 7(s) = Ls—g/p(s*), yields

1

Vr=
I—v

T

d(s*,). (59)

The computation is the same when the reward is a sum of Dirac masses,
T = c)_p widsr yielding

1
V= g > crwsd(sy,). (60)
Proposition 7 then follows from the definition of the zero-shot loss £g. [

B Penalizing Variance over the Reward r is Equiv-
alent to Spatial Regularization for the White
Noise Prior

The loss (5) maximizes the expected performance over the reward r, but
does not account for variance. This is one of the reason we might get
overspecialized skills that take “risks” such as making a bet on the location
of the best reward and going there.

Instead, let us consider a variance-penalized version of this loss,

U@, 7) = —Epp Esgmpy Vi "7 (50) + A Var,g(Bsgup, Vi (s0)) (61)

where A > 0 is the regularization parameter.

This is tractable, as follows. We only reproduce the main part of the
computation, the second moment term in the variance. With notation as in
Proposition 2, we have

v (Bsompo i+ (50))” = B By (r)—z (Basmpo V7 (50))° (62)
1

= ﬁEz%zEr@(r):z(EsN%7”(8))2 (63)
1

=1~ ,YEZNﬁzET|<I>(r)=z<d(5> 2),7(s))72(, (64)

26

where as in Section 3.3, d is defined by
dr. (ds) = d(s, z)p(ds) (65)

namely, d(s, z) is the density of the occupation measure of policy 7, wrt the
data distribution p.
For a white noise prior on r, we have

Er(d(-,2),7)72(p) = |’d('72)H%2(p) (66)

by the definition of white noise in general measure spaces.

But here we should not use E; but E, ()., namely, we now what the re-
war features are. With a white noise prior and with linear task representation,
the distribution of r knowing ®(r) = z is the L?(p)-orthogonal projection of
the white noise onto the orthogonal of the span of the features. Denoting
Hé this projector, we have E, ¢ ()= (d(:, z),r>%2(p) =E,.(d(, z),Héﬂ%%m =
E, (I d(-, z),Hr>%2(p). So, we have proved:

PRroroOSITION 9. With linear features, penalizing the variance over r of
the expected return is equivalent to penalizing the spatial variance (in L*(p)-
norm) of the projection onto the features of the occupation measure density
d(-, z).

Actually it might be safer just not to use the projection onto ¢: it
will overestimate variance, but results in simpler algorithms. Anyway, the
estimation of z = E[p.r] is itself subject to noise because we use a finite
number of samples, so even knowing the empirical estimate of z, there is still
variance in the direction of the span of .

Algorithmically, the applicability of this depends on the method. If the
occupation measure d is just computed from 7, which is computed from ¢,
then adding a penalty on d will just throw off the computation of d without
affecting the features ¢. But in the VISR-like algorithm from Section 3.3, ¢
is in turn computed from d (the features z'¢ are increased on the part of the
stte visited by 7,), so penalized the variance of d is more or less equivalent
to penalizing the variance of .

A similar penalty over the variance of the policy performance can be
incorporated in the FB framework. Things are a bit simpler because
B is both the features and the successor measure d: we have d(s,z) =
E sy~ po,a0~ms (so) F (505 @0, 2)'B(s), so we might directly penalize the spatial
variance of d, with loss

Esp(Esoa0 (50, a0,2)) B(5))? — (EspEsy a0 F (50, a0, 2) B(s))* (67)
This may be a sensible and principled way to avoid degenerate features

in FB.

27

References

[ACR*17]

[BBQ™18]

[BO21]

[BTO21]

[BVLT23]

[CTO24]

[EGIL1S]

[ESL21]

[FPAL24]

[HDB+19]

[SB18]

Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter
Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NIPS, 2017.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz,
Rémi Munos, Hado van Hasselt, David Silver, and Tom Schaul.
Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Léonard Blier and Yann Ollivier. Unbiased methods for multi-goal
reinforcement learning. arXiv preprint arXiv:2106.08863, 2021.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning
successor states and goal-dependent values: A mathematical
viewpoint. arXiv preprint arXiv:2101.07123, 2021.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa
Zintgraf, Chelsea Finn, and Shimon Whiteson. A survey of
meta-reinforcement learning. arXiv preprint arXiv:2301.08028,
2023.

Edoardo Cetin, Ahmed Touati, and Yann Ollivier. Finer behav-
ioral foundation models via auto-regressive features and advantage
weighting. arXiv preprint arXiv:2412.04368, 2024.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey
Levine. Diversity is all you need: Learning skills without a reward
function. In International Conference on Learning Representa-
tions, 2018.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine.
The information geometry of unsupervised reinforcement learning.
arXiv preprint arXiw:2110.02719, 2021.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine.
Unsupervised zero-shot reinforcement learning via functional re-
ward encodings. arXiv preprint arXiv:2402.17135, 2024.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele,
David Warde-Farley, and Volodymyr Mnih. Fast task infer-

ence with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018. 2nd edition.

28

[TO21] Ahmed Touati and Yann Ollivier. Learning one representation
to optimize all rewards. In NeurIPS, pages 1323, 2021.

[TRO23] Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot
reinforcement learning exist? In ICLR. OpenReview.net, 2023.

29

	Introduction
	Setup, Notation, and Some Reward Priors
	General Notation
	The Zero-Shot RL Objective: Optimize Expected Downstream Performance
	Some Uninformative Priors on Reward Functions
	Dense Reward Priors
	Sparse Reward Priors

	Algorithmic Tractability of the Zero-Shot RL Loss
	The Optimal Policies Given a Representation
	Linear Task Representations
	The Zero-Shot Loss is Tractable for Linear Representations
	Algorithms for Optimizing the Representation
	Learning the Optimal Features for Sparse Reward Priors
	Mixing Priors

	Discussion
	What Kind of Features are Learned? Skill Specialization and the Zero-Shot RL Loss
	Future Directions

	Conclusions
	Additional Proofs
	Penalizing Variance over the Reward r is Equivalent to Spatial Regularization for the White Noise Prior

